
Citation: Condurache, D. A

Full-Body Relative Orbital Motion of

Spacecraft Using Dual Tensor

Algebra and Dual Quaternions.

Mathematics 2023, 11, 1366.

https://doi.org/10.3390/

math11061366

Academic Editor: Nicolae Herisanu

Received: 27 January 2023

Revised: 6 March 2023

Accepted: 10 March 2023

Published: 11 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Full-Body Relative Orbital Motion of Spacecraft Using Dual
Tensor Algebra and Dual Quaternions
Daniel Condurache

Department of Theoretical Mechanics, Technical University of Iasi, D. Mangeron Street No.59,
700050 Iasi, Romania; daniel.condurache@tuiasi.ro

Abstract: This paper proposes a new non-linear differential equation for the six degrees of freedom
(6-DOF) relative rigid bodies motion. A representation theorem is provided for the 6-DOF differential
equation of motion in the arbitrary non-inertial reference frame. The problem of the 6-DOF relative
motion of two spacecraft in the specific case of Keplerian confocal orbits is proposed. The result is an
analytical method without secular terms and singularities. Tensors dual algebra and dual quaternions
play a fundamental role, with the solution representation being the relative problem. Furthermore,
the representation theorems for the rotation and translation parts of the 6-DOF relative orbital motion
problems are obtained.
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1. Introduction

With the development of space technology, space activities have gradually become
normal, and the diversity of space missions has increased. In recent years, in-orbit service,
formation flying of spacecraft, rendezvous, and docking, refueling, and other short-range
operations have attracted more and more attention from researchers. Traditional control
methods assume that spacecraft translation and rotation are decoupled, and spacecraft
control adopts the serial control mode of alternate attitude and orbit control. The approach
implies considering the translation and attitude dynamics, using a mathematical formalism
of real Euclidean vectors and tensors. However, for short-range missions with high accuracy,
the coupling effect between attitude and orbit must be considered, and attitude and orbit
must be controlled simultaneously, which requires establishing a dynamic coupled attitude-
orbit model. The relative movement between the primary spacecraft denoted Chief, and
the second spacecraft denoted Deputy, is a 6-DOF movement. In astrodynamics, this
problem is called the full body relative orbital motion. In recent years, the 6-DOF motion
of spacecraft has attracted particular attention [1–5], such as the control of the relative
pose of satellite formations flying, which has become a crucial research topic [6–13]. This
paper uses dual number algebra and dual quaternions to obtain the exact solution of the
6-DOF laws of relative orbital motion for the case of two Keplerian spacecrafts in the same
gravitational center of attraction. Orthogonal dual tensors and dual quaternions are crucial
for describing the complete onboard solution of 6-DOF relative orbital motion problems.
The solution proves one must know only the Chief spacecraft’s motion and the Deputy
spacecraft’s initial conditions in the Local Vertical-Local Horizontal (LVLH) non-inertial
reference frame. This paper proves a novel general theorem for the 6-DOF motion in
an arbitrary non-inertial frame. A decoupling problem for the attitude and translation
components of the relative motion is also obtained. The relative motion of the Chief and
Deputy spacecrafts’ mass centers is an exact closed-form, coordinate-free solution. The
novel result is achieved by analytical methods in the general topic, without implying any
secular terms and is singularity-free.
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In contrast to other approaches, the proposed solution is onboard; all calculations
are carried out in the reference frame of the Chief spacecraft. The paper is structured as
follows. Section 2 presents the dual algebra, vectors, and tensor for rigid body displacement
and motion parameterization. The structural invariant on vector and tensor of rigid body
displacement is proposed, and the exponential Rodrigues-like formula in dual algebra is
demonstrated. The Lie group of rigid body displacement and this Lie algebra is isomorphic
with orthogonal dual tensors and, respectively, with skew-symmetric dual tensors. The
rigid body motion is parameterized with a curve in the Lie algebra of orthogonal dual
tensor. The velocity field of rigid body and kinematics equation problem in dual algebra is
considered. The reconstruction of rigid body motion is an approach for a dual twist in space
or in the body frame. Section 3 presents a fundamental non-vectorial parameterization
of rigid body displacement and motion: dual quaternions. The Lie group of unit dual
quaternions is homomorphic with orthogonal dual tensors. Dual vector and unit dual
quaternions represent all the properties of rigid body motion. Additionally, the kinematic
equations for dual quaternion are proven. Section 4 establishes the state equations for a rigid
body in an arbitrary non-inertial reference frame. A representation theorem that decouples
the inertial and non-inertial components of the last motion is presented. In Section 5, using
the general results of Section 4, the representation theorem and the solution for the onboard
full-body relative orbital motion problem are proven. Furthermore, the representation
theorems for the attitude and translation parts of the 6-DOF relative orbital motion problems
are obtained. Finally, a case study to give the exact closed-form, coordinate-free solution of
the translation part of the relative orbital motion problem is resolved. The last section is
designated to the conclusions and further work.

2. Dual Number Algebra Parameterization by Rigid Body Motion

The contemporary approach starts with the property of the Lie group of rigid body
displacements, accompanied by its Lie algebra. In geometric terminology, the Lie group of
rigid body displacement is the semidirect product of the rotation group with the translation
group in three-dimensional Euclidean space. A previous paper proves an isomorphism of the
Lie group with orthogonal dual tensors and, an isomorphism of the Lie algebra with the dual
vectors set. Orthogonal dual tensor maps and dual quaternions are a complete instrument for
studying rigid body displacement and motion. Further information on dual numbers, dual
vectors, dual tensors, and dual quaternions can be found in references [2,14–24].

2.1. General Theorems and Isomorphism between Lie Groups and Lie Algebras for Rigid Body
Displacements

Let the set of orthogonal dual tensor:

SO3 =
{

R ∈ L(V3, V3)
∣∣∣RRT = I, detR = 1

}
(1)

where I is the unit orthogonal dual tensor.
The orthogonal dual tensor properties of SO3 are the same results that were detailed

in our previous studies [15,16,20].

Theorem 1 (Structure Theorem). For any orthogonal dual tensor R ∈ SO3 a decomposition:
where Q ∈ SO3 and ρ ∈ V3 are called structural invariants, ε2 = 0, ε 6= 0 is uniques.

R =
(

I + ε
∼
ρ
)

Q (2)

For the Lie group structure of Theorem 1, it can be concluded that any orthogonal
dual tensor R ∈ SO3 can globally parameterize any displacements of rigid bodies.
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Theorem 2 (Representation Theorem). For any orthogonal dual tensor R defined as in (Equation
(2), a dual number α = α + εd and a dual unit vector u = u + εu0 can be computed to have the
following equation [15,16]:

R(α, u) = I + (sin α)
∼
u + (1− cosα)

∼
u

2
= exp

(
α
∼
u
)

(3)

Equation (3) is a Rodrigues-like formula for SO3. Dual angle α and unit dual vector u
are called the natural invariants of R. The unit dual vector u = u + εu0 gives the Plücker
representation of the Mozzi–Chalses axis [14,20], while the dual angle α = α + εd contains
the rotation angle α and the translated distance d.

The Lie algebra of the Lie group SO3 is the skew-symmetric dual tensor set denoted by

s
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k!

+

*,%
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The screw axis that embeds a rigid body displacement (via the Mozzi–Chalses theo-
rem) is bound to the problem of finding the logarithm of an orthogonal dual tensor, which 
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𝜶% ∙ 𝜶
‖𝜶‖ , 𝑅𝑒(𝜶+ ≠ 𝟎

𝜀‖𝜶%‖, 𝑅𝑒(𝜶+ = 𝟎
 (6) 

The conversion between natural invariants and structural invariants of rigid body motion 
is given by: 

Theorem 4. The natural invariants 𝛼 = 𝛼 + 𝜀𝑑, 𝐮 = 𝐮 + ε𝐮% can be used to directly recover the 
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Theorem 5. (Isomorphism Theorem): The special Euclidean Lie groups (𝑆𝔼!) and S𝕆!) are iso-
morphic: 

3 =

{
∼
α ∈ L(V3, V3)

∣∣∣∣∼α = −∼α
T
}

, where commutator is the internal operation:
〈∼

α1,
∼
α2

〉
=

∼
∼
α1α2.

The link between the Lie algebra s
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α
)
= e
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α =

∞
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k=0

∼
α

k

k!
(4)

The screw axis that embeds a rigid body displacement (via the Mozzi–Chalses theorem)
is bound to the problem of finding the logarithm of an orthogonal dual tensor, which is a
multiple valued function:

log : SO3 → s
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𝐮 are called the natural invariants of 𝑹. The unit dual vector 𝐮 = 𝐮 + ε𝐮%  gives the 
Plücker representation of the Mozzi–Chalses axis [14,20], while the dual angle 𝛼 = 𝛼 + 𝜀𝑑 
contains the rotation angle 𝛼 and the translated distance 𝑑. 

The Lie algebra of the Lie group S𝕆! is the skew-symmetric dual tensor set denoted 
by s𝕠! = $𝜶C ∈ 𝐋(𝐕!, 𝐕!+,𝜶C = −𝜶C&2, where commutator is the internal operation :〈𝜶C', 𝜶C$〉 =
𝜶C'𝜶$V . 

The link between the Lie algebra s𝕠!, the Lie group S𝕆!, and the exponential map is 
given by the following. 

Theorem 3. The exponential mapping is well defined and surjective. 

exp: s𝕠! → S𝕆!,	 

exp(𝜶C+ = 𝑒𝜶) =Y
𝜶C*

k!

+

*,%

 (4) 

The screw axis that embeds a rigid body displacement (via the Mozzi–Chalses theo-
rem) is bound to the problem of finding the logarithm of an orthogonal dual tensor, which 
is a multiple valued function: 

Log: S𝕆! → s𝕠!, 

log𝑹 = $𝜶C ∈ s𝕠!,exp(𝜶C+ = 𝑹2 
(5) 

and is the inverse of (Equation (4)). 
From Theorem 2 for any orthogonal dual tensor 𝑹, a dual vector 𝜶 = α	𝐮 = 𝜶 + ε𝜶% 

is computed, denoted by the Euler dual vector (that includes the screw axis and screw 
parameters in dual form). The form of dual vector 𝜶	implies that 𝜶C ∈ log𝑹. The types of 
rigid body displacements that are parameterized by the Euler dual vector 𝜶 are as below: 
• screw displacement if 𝜶 ≠ 𝟎,𝜶% ≠ 𝟎	and	𝜶 ∙ 𝜶% ≠ 0⟺ ,𝜶, ∈ ℝ	and	,𝜶, ∉ εℝ; 
• only translation displacement if	𝜶 = 𝟎	and	𝜶% ≠ 𝟎	 ⟺	 ,𝜶, ∈ εℝ; 
• only rotation displacement if 𝜶 ≠ 𝟎	and	𝜶 ∙ 𝜶% = 0⟺	 ,𝜶, ∈ ℝ. 
In previous relations, we have denoted the dual norm of the dual vector 𝜶 = 𝜶+ ε𝜶%	as: 

,𝜶, = g
‖𝜶‖ + 𝜀

𝜶% ∙ 𝜶
‖𝜶‖ , 𝑅𝑒(𝜶+ ≠ 𝟎

𝜀‖𝜶%‖, 𝑅𝑒(𝜶+ = 𝟎
 (6) 

The conversion between natural invariants and structural invariants of rigid body motion 
is given by: 

Theorem 4. The natural invariants 𝛼 = 𝛼 + 𝜀𝑑, 𝐮 = 𝐮 + ε𝐮% can be used to directly recover the 
structural invariants 𝑸 and 𝝆 from (Equation (2)): 

𝑸 = 𝑰 + sin𝛼𝒖C + (1 − cos𝛼)𝒖C$
𝛒 = 𝑑𝐮 + sin𝛼𝐮% + (1 − cos𝛼)𝐮 × 𝐮%

 (7) 

Theorem 5. (Isomorphism Theorem): The special Euclidean Lie groups (𝑆𝔼!) and S𝕆!) are iso-
morphic: 

3

∣∣∣exp
(∼

α
)
= R

} (5)

and is the inverse of (Equation (4)).
From Theorem 2 for any orthogonal dual tensor R, a dual vector α = αu = α + εα0

is computed, denoted by the Euler dual vector (that includes the screw axis and screw
parameters in dual form). The form of dual vector α implies that

∼
α ∈ logR. The types of

rigid body displacements that are parameterized by the Euler dual vector α are as below:

• screw displacement if α 6= 0, α0 6= 0 and α·α0 6= 0⇐⇒ |α| ∈ R and |α| /∈ εR ;
• only translation displacement if α = 0 and α0 6= 0⇐⇒ |α| ∈ εR ;
• only rotation displacement if α 6= 0 and α·α0 = 0⇐⇒ |α| ∈ R .

In previous relations, we have denoted the dual norm of the dual vector α = α + εα0
as:

|α| =
{
‖α‖+ ε α0·α

‖α‖ , Re(α) 6= 0
ε‖α0‖, Re(α) = 0

(6)

The conversion between natural invariants and structural invariants of rigid body
motion is given by:

Theorem 4. The natural invariants α = α + εd, u = u + εu0 can be used to directly recover the
structural invariants Q and ρ from (Equation (2)):

Q = I + sinα
∼
u + (1− cosα)

∼
u

2

ρ = du + sinαu0 + (1− cosα)u× u0
(7)
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Theorem 5 (Isomorphism Theorem). The special Euclidean Lie groups (SE 3) and SO3)
are isomorphic:

Φ : SE3 → SO3,

Φ(g) =
(

I + ε
∼
ρ
)

Q,
(8)

where g =

[
Q ρ
0 1

]
, Q ∈ SO3, ρ ∈ V3.

The Lie algebras s
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Φ: S𝔼3 → S𝕆3, 

Φ(g) = (𝑰 + ε𝝆̃)𝑸, 
(8) 

where g = [
𝑸 𝛒
𝟎 1

] , 𝑸 ∈ S𝕆3, 𝛒 ∈ 𝑽3. 

The Lie algebras se (3) and 𝑽3 is isomorphic: 

φ: se (3) → 𝑽3, 

φ(𝜉) = 𝛚 + ε𝐯, 
(9) 

where ξ̂ = [
𝝎̃ 𝐯
𝟎 0

] , 𝝎̃ ∈ s𝕠3, 𝐯 ∈ 𝑽3. 

Proof. For any g1, g2 ∈ 𝑆𝔼3, the map defined in Equation (7) yields 

Φ(g1 ∙ g2) = Φ(g1) ∙ Φ(g2). (10) 

Let 𝑹 ∈ S𝕆3. Based on Theorem 4, which ensures a unique decomposition, we can 

conclude that the only choice for g, such that Φ(g) = 𝑹 is g = [
𝑸 𝛒
𝟎 1

]. This underlines 

that Φ is a bijection and keeps all the internal operations, where 𝑸 and 𝛒 are denoted 

as structural invariant of the orthogonal tensor 𝑸. 

For any ξ̂1, ξ̂2 ∈ se(3), the mapping defined by Equation (7) verifies the identity 

Φ([ξ̂1, ξ̂2]) = Φ(ξ̂1) × Φ(ξ̂2), (11) 

Additionally, for any 𝛚 ∈ 𝑽3 , 𝛚 = 𝛚+ ε𝐯 , there is only determined ξ̂ = [
𝝎̃ 𝐯
𝟎 0

] 

such that φ(ξ) = 𝛚. Thus, φ is a bijective mapping. □ 

Remark 1. The inverse of isomorphisms Φ and respectively φ is: 

Φ−1: S𝕆3 ⟷ S𝔼3;  Φ
−1 = (𝑹) = [

𝑸 𝛒
𝟎 1

], (12) 

where 𝑸 = 𝑅𝑒(𝑹), 𝛒 = 𝑣𝑒𝑐𝑡(𝐷𝑢(𝑹) ∙ 𝑸T). 

φ−1: 𝑽3 ⟷ se (3); φ−1(𝛚) = φ−1(𝛚 + ε𝐯) = [𝝎̃ 𝐯
𝟎 0

], (13) 

where 𝝎̃ = 𝑠𝑘𝑒𝑤(𝑅𝑒(𝛚)), 𝐯 = 𝐷𝑢(𝛚). 

Theorem 5. connects two distinct ways of rigid body displacement: the displacement of 

its points or the displacement of the oriented lines attached to the rigid body. 

2.2. The Velocity Field and Kinematic Equation in Dual Number Algebra 

Let the parametric equations of a rigid body motion: 𝑸 = 𝑸(𝑡) ∈ S𝕆3
ℝ  and 𝛒 =

𝛒(𝑡) ∈ 𝑽3
ℝ,where all the functions are time differentiable. The rigid body motion can be 

parameterized by a curve in the Lie group of orthogonal dual tensors S𝕆3 by 𝑹(𝑡) =

(𝑰 + 𝜀𝝆̃(𝑡))𝑸(𝑡), where 𝑡 ∈ ℝ is time variable (see Theorem 1). Let 𝐮0 the unit dual vec-

tor embed the oriented line feature at 𝑡 = 𝑡0. At a time 𝑡 the oriented line is transformed 

into: 

𝐮(𝑡) = 𝑹(𝑡)𝐮0 (14) 

Theorem 6. In a general rigid body motion, the dual velocity tensor function 𝝎̃, defined as: 

𝐮̇ = 𝝎̃ 𝐮, ∀𝐮 ∈ 𝑽3
ℝ (15) 

is given by 

(3) and V3 is isomorphic:

ϕ : s
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Φ: S𝔼3 → S𝕆3, 

Φ(g) = (𝑰 + ε𝝆̃)𝑸, 
(8) 

where g = [
𝑸 𝛒
𝟎 1

] , 𝑸 ∈ S𝕆3, 𝛒 ∈ 𝑽3. 

The Lie algebras se (3) and 𝑽3 is isomorphic: 

φ: se (3) → 𝑽3, 

φ(𝜉) = 𝛚 + ε𝐯, 
(9) 

where ξ̂ = [
𝝎̃ 𝐯
𝟎 0

] , 𝝎̃ ∈ s𝕠3, 𝐯 ∈ 𝑽3. 

Proof. For any g1, g2 ∈ 𝑆𝔼3, the map defined in Equation (7) yields 

Φ(g1 ∙ g2) = Φ(g1) ∙ Φ(g2). (10) 

Let 𝑹 ∈ S𝕆3. Based on Theorem 4, which ensures a unique decomposition, we can 

conclude that the only choice for g, such that Φ(g) = 𝑹 is g = [
𝑸 𝛒
𝟎 1

]. This underlines 

that Φ is a bijection and keeps all the internal operations, where 𝑸 and 𝛒 are denoted 

as structural invariant of the orthogonal tensor 𝑸. 

For any ξ̂1, ξ̂2 ∈ se(3), the mapping defined by Equation (7) verifies the identity 

Φ([ξ̂1, ξ̂2]) = Φ(ξ̂1) × Φ(ξ̂2), (11) 

Additionally, for any 𝛚 ∈ 𝑽3 , 𝛚 = 𝛚+ ε𝐯 , there is only determined ξ̂ = [
𝝎̃ 𝐯
𝟎 0

] 

such that φ(ξ) = 𝛚. Thus, φ is a bijective mapping. □ 

Remark 1. The inverse of isomorphisms Φ and respectively φ is: 

Φ−1: S𝕆3 ⟷ S𝔼3;  Φ
−1 = (𝑹) = [

𝑸 𝛒
𝟎 1

], (12) 

where 𝑸 = 𝑅𝑒(𝑹), 𝛒 = 𝑣𝑒𝑐𝑡(𝐷𝑢(𝑹) ∙ 𝑸T). 

φ−1: 𝑽3 ⟷ se (3); φ−1(𝛚) = φ−1(𝛚 + ε𝐯) = [𝝎̃ 𝐯
𝟎 0

], (13) 

where 𝝎̃ = 𝑠𝑘𝑒𝑤(𝑅𝑒(𝛚)), 𝐯 = 𝐷𝑢(𝛚). 

Theorem 5. connects two distinct ways of rigid body displacement: the displacement of 

its points or the displacement of the oriented lines attached to the rigid body. 

2.2. The Velocity Field and Kinematic Equation in Dual Number Algebra 

Let the parametric equations of a rigid body motion: 𝑸 = 𝑸(𝑡) ∈ S𝕆3
ℝ  and 𝛒 =

𝛒(𝑡) ∈ 𝑽3
ℝ,where all the functions are time differentiable. The rigid body motion can be 

parameterized by a curve in the Lie group of orthogonal dual tensors S𝕆3 by 𝑹(𝑡) =

(𝑰 + 𝜀𝝆̃(𝑡))𝑸(𝑡), where 𝑡 ∈ ℝ is time variable (see Theorem 1). Let 𝐮0 the unit dual vec-

tor embed the oriented line feature at 𝑡 = 𝑡0. At a time 𝑡 the oriented line is transformed 

into: 

𝐮(𝑡) = 𝑹(𝑡)𝐮0 (14) 

Theorem 6. In a general rigid body motion, the dual velocity tensor function 𝝎̃, defined as: 

𝐮̇ = 𝝎̃ 𝐮, ∀𝐮 ∈ 𝑽3
ℝ (15) 

is given by 

(3)→ V3,
ϕ(ξ) =ω+ εv,

(9)

where ξ̂ =

[∼
ω v
0 0

]
,
∼
ω ∈ s
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Theorem 2. (Representation Theorem). For any orthogonal dual tensor 𝑹 defined as in (Equation 
(2), a dual number 𝛼 = 𝛼 + 𝜀𝑑 and a dual unit vector 𝐮 = 𝐮 + ε𝐮% can be computed to have the 
following equation [15,16]: 

𝑹(𝛼, 𝐮+ = 𝑰 + (sin 𝛼)𝒖C + (1 − cos𝛼+𝒖C$ = exp(𝛼	𝒖C+ (3) 

Equation (3) is a Rodrigues-like formula for S𝕆!. Dual angle 𝛼 and unit dual vector 
𝐮 are called the natural invariants of 𝑹. The unit dual vector 𝐮 = 𝐮 + ε𝐮%  gives the 
Plücker representation of the Mozzi–Chalses axis [14,20], while the dual angle 𝛼 = 𝛼 + 𝜀𝑑 
contains the rotation angle 𝛼 and the translated distance 𝑑. 

The Lie algebra of the Lie group S𝕆! is the skew-symmetric dual tensor set denoted 
by s𝕠! = $𝜶C ∈ 𝐋(𝐕!, 𝐕!+,𝜶C = −𝜶C&2, where commutator is the internal operation :〈𝜶C', 𝜶C$〉 =
𝜶C'𝜶$V . 

The link between the Lie algebra s𝕠!, the Lie group S𝕆!, and the exponential map is 
given by the following. 

Theorem 3. The exponential mapping is well defined and surjective. 

exp: s𝕠! → S𝕆!,	 

exp(𝜶C+ = 𝑒𝜶) =Y
𝜶C*

k!

+

*,%

 (4) 

The screw axis that embeds a rigid body displacement (via the Mozzi–Chalses theo-
rem) is bound to the problem of finding the logarithm of an orthogonal dual tensor, which 
is a multiple valued function: 

Log: S𝕆! → s𝕠!, 

log𝑹 = $𝜶C ∈ s𝕠!,exp(𝜶C+ = 𝑹2 
(5) 

and is the inverse of (Equation (4)). 
From Theorem 2 for any orthogonal dual tensor 𝑹, a dual vector 𝜶 = α	𝐮 = 𝜶 + ε𝜶% 

is computed, denoted by the Euler dual vector (that includes the screw axis and screw 
parameters in dual form). The form of dual vector 𝜶	implies that 𝜶C ∈ log𝑹. The types of 
rigid body displacements that are parameterized by the Euler dual vector 𝜶 are as below: 
• screw displacement if 𝜶 ≠ 𝟎,𝜶% ≠ 𝟎	and	𝜶 ∙ 𝜶% ≠ 0⟺ ,𝜶, ∈ ℝ	and	,𝜶, ∉ εℝ; 
• only translation displacement if	𝜶 = 𝟎	and	𝜶% ≠ 𝟎	 ⟺	 ,𝜶, ∈ εℝ; 
• only rotation displacement if 𝜶 ≠ 𝟎	and	𝜶 ∙ 𝜶% = 0⟺	 ,𝜶, ∈ ℝ. 
In previous relations, we have denoted the dual norm of the dual vector 𝜶 = 𝜶+ ε𝜶%	as: 

,𝜶, = g
‖𝜶‖ + 𝜀

𝜶% ∙ 𝜶
‖𝜶‖ , 𝑅𝑒(𝜶+ ≠ 𝟎

𝜀‖𝜶%‖, 𝑅𝑒(𝜶+ = 𝟎
 (6) 

The conversion between natural invariants and structural invariants of rigid body motion 
is given by: 

Theorem 4. The natural invariants 𝛼 = 𝛼 + 𝜀𝑑, 𝐮 = 𝐮 + ε𝐮% can be used to directly recover the 
structural invariants 𝑸 and 𝝆 from (Equation (2)): 

𝑸 = 𝑰 + sin𝛼𝒖C + (1 − cos𝛼)𝒖C$
𝛒 = 𝑑𝐮 + sin𝛼𝐮% + (1 − cos𝛼)𝐮 × 𝐮%

 (7) 

Theorem 5. (Isomorphism Theorem): The special Euclidean Lie groups (𝑆𝔼!) and S𝕆!) are iso-
morphic: 

3, v ∈ V3.

Proof. For any g1, g2∈ SE3, the map defined in Equation (7) yields

Φ(g1·g2) = Φ(g1)·Φ(g2). (10)

Let R ∈ SO3. Based on Theorem 4, which ensures a unique decomposition, we can

conclude that the only choice for g, such that Φ(g) = R is g =

[
Q ρ
0 1

]
. This underlines

that Φ is a bijection and keeps all the internal operations, where Q and ρ are denoted as
structural invariant of the orthogonal tensor Q.

For any ξ̂1, ξ̂2 ∈ se(3), the mapping defined by Equation (7) verifies the identity

Φ
([
ξ̂1, ξ̂2

])
= Φ

(
ξ̂1
)
×Φ

(
ξ̂2
)

(11)

Additionally, for any ω ∈ V3, ω = ω+ εv, there is only determined ξ̂ =

[∼
ω v
0 0

]
such that ϕ(ξ) =ω. Thus, ϕ is a bijective mapping. �

Remark 1. The inverse of isomorphisms Φ and respectively ϕ is:

Φ−1 : SO3 ←→ SE3; Φ−1(R) =

[
Q ρ
0 1

]
(12)

where Q = Re(R), ρ = vect
(

Du(R)·QT
)

.

ϕ−1 : V3 ←→ s
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Φ: S𝔼3 → S𝕆3, 

Φ(g) = (𝑰 + ε𝝆̃)𝑸, 
(8) 

where g = [
𝑸 𝛒
𝟎 1

] , 𝑸 ∈ S𝕆3, 𝛒 ∈ 𝑽3. 

The Lie algebras se (3) and 𝑽3 is isomorphic: 

φ: se (3) → 𝑽3, 

φ(𝜉) = 𝛚 + ε𝐯, 
(9) 

where ξ̂ = [
𝝎̃ 𝐯
𝟎 0

] , 𝝎̃ ∈ s𝕠3, 𝐯 ∈ 𝑽3. 

Proof. For any g1, g2 ∈ 𝑆𝔼3, the map defined in Equation (7) yields 

Φ(g1 ∙ g2) = Φ(g1) ∙ Φ(g2). (10) 

Let 𝑹 ∈ S𝕆3. Based on Theorem 4, which ensures a unique decomposition, we can 

conclude that the only choice for g, such that Φ(g) = 𝑹 is g = [
𝑸 𝛒
𝟎 1

]. This underlines 

that Φ is a bijection and keeps all the internal operations, where 𝑸 and 𝛒 are denoted 

as structural invariant of the orthogonal tensor 𝑸. 

For any ξ̂1, ξ̂2 ∈ se(3), the mapping defined by Equation (7) verifies the identity 

Φ([ξ̂1, ξ̂2]) = Φ(ξ̂1) × Φ(ξ̂2), (11) 

Additionally, for any 𝛚 ∈ 𝑽3 , 𝛚 = 𝛚+ ε𝐯 , there is only determined ξ̂ = [
𝝎̃ 𝐯
𝟎 0

] 

such that φ(ξ) = 𝛚. Thus, φ is a bijective mapping. □ 

Remark 1. The inverse of isomorphisms Φ and respectively φ is: 

Φ−1: S𝕆3 ⟷ S𝔼3;  Φ
−1 = (𝑹) = [

𝑸 𝛒
𝟎 1

], (12) 

where 𝑸 = 𝑅𝑒(𝑹), 𝛒 = 𝑣𝑒𝑐𝑡(𝐷𝑢(𝑹) ∙ 𝑸T). 

φ−1: 𝑽3 ⟷ se (3); φ−1(𝛚) = φ−1(𝛚 + ε𝐯) = [𝝎̃ 𝐯
𝟎 0

], (13) 

where 𝝎̃ = 𝑠𝑘𝑒𝑤(𝑅𝑒(𝛚)), 𝐯 = 𝐷𝑢(𝛚). 

Theorem 5. connects two distinct ways of rigid body displacement: the displacement of 

its points or the displacement of the oriented lines attached to the rigid body. 

2.2. The Velocity Field and Kinematic Equation in Dual Number Algebra 

Let the parametric equations of a rigid body motion: 𝑸 = 𝑸(𝑡) ∈ S𝕆3
ℝ  and 𝛒 =

𝛒(𝑡) ∈ 𝑽3
ℝ,where all the functions are time differentiable. The rigid body motion can be 

parameterized by a curve in the Lie group of orthogonal dual tensors S𝕆3 by 𝑹(𝑡) =

(𝑰 + 𝜀𝝆̃(𝑡))𝑸(𝑡), where 𝑡 ∈ ℝ is time variable (see Theorem 1). Let 𝐮0 the unit dual vec-

tor embed the oriented line feature at 𝑡 = 𝑡0. At a time 𝑡 the oriented line is transformed 

into: 

𝐮(𝑡) = 𝑹(𝑡)𝐮0 (14) 

Theorem 6. In a general rigid body motion, the dual velocity tensor function 𝝎̃, defined as: 

𝐮̇ = 𝝎̃ 𝐮, ∀𝐮 ∈ 𝑽3
ℝ (15) 

is given by 

(3);ϕ−1(ω) = ϕ−1(ω+ εv) =

[∼
ω v
0 0

]
(13)

where
∼
ω = skew(Re(ω)), v = Du(ω).

Theorem 5 connects two distinct ways of rigid body displacement: the displacement
of its points or the displacement of the oriented lines attached to the rigid body.

2.2. The Velocity Field and Kinematic Equation in Dual Number Algebra

Let the parametric equations of a rigid body motion: Q = Q(t) ∈ SOR
3 and

ρ = ρ(t) ∈ VR
3 , where all the functions are time differentiable. The rigid body mo-

tion can be parameterized by a curve in the Lie group of orthogonal dual tensors SO3

by R(t) =
(

I + ε
∼
ρ(t)

)
Q(t), where t ∈ R is time variable (see Theorem 1). Let u0 the
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unit dual vector embed the oriented line feature at t = t0. At a time t the oriented line is
transformed into:

u(t) = R(t)u0 (14)

Theorem 6. In a general rigid body motion, the dual velocity tensor function
∼
ω, defined as:

.
u =

∼
ωu, ∀u ∈ VR

3 (15)

is given by
∼
ω =

.
RRT, (16)

∼
ω is a skew-symmetric dual tensor:

∼
ω = −∼ω

T
,
∼
ω ∈ s
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Theorem 2. (Representation Theorem). For any orthogonal dual tensor 𝑹 defined as in (Equation 
(2), a dual number 𝛼 = 𝛼 + 𝜀𝑑 and a dual unit vector 𝐮 = 𝐮 + ε𝐮% can be computed to have the 
following equation [15,16]: 

𝑹(𝛼, 𝐮+ = 𝑰 + (sin 𝛼)𝒖C + (1 − cos𝛼+𝒖C$ = exp(𝛼	𝒖C+ (3) 

Equation (3) is a Rodrigues-like formula for S𝕆!. Dual angle 𝛼 and unit dual vector 
𝐮 are called the natural invariants of 𝑹. The unit dual vector 𝐮 = 𝐮 + ε𝐮%  gives the 
Plücker representation of the Mozzi–Chalses axis [14,20], while the dual angle 𝛼 = 𝛼 + 𝜀𝑑 
contains the rotation angle 𝛼 and the translated distance 𝑑. 

The Lie algebra of the Lie group S𝕆! is the skew-symmetric dual tensor set denoted 
by s𝕠! = $𝜶C ∈ 𝐋(𝐕!, 𝐕!+,𝜶C = −𝜶C&2, where commutator is the internal operation :〈𝜶C', 𝜶C$〉 =
𝜶C'𝜶$V . 

The link between the Lie algebra s𝕠!, the Lie group S𝕆!, and the exponential map is 
given by the following. 

Theorem 3. The exponential mapping is well defined and surjective. 

exp: s𝕠! → S𝕆!,	 

exp(𝜶C+ = 𝑒𝜶) =Y
𝜶C*

k!

+

*,%

 (4) 

The screw axis that embeds a rigid body displacement (via the Mozzi–Chalses theo-
rem) is bound to the problem of finding the logarithm of an orthogonal dual tensor, which 
is a multiple valued function: 

Log: S𝕆! → s𝕠!, 

log𝑹 = $𝜶C ∈ s𝕠!,exp(𝜶C+ = 𝑹2 
(5) 

and is the inverse of (Equation (4)). 
From Theorem 2 for any orthogonal dual tensor 𝑹, a dual vector 𝜶 = α	𝐮 = 𝜶 + ε𝜶% 

is computed, denoted by the Euler dual vector (that includes the screw axis and screw 
parameters in dual form). The form of dual vector 𝜶	implies that 𝜶C ∈ log𝑹. The types of 
rigid body displacements that are parameterized by the Euler dual vector 𝜶 are as below: 
• screw displacement if 𝜶 ≠ 𝟎,𝜶% ≠ 𝟎	and	𝜶 ∙ 𝜶% ≠ 0⟺ ,𝜶, ∈ ℝ	and	,𝜶, ∉ εℝ; 
• only translation displacement if	𝜶 = 𝟎	and	𝜶% ≠ 𝟎	 ⟺	 ,𝜶, ∈ εℝ; 
• only rotation displacement if 𝜶 ≠ 𝟎	and	𝜶 ∙ 𝜶% = 0⟺	 ,𝜶, ∈ ℝ. 
In previous relations, we have denoted the dual norm of the dual vector 𝜶 = 𝜶+ ε𝜶%	as: 

,𝜶, = g
‖𝜶‖ + 𝜀

𝜶% ∙ 𝜶
‖𝜶‖ , 𝑅𝑒(𝜶+ ≠ 𝟎

𝜀‖𝜶%‖, 𝑅𝑒(𝜶+ = 𝟎
 (6) 

The conversion between natural invariants and structural invariants of rigid body motion 
is given by: 

Theorem 4. The natural invariants 𝛼 = 𝛼 + 𝜀𝑑, 𝐮 = 𝐮 + ε𝐮% can be used to directly recover the 
structural invariants 𝑸 and 𝝆 from (Equation (2)): 

𝑸 = 𝑰 + sin𝛼𝒖C + (1 − cos𝛼)𝒖C$
𝛒 = 𝑑𝐮 + sin𝛼𝐮% + (1 − cos𝛼)𝐮 × 𝐮%

 (7) 

Theorem 5. (Isomorphism Theorem): The special Euclidean Lie groups (𝑆𝔼!) and S𝕆!) are iso-
morphic: 

R
3 .

The dual vectorω = vect
.

RRT is the dual angular velocity of the rigid body motion
and has the form:

ω =ω+ εv. (17)

In Equation (15),ω is the instantaneous angular velocity and v =
.
ρ−ω× ρ. The pair

(ω, v) is the space twist of the rigid body. All the information for the velocity field of rigid
body motion is given by dual angular velocity and is also named a dual twist. Knowing
the initial pose and dual twistω = ω+ εv, rigid body motion reconstruction is always
possible [5,15]:

Theorem 7. For any continuous functionω ∈ VR
3 , the differential equation:

.
R =

∼
ωR

R(t0) = R0, R0 ∈ SO3.
(18)

has a unique solution, orthogonal dual tensor R ∈ SOR
3 .

Proof. Let R =
(

I + ε
∼
ρ
)

Q. By differentiating Equation (16), result:

.
Q + ε

( .
∼
ρQ +

∼
ρ

.
Q
)
=
(∼

ω + ε
∼
v
)(

Q + ε
∼
ρQ
)
=
∼
ωQ + ε

(∼
vQ +

∼
ω
∼
ρQ
)

(19)

For Equation (17), separating the real parts, obtained differential equation:{ .
Q =

∼
ωQ

Q(t0) = Q0 ∈ SO3
(20)

Instantaneous angular velocity
∼
ω =

∼
ω(t) is a continuous function, and Problem (20)

admits a unique solution. We will prove that this solution is an orthogonal tensor.
Denote QT the transpose of Q. By differentiating:

d
dt

(
QQT

)
=

.
QQT + Q

.
Q

T
=
∼
ωQQT −QQT∼ω = 0 (21)

results
QQT = QQT(t0) = I (22)

From (22), det(Q) ∈ {−1, 1}. Since det(Q(t0)) = detQ0 = 1, it follows that:{
QQT = I

det(Q) = 1
(23)
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Therefore, Q ∈ SOR
3 is a rotation tensor map.

From Equation (17), separating dual parts gives:

.
∼
ρ +

∼
ρ
∼
ω =

∼
v +

∼
ω
∼
ρ (24)

which, taking a step further implies that

.
∼
ρ +

∼
ρ
∼
ω− ∼ω∼ρ =

∼
v (25)

Using the identity:
∼
∼
ωρ =

∼
ω
∼
ρ − ∼ρ ∼ω, and Equation (23) results in the differential

equation: { .
ρ−ω× ρ = v

ρ(t0) = ρ0
(26)

The solution of Problem (26) is:

ρ = Q(t)
[

ρ0 +
∫ t

t0

QT(x)v(x)dx
]

(27)

where Q is the solution of Equation (20). �
Differential equation problem of Theorem 7 is called a dual kinematics equation.
If denoted by ωB the dual angular velocity in the body frame: ωB = RTω, and

∼
ω

B
= RT

.
R.

Remark 2. The kinematic equation by dual angular velocity in the body frame is:{ .
R = R

∼
ω

B

R(t0) = R0, R0 ∈ SO3

(28)

Equations (18) and (28) also represent the Poisson–Darboux problem in dual algebra [5,25,26].

3. Dual Quaternions Parameterizations of the Rigid Body Displacement and Motion

The Lie group SO3 admits multiple parameterizations. The Lie group of dual unit
quaternions, which is one non-vectorial parameterizations for the 6-DOF rigid body dis-
placement and motion [3].

A dual quaternion set, denotes Q = R× V3, is a pair of a dual scalar and dual vector:

q̂ =
(

q, q
)

, q ∈ R, q ∈ V3. (29)

Dual quaternion set Q, by addition and multiplication with dual numbers, are a
R-module of rank 4 over the ring of dual number R.

The product of two dual quaternions q̂
1
=
(

q
1
, q

1

)
and q̂

2
=
(

q
2
, q

2

)
is definite by:

q̂
1
q̂

2
=
(

q
1
·q

2
−q

1
·q

2
, q

1
q

2
+ q

2
q

1
+ q

1
× q

2

)
(30)

For dual quaternion by Equation (29), denoted by q̂∗ =
(

q,−q
)

the conjugate dual

quaternion. If q̂q̂∗ = 1, a dual quaternion is denoted unit dual quaternion. A free R-

module Q contains two sub-modules: QR =
(

q, 0
)

, q ∈ R and QV3
=
(

0, q
)

, q ∈ V3.QRis
isomorphic with dual number set R, and QV3

is isomorphic with dual vector set V3.
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A dual quaternion can be decomposition as q̂ = q + q, where q =
(

q, 0
)

is dual

number and q =
(

0, q
)

is dual vector, or as q̂ = q̂ + εq̂0, where q̂, q̂0 are real quaternions.
Let U and U denote the set of unit dual quaternions and, respectively, the set of unit

real quaternions. For any q̂ ∈ U, the unique decomposition is valid [20]:

q̂ =

(
1 + ε

1
2

ρ̂

)
q̂, (31)

where ρ ∈ V3 and q̂ ∈ U. Additionally, a dual number α and a unit dual vector u exist for
the exponential formula [16]:

q̂ = cos
α

2
+ usin

α

2
= exp

(α

2
u
)

, (32)

where α and u are the natural invariants of the rigid body displacement (see Theorem 2).

Remark 3. The exponential mapping: exp: V3 → U3 , q̂ = exp
(

1
2 α
)

is well defined and surjective.

Remark 4. The unit dual quaternions U with multiplication is a Lie group. This Lie algebra is
dual vectors set V3 (as the internal operation with the cross product of dual vectors). The dual unit
quaternions set which can be used to global parameterize all rigid body displacements. The rigid
body motion can be parameterized by a curve in Lie group of unit dual quaternions q̂ = q̂(t), t ∈ R.

The following theorem gives the connection between unit dual quaternions and
orthogonal dual tensors:

Theorem 8. The Lie group of unit dual quaternions U and Lie group of orthogonal dual tensors
SO3 are linked by a surjective homomorphism:

Θ : U→ SO3, Θ
(

q̂
)
= I + 2q

∼
q + 2

∼
q

2
; q̂ = q + q. (33)

Proof. Considering that any q̂ ∈ U can be decomposed as in (32), results that

Θ
(

q̂
)
= exp

(
α
∼
u
)
∈ SO3. This shows that the mapping given by (33) is well defined and

surjective. Using direct calculus, we can also acknowledge that Θ
(

q̂
2
q̂

1

)
= Θ

(
q̂

2

)
Θ
(

q̂
1

)
.

Regarding surjectivity, any orthogonal dual tensor R ∈ SO3 can be represented as

in Theorem 3, R = exp
(

α
∼
u
)

. Thus, we can find a dual quaternion q̂ = exp
( α

2 u
)

to have

Θ
(

q̂
)
= R, which proves that Θ is a surjective homomorphism.

One of the most important properties is Θ
(

q̂
)
= Θ

(
−q̂
)

which shows that Lie group
U is a double cover for SO3.

Let q̂ ∈ UR such that Θ
(

q̂
)
= R. According to Equation (33), the kinematic equation

from Equations (18) and (28) are equivalent to:{ .
q̂ = 1

2ωq̂
q̂(t0) = q̂

0

(34)

and respectively: { .
q̂ = 1

2 q̂ωB

q̂(t0) = q̂
0

, (35)
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where Θ
(

q̂
0

)
= R0. �

Remark 5. If Reω = ω is an instantaneous angular velocity vector function with a fixed direction,
then differential equations are given from Equations (18), (28), (34), and (35) have the closed-form
solution as in [1,12,27].

4. Rigid Body Motion Equations in Arbitrary Non-Inertial Frame Revised

In this section, we proposed a novel dual tensors-based model for the motion of the
rigid body with respect to an arbitrary non-inertial frame.

Let RD and RC be the dual orthogonal tensors which describe the motion of two rigid
bodies, denoted D and, respectively, C, relative to a given inertial reference frame.

Let R the orthogonal dual tensor which models the 6-DOF relative motion of rigid
body D relative to the reference frame originating from rigid body C, then:

R = RT
CRD (36)

LetωC the dual angular velocity of the rigid body C in the body frame of C, andωD
the dual angular velocity of the rigid body D, resolved in the body frame of C. Ifω is the
dual angular velocity of the rigid body D relative to reference frame originated from rigid
body C, resolved in the body frame of C, with Equation (36) result:

ω =ωD −ωC (37)

The motion of the rigid body C is considered known. LetωB
D being the dual angular

velocity vector of the rigid body D in this body frame. If the body frame of rigid body D is
centered in the mass center, the dual equation of motion given in [28] is:

J
.
ω

B
D +ωB

D × JωB
D = τB (38)

In Equation (38), τB = FB + ετB, where FB the resulting force, and τB is the re-
sulting torque in the mass center of rigid body D. Additionally, in Equation (38), J de-
note the inertia dual operator: J = mD

d
dε I + εJ, where J is the inertia tensor of the rigid

body D related to its mass centre and mD is the mass of the rigid body D. By equation:
J−1 = J−1 d

dε + ε
1

mD
I with Equation (38) results:

.
ω

B
D + J−1

(
ωB

D × JωB
D

)
= J−1τB. (39)

Let ωD = RωB
D, the dual angular velocity vector ω can be computed from (see

Equation (37):
ω = RωB

D −ωC (40)

After time differentiation of Equation (40), results:

.
ω+

.
ωC =

.
RωB

D + R
.
ω

B
D. (41)

Multiplied by RT Equation (41) to obtain:

RT( .
ω+

.
ωC
)
= RT .

RωB
D +

.
ω

B
D (42)

with
.

R =
∼
ωR, by Equation (42) results:

RT( .
ω+

.
ωC
)
= RT ∼ωRωB

D +
.
ω

B
D (43)
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After some algebra, Equation (43) proves:

.
ω+

.
ωC = R

.
ω

B
D +ω×ωC (44)

With Equations (39) and (43), from Equation (44) obtained:

.
ω+

.
ωC = RJ−1τB −RJ−1

(
ωB

D × JωB
D

)
+ω×ωC (45)

BecauseωB
D = RT(ω+ωC), by Equation (45):

.
ω+

.
ωC = RJ−1

[
τB −RT(ω+ωC)× JRT(ω+ωC)

]
+ω×ωC (46)

The first order differential equation:
.

R =
∼
ωR

.
ω+

.
ωC = RJ−1[RTτ−RT(ω+ωC)× JRT(ω+ωC)

]
+ω×ωC

ω(t0) =ω0,ω0 ∈ V3
R(t0) = R0, R0 ∈ SO3

(47)

is a compact differential equation to the state (pose and velocity field) of the rigid body in
relation to the non-inertial reference frame attached to rigid body C. This equation of the
dual vector and dual tensor is coupled and models the 6-DOF relative motion problem.
The pose of rigid body D is given by the orthogonal dual tensor R, and velocity field of the
dual angular velocitiesω.

In Equation (47), the proposed solution is onboard in the reference frame of rigid
body C.

Using parametrization of dual quaternion by 6-DOF motion in the non-inertial refer-
ence frame, the differential Equation (47) is expressed by:

.
q̂ = 1

2ωq̂
.
ω+

.
ωC = Adq̂J−1

[
Adq̂

−1τ−Adq̂
−1(ω+ωC)× JAdq̂

−1(ω+ωC)
]
+ω×ωC

ω(t0) =ω0,ω0 ∈ V3
q̂(t0) = q̂

0
, q̂

0
∈ U

(48)
The previous equation denotes the adjoint dual quaternion application by:

Adq̂ : V3 → V3,
Adq̂( ) = q̂ ( )q̂∗,
Adq̂

−1() = q̂∗( )q̂ , q̂ ∈ U
(49)

Next, we will propose a representation theorem that decouples the inertial and non-
inertial components of the unique solution of the differential equation of Equation (47).

In Equation (47), let the following substitution:

ω* = RT(ω+ωC) (50)

Equation (50) leads to
.
ω* =

.
R

T
(ω+ωC) + RT( .

ω+
.
ωC
)
= −RT∼ω(ω+ωC) +

RT( .
ω+

.
ωC
)
. The result is equivalent with

.
ω* = RT(ωC ×ω+

.
ω+

.
ωC
)

or

ωC ×ω+
.
ω+

.
ωC = R

.
ω*. (51)
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By Equations (47) and (51), results:{
J

.
ω* +ω* × Jω* = τ*
ω*(t0) =ω

0
*

(52)

In Equation (50), τ* = RTτ is dual torque related to the mass center of the body D
resolved in this body frame, and dual vectorω0

∗ = RT
0 (ω0 +ωC(t0)). Equation (52) repre-

sents, in dual form, the equation of motion on the rigid body in the inertial reference frame.
For R ∈ SOR

3 , the solution of Equation (47) has the differential kinematic equation:{ .
R =

∼
ωR

R(t0) = R0
(53)

Using Equation (50), results that Rω∗ = ω + ωC, transformed into
∼

Rω∗ =
∼
ω +

∼
ωC ⇔ R

∼
ω∗R

T =
.

RRT +
∼
ωC . Multiplying the last equation by dual orthogonal

tensor R, we obtain the differential equation:{ .
R = R

∼
ω* −

∼
ωCR

R(t0) = R0
(54)

Let R−ωC
∈ SOR

3 solution of the following differential equation:{ .
R +

∼
ωCR = 0

R(t0) = I − ε∼r C(t0)
. (55)

Considering R = R−ωC
R∗, obtain an exact solution of Equation (47). Previous consid-

eration proves the following theorem:

Theorem 9 (Relative Motion Representation Theorem). The solution of Equation (47) results
applying the tensor R−ωC

(solution from Equation (55) to the solution of differential equation:
.

R∗ = R∗
∼
ω∗

J
.
ω∗ +ω∗ × Jω∗ = τ∗
ω∗(t0) =ω∗0
R∗(t0) = R∗0

(56)

whereω∗0 = RT
0 (ω0 +ωC(t0)), R∗0 =

(
I + ε

∼
r C(t0)

)
R0, τ∗ = RTτ.

Remark 6. Using dual quaternions, a version of the Theorem 9 result:

Theorem 10. The solution of differential Equation (47) is orthogonal dual tensor R = Θ
(

q̂−ωC
q̂∗

)
where q̂−ωC

is the unique solution of differential equation:

{ .
q̂ + ωC

2 q̂ = 0̂
q̂(t0) = 1̂

, (57)

with q̂
*

being the solution of the differential equation problem below:
.
q̂∗ =

1
2 q̂∗ω∗

J
.
ω∗ +ω∗ × Jω∗ = τ∗
ω*(t0) =ω*0
q̂

*
(t0) = q̂

*0

. (58)
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Theorems 9 and 10 give significant insight into the motion of any rigid body in a
non-inertial reference frame. A simple method to approach its motion is revealed as
follows:

1. The problem is solved in an inertial frame; our non-inertial frame is “frozen” at the
initial moment t0;

2. The solution to the non-inertial problem is obtained by applying tensor R−ωC
, or the

dual quaterninton q̂−ωC
, to the solution obtained in the previous step.

5. Dual Algebra Solution of the Full-Body Relative Orbital Motion Problem

The relative orbital motion of spacecraft is a fundamental problem in Astrodynamics
considering its numerous applications: rendezvous operations, distributed spacecraft
missions, and formation flight of spacecraft [3,4,6–12]. Some formation flying spacecraft
applications are space-based radar, ground-based terrestrial laser communication systems,
Earth surveillance, remote sensing, stellar imaging, and astrometry.

The relative orbital motion model shows two spacecrafts flying in Keplerian orbits due
to the same gravitational attraction center. The main problem is determining the relative
motion of the Deputy spacecraft concerning a LVLH non-inertial frame originating from the
center of mass of the Chief spacecraft. The relative 6-DOF motion of the Deputy concerning
the LVLH frame is present in this section, using the general results of Section 4. The Chief
and Deputy spacecrafts can be considered modeled by rigid bodies.

The vector that gives the instantaneous angular velocity of the LVLH in this reference
frame is:

ωC =
.
f C

hC
hC

=
1
r2

C
hC =

[
1 + eCcos fC(t)

pC

]2
hC (59)

The position vector of Chief mass center, rC, originating in the gravitational attracting
center, is expressed in LVLH:

rC =
pC

1 + eCcos fC(t)
r0

C
r0

C
(60)

In Equations (59) and (60), hC is the angular momentum, pC is the conic parameter,
fC(t) being the true anomaly and eC is the eccentricity of the Chief spacecraft.

Furthermore, the time derivative of rC in LVLH frame is:

.
rC =

eC|hC|sin fC(t)
pC

r0
C

r0
C

(61)

For t = t0 they will be used in the following denotations:

ω0
C =

[
1 + eCcos fC(t0)

pC

]2
hC (62)

.
r0

C =
eC|hC|sin fC(t0)

pC

r0
C

r0
C

(63)

where uX =
r0

C
r0

C
is the unit vector of the X-axis, uZ = hC

|hC |
is the unit vector of the Z-axis, and

uY = uZ × uX is the unit vector of the Y-axis from LVLH.
The 6-DOF relative orbital motion is described by the Equation (47). In this specific

case the dual angular velocity of the Chief spacecraft in the LVLH reference frame is given
by equation:

ωC =ωC + ε
( .
rC +ωC × rC

)
(64)
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The dual torque, related to the mass center of the Deputy spacecraft is:

τ = − µ

|rc + r|3
(rc + r) + ετ. (65)

Theorem 9 is applied using the Equations (59)–(63). The instantaneous angular veloc-
ityωC has a fixed direction (see Equation (59)), and the solution to the differential Equation
(55) is in a closed form, coordinate-free:

R−ωC
=
(

I− ε∼r C(t)
)I− sin f 0

c

∼
hC
hc

+
(

1− cos f 0
c

)∼hC

2

hc
2

. (66)

In Equation (66) denotes hc = ‖hc‖ and f 0
c = fc(t)− fc(t0).

Theorem 11. The solution of (Equation (47)) results from the application of the tensor R−ωC
(Equation (66)) to the solution of the inertial Problem (56), with dual angular velocityωC and dual
torque τ given by Equation (64) and, respectively, Equation (65).

The Attitude and Translation Equations of the 6-DOF Relative Orbital Motion

The attitude and translation parts of solution to the problem of motion Deputy space-
craft concerning to the LVLH frame will be obtained in the next Theorem.

Consider the real part of (Equation (47)) results in a first order differential equation:
.

Q =
∼
ωQ

.
ω+

.
ωc = QJ−1

[
QTτ−QT(ω+ωc)× JQT(ω+ωc)

]
+ω×ωc

ω(t0) =ω0,ω0 ∈ V3
Q(t0) = Q0, Q0 ∈ SO3

(67)

which has the solution Q = Q(t) ∈ SOR
3 . The real tensor Q being the attitude motion of the

Deputy in LVLH.
Consider now the dual part of Equation (47). By decomposition R =

(
I + ε

∼
r
)

Q,
which Equation (2) gives, after some algebra, we obtain a second-order differential vector
equation that models the translation of the Deputy spacecraft mass center expressed into
the LVLH: {..

r + 2ωc ×
.
r +ωc × (ωc × r) +

.
ωc × r + µ

|rc+r|3
(rc + r)− µ

r3
c
rc = 0

r(t0) = r0,
.
r(t0) = v0

(68)

where µ > 0 is the gravitational parameter and r represent the relative position vector of
the mass centre of the Deputy spacecraft concerning to LVLH frame.

Based on the general Theorem 9, the next theorem results.

Theorem 12. The solutions of problems (Equations (67) and (68)) are given by

Q = R−ωC Q*
r = R−ωC r* − rc

(69)

where Q* and r* are the solutions of the Euler problem and, respectively, Kepler’s problem:
.

Q∗ = Q*
∼
ω*

J
.
ω* +ω* × Jω* = τ*

ω*(t0) = QT
0
(
ω0 +ω

0
C
)

Q*(t0) = Q0

(70)
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and 
..
r∗ +

µ

r3∗
r∗ = 0;

r∗(t0) = r0
c + r0;

.
r∗(t0) =

.
r0

C + v0 +ω
0
C ×

(
r0

C + r0
) (71)

were

R−ωC = I− sin f 0
c

∼
hC

|hc|
+
(

1− cos f 0
c

) ∼h2

C

|hc|2
(72)

and rc is given by (Equation (60)).

Remark 7. The Theorem 12 reduces the complex problem of the full body relative orbital motion
into two classical problems in an inertial reference frame: the Euler fixed point problem (Equation
(68)) and the Kepler problem (Equation (69)). However, the problems are coupled because, in the
general case, the resulting torque depends on the position vector of the Deputy mass center relative
to the attractive gravitational center. Even in these conditions, simplification is essential to the
problem approach. Moreover, this approach can generate new analytical or semi-analytical solutions
and the control theory of 6-DOF motion.

This result shows an interesting property of the translational part of the relative orbital motion
Problem (66); this problem by reducing to the super-integrable Kepler problem [11,12,29].

Next, we present a case study for the exact closed-form, a coordinate-free solution
of the translation part of the relative orbital motion problem. The solution work for
any reference spacecraft Chief motion mass center (elliptic, parabolic, hyperbolic inertial
trajectories) and any Deputy motion mass center (elliptic, parabolic, hyperbolic, rectilinear
inertial trajectories). From Theorem 12, the law of motion of the translational part is
given by:

r = R−ωC r* −
pC

1 + eCcos fC(t)
r0

C
r0

C c
(73)

R−ωC is expressed by Equation (70) and r* is the solution of the Kepler Problem (69).
Let the prime integrals of the Kepler problem [26–34]:
Specific energy:

ξ =
1
2
|| .r0

C + v0 +ω
0
C × (r0

C + r0)||2 −
µ∥∥r0

c + r0
∥∥ (74)

Specific angular momentum:

h =
(

r0
c + r0

)
×
[ .
r0

C + v0 +ω
0
C ×

(
r0

C + r0

)]
(75)

Eccentricity vector:

e =
1
µ

[( .
r0

C + v0 +ω
0
C ×

(
r0

C + r0

)]
× h− r0

c + r0∥∥r0
c + r0

∥∥ (76)

If it denotes n = µ

(2|ξ|)
3
2

, the vectorial orbital elements of Kepler problem [34] are:

a =

{
µ

2e|ξ|e, e 6= 0
r0

c + r0, e = 0
, (77)

b =


1

e
√

2|ξ|
h× e, e 6= 0

1
n

[ .
r0

C + v0 +ω
0
C ×

(
r0

C + r0
)]

, e = 0
, (78)
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If the Deputy spacecraft is an elliptic inertial motion, ξ < 0, the vector solution of the
Kepler problem is:

r* = [cos E(t)− e]a + [sin E(t)]b (79)

The eccentric anomaly E(t) is given by Kepler equation:

E(t)− esin[E(t)] = n
(
t− tp

)
(80)

tp = t0 −
1
n
(E o − esinEo

)
(81)

Eo = atan2

[
n

v0·
(
r0

c + r0
)

2|ξ|

(
1−

ω0
C·h
µ
||r0

c + r0||
)

, 1− n

∥∥r0
c + r0

∥∥√
2|ξ|

(82)

The law of motion of the translational part by Equation (79) and Theorem 12, is:

r = [cosE(t)− e]R−ωC a + [sinE(t)]R−ωC b− pC
1 + eCcos fC(t)

r0
C

r0
C c

(83)

By Equation (83), after some calculus results:

r = [cos E(t)− e]

(
a− sin f 0

c

∼
hCa
|hc | +

(
1− cos f 0

c
) ∼h2

Ca
|hc |2

)

+[sinE(t)]

(
b− sin f 0

c

∼
hCb
|hc | +

(
1− cos f 0

c
) ∼h2

Cb
|hc |2

)
− pC

1+eCcos fC(t)
r0

C
r0

C c

(84)

This equation is coordinate-free and closed-form. Therefore, Equation (84) represent an
exact solution, an alternative to the Tschauner–Hempel and Lawden linearized solution [35,36].

6. Conclusions

The present paper develops new methods for recovering a solution to the full-body
relative orbital motion problem in the specific case of Keplerian confocal orbits. First,
the coupled state equations for a rigid body in an arbitrary non-inertial reference frame
are presented using orthogonal dual tensor or dual quaternion. Then, a representation
theorem that decouples the inertial and non-inertial components of the last motion is
presented. The core result of the paper offers meaningful insight and a natural geometric
interpretation of the motion, namely that it is derived from the motion in a well-defined
inertial frame, which is seen through a transformation that depends solely on an orthogonal
dual tensor (or unit dual quaternion) that models the behavior of the non-inertial frame.
The representation theorems for the rotation and translation parts of the 6-DOF relative
orbital motion problems are obtained. A case study is present for the exact closed-form, a
coordinate-free solution of the translation part of the problem of relative orbital motion.
The results interest spacecraft formation flying, rendezvous orbital dynamics and control,
advances in rendezvous trajectory safety, and robust analysis.
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Nomenclature
a real number
a dual number
a real vector
a dual vector
A real tensor
A dual tensor
V3 real vectors set
V3 dual vectors set
VR

3 time depending real vector functions
VR

3 time depending dual vector functions
∼
a skew-symmetric dual tensor corresponding to the dual vector a = vect

∼
a

skew
(∼

a ) dual vector corresponding a skew-symmetric dual tensor
∼
a

L(V3, V3) Euclidean dual tensor set
R real numbers set
R dual numbers set
s
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