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1. Introduction

The gradient estimation for both elliptic and parabolic equations plays a significant
role in geometric analysis. Harnack estimation is also one of the powerful tools in heat
kernel analysis. The local and global behavior of positive solutions of nonlinear elliptic
equations on Rn (n > 2) near an isolated singularity were studied by Gidas and Spruck [1].
In [2], Hamilton proved a Harnack estimate on the Riemannian manifold for Ricci flow
with a weakly positive curvature operator, which was later used in solving the Poincaré
conjecture. Li and Yau [3] established parabolic gradient estimates on solutions to the linear
heat equation

(∆− ∂t)u = q(x, t)u (1)

on Riemannian manifold having Ricci curvature bounded from below, where q(x, t) is C2

in first variable x and C1 in second variable t, where C2 and C1 denote the space of all twice
differentiable and one-time differentiable functions, respectively. After a remarkable work
by Perelman [4–6] in Ricci flow, this topic gained massive importance. Thus, this topic
becomes one of the important tools in geometric analysis and modern PDE theory. In [7],
Jiyau Li considered the heat-type equation

(∆− ∂t)u(x, t) + h(x, t)uα(x, t) = 0 (2)

on M× [0, ∞), where h(x, t), is a function on M× [0, ∞), which is C2 in the first variable
and C1 in the second variable, α ∈ R and derived the gradient estimates and Harnack
inequalities for a positive solution to the above nonlinear parabolic equation. This equa-
tion represents a simple ecological model for population dynamics, where u(x, t) is the
population density at time t.

Wu [8] studied gradient estimates for the nonlinear parabolic equation

(∆φ − ∂t)u + µ(x, t)u + p(x, t)uα + q(x, t)uβ = 0, (3)
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where ∆φ is the weighted Laplacian, p(x, t), q(x, t) are C2 in x and C1 in t.
Abolarinwa et al. [9–12] studied gradient and Harnack estimates for various nonlinear
parabolic equations. In [13], Dung et al. studied various gradient estimations for solutions
of the following f -heat type equations

ut = ∆ f u + au log u + bu + Cup + Du−q (4)

and ut = ∆ f u + Cepu + De−pu + E, (5)

where a, b ∈ R and C, D, E are smooth functions, on a complete smooth metric measure
space (M, g, e− f dν) with Bakry–Émery Ricci curvature bounded from below. In [14], Azami
studied gradient estimates for a weighted parabolic equation

(∆φ − ∂t)u(x, t) = q(x, t)ua+1(x, t) + p(x, t)A(u(x, t)) (6)

evolving under the geometric flow, where p(x, t), q(x, t), A(u(x, t)) are C2 in x and C1 in
t. Thereafter many authors studied the geometric aspect of analysis on the Riemannian
manifold, see [15–23] and the references therein. Recently, Hui et al. studied Hamilton-
Souplet-Zhang type gradient estimation for nonlinear weighted parabolic equation in [24],
the same estimation for a system of equations in [25] and Saha et al. [26] studied first
eigenvalue of weighted p-Laplacian along the Cotton flow.

Motivated by the above works in this paper we consider a generalized non-linear
parabolic equation with potential by

∆φu =
∂u
∂t

+ A(u)p(x, t) + B(u)q(x, t) + ξ(x, t)u(x, t), (7)

where p(x, t), q(x, t) and ξ(x, t) are C2 functions of x, t. We derive a Li–Yau-type gradient
estimate for a positive solution of (7) on a weighted Riemannian manifold which evolves
under an abstract geometric flow.

In particular, if we consider A(u) = uα, B(u) = uβ, ξ = µ(x, t) then (7) reduces to (3),
which was studied by Wu [8]. If we take A(u) = u log u, B(u) = u, ξ = Cup + Duq then (7)
reduces to (4) and if A(u) = Cepu, B(u) = De−pu, ξ = E

u then (7) reduces to (5), both of
which were studied by Dung et al.[13]. The generalized Lichnerowicz type equation studied
by Dung [13] comes from our Equation (7) by considering A(u) = uα log u, B(u) = uβ and
p, q, ξ are suitable constants. Finally for B(u) = ua+1 and ξ = 0 we have (6), which was
studied by Azami [14]. Thus, our Equation (7) generalizes all the cases.

2. Preliminaries

Let us consider an n-dimensional closed weighted Riemannian manifold (Mn, g, e−φdµ),
where e−φdµ is the weighted volume measure, g is Riemannian metric and φ ∈ C2(M).
Choose {e1, e2, · · · , en} as an orthonormal frame on M. Let g(t) be a one-parameter family of
Riemannian metrics evolving along the following abstract geometric flow

∂

∂t
gij(t) = 2Sij(t), (8)

where Sij(t) := S(ei, ej)(t) is smooth symmetric (0, 2)-type tensor on (M, g(t)). Let
us define one parameter family of functions S(t) = trace(S)(t) = gij(t)Sij(t) on M.
The weighted Laplacian operator is defined by

∆φ = ∆−∇φ∇,

where ∆ is the Laplace operator and ∇ is the gradient operator. Let u = e f be a positive
solution of (7), then Equation (7) transforms to

∆φ f = ∂t f − |∇ f |2 + Â( f )p + B̂( f )q + ξ, (9)
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where Â( f ) = A(u)
u , B̂( f ) = B(u)

u . We define

Â f = A′(u)− A(u)
u

, Â f f = uA′′(u)− A′(u) +
A(u)

u
. (10)

Example 1. Let u = e f and A(u) = |u|α−1u. Therefore Â( f ) = A(u)
u = e(α−1) f , which gives

1. Â f = (α− 1)e(α−1) f

2. Â f f = (α− 1)2e(α−1) f

3. ∇Â = (α− 1)e(α−1) f∇ f = Â f∇ f
4. ∆Â = (α− 1)2e(α−1) f |∇ f |2 + (α− 1)e(α−1) f ∆ f = Â f f |∇ f |2 + Â f ∆ f .

Let f̄ = Âp + B̂q + ξ so that Equation (9) reduces to

∆φ f = −|∇ f |2 + ft + f̄ . (11)

Definition 1 ([27] Bakry–Émery Ricci tensor). For any integer m > n, an (m− n)− Bakry–
Émery tensor is defined by

Ricm−n
φ := Ric + Hess φ− ∇φ⊗∇φ

m− n
,

where Hess is the Hessian operator. The case when m = n occurs if and only if φ is a constant
function. Furthermore, when m→ ∞ the ∞−Bakry–Émery Ricci tensor is defined by

Ricφ := Ric + Hess φ.

Lemma 1 ([14] Weighted Bochner Formula). For any smooth function u on a weighted Rieman-
nian manifold (M, g, e−φdµ), we have the weighted version of Bochner formula

1
2

∆φ|∇u|2 = |Hess u|2 + 〈∇∆φu,∇u〉+ Ricφ(∇u,∇u),

where 〈·, ·〉 is the induced inner product by the Riemannian metric g.

Lemma 2 ([14]). Under the geometric flow Equation (8) and for any smooth function u on a
weighted Riemannian manifold (M, g, e−φdµ) we have the following evolution formulas

1. ∂
∂t |∇u|2 = −2S(∇u,∇u) + 2〈∇u,∇ut〉,

2. ∂
∂t (∆φu) = ∆φut− 2Sij∇i∇ju−〈2div S −∇S,∇u〉+ 2S(∇φ,∇u)−〈∇u,∇φt〉, where
div S denotes the divergence of S and Sij = gikgjlSkl .

Let T > 0 be any real number. For any two points x, y ∈ M and for any t ∈ [0, T],
the quantity d(x, y, t) denotes the geodesic distance between x and y under the metric g(t).
For any fixed x0 ∈ M and R > 0 we define a compact set

Q2R,T = {(x, t) : d(x, x0, t) ≤ 2R, 0 ≤ t ≤ T} ⊂ Mn × (−∞,+∞). (12)

Now for u > 0 we define some non-negative real numbers
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λ1 := sup
Q2R,T

|Â| λ2 := sup
Q2R,T

|Â f | λ3 := sup
Q2R,T

|Â f f |

Λ1 := sup
M×[0,T]

|Â| Λ2 := sup
M×[0,T]

|Â f | Λ3 := sup
M×[0,T]

|Â f f |

b1 := sup
Q2R,T

|B̂| b2 := sup
Q2R,T

|B̂ f | b3 := sup
Q2R,T

|B̂ f f |

B1 := sup
M×[0,T]

|B̂| B2 := sup
M×[0,T]

|B̂ f | B3 := sup
M×[0,T]

|B̂ f f |

σ1 := sup
Q2R,T

|q| σ2 := sup
Q2R,T

|∇q| σ3 := sup
Q2R,T

|∆φq|

Σ1 := sup
M×[0,T]

|q| Σ2 := sup
M×[0,T]

|∇q| Σ3 := sup
M×[0,T]

|∆φq|

γ1 := sup
Q2R,T

|p| γ2 := sup
Q2R,T

|∇p| γ3 := sup
Q2R,T

|∆φ p|

Γ1 := sup
M×[0,T]

|p| Γ2 := sup
M×[0,T]

|∇p| Γ3 := sup
M×[0,T]

|∆φ p|

θ1 := sup
Q2R,T

|∇φ| θ2 := sup
Q2R,T

|∇φt| Θ1 := sup
M×[0,T]

|∇φ|

Θ2 := sup
M×[0,T]

|∇φt| m1 := sup
Q2R,T

|∇ξ| m2 := sup
Q2R,T

|∆φξ|

m3 := sup
Q2R,T

|ξ| M1 := sup
M×[0,T]

|∇ξ| M2 := sup
M×[0,T]

|∆φξ|

M3 := sup
M×[0,T]

|ξ|

Lemma 3 ([14]). For any smooth function f on an n-dimensional Riemannian manifold (Mn, g, e−φ

dµ) and m > n we have the following relation connecting Hessian and weighted Laplacian

|Hess f |2 ≥
(∆φ f )2

m
− 1

m− n
〈∇ f ,∇φ〉2. (13)

Proof. Let m > n. Then we see that

0 ≤
(√

m− n
mn

∆ f +
√

n
m(m− n)

〈∇ f ,∇φ〉
)2

= (
1
n
− 1

m
)(∆ f )2 +

2
m

∆ f 〈∇ f ,∇φ〉+ (
1

m− n
− 1

m
)〈∇ f ,∇φ〉2

≤ |Hess f |2 − 1
m

(
(∆ f )2 − 2∆ f 〈∇ f ,∇φ〉+ 〈∇ f ,∇φ〉2

)
+

1
m− n

〈∇ f ,∇φ〉2

= |Hess f |2 −
(∆φ f )2

m
+

1
m− n

〈∇ f ,∇φ〉2.

Thus |Hess f |2 ≥ (∆φ f )2

m − 1
m−n 〈∇ f ,∇φ〉2.

Lemma 4 ([28] Young’s inequality). If a, b are nonnegative real numbers and p > 1, q > 1 are
real numbers such that 1

p + 1
q = 1 then

ab ≤ ap

p
+

bq

q
.

Let α > 0 be any real number. Put a = αa and b = b
α in the above expression we get

Peter-Paul type inequality

ab ≤ αp ap

p
+

bq

αqq
. (14)
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If we put a = a
√

2α, b = b√
2α

, p = q = 2 in Young’s inequality then we have the well
known Peter-Paul inequality

ab ≤ αa2 +
b2

4α
. (15)

In this paper we use these inequalities with a suitable choice of α.

3. Li-iYau-Type Gradient Estimation

In this section, we are going to derive a bound for the quantity |∇u|2
u2 on a compact

domain Q2R,T of M, where u satisfies (7). This estimation is known as local Li–Yau-type
estimation. After that, we derive global Li–Yau-type estimation on the whole of M. This
method enables us to find the heat ratio between two points on a manifold by deriving a
Harnack-type inequality. For this, we fix a point x0 ∈ M and let R > 0 be a real number.
Let u be a positive solution to (7) in Q2R,T .

Theorem 1. If k1, k2, k3, k4 are positive constants such that

Ricm−n
φ ≥ −(m− 1)k1g, −k2g ≤ S ≤ k3g, |∇S| ≤ k4

on Q2R,T , then for any solution u of (7), any λ > 1 and δ ∈ (0, 1) we have

|∇u|2
u2 − λ

(
ut

u
+

A(u)
u

p +
B(u)

u
q + ξ

)
≤ mλ2

2t(1− λε)
+

mλ2

2(1− λε)
D̃1 + Ẽ1, (16)

where

D̃1 =
c0

R
(m− 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2 +
mλ2c1

4(1− λε)(λ− 1)R2 +
1
λ

,

Ẽ1 =

(
mλ2

2(1− λε)
E1

) 1
2

,

E1 =
mλ2

4(1− λε)(1− δ)(λ− 1)2 C̄1
2
+ 2λk2εθ2

1 +
nλ

2ε
(k2 + k3)

2

+
9
8

nλ2k4 + (λ1γ3 + b1σ3) +
3
4

(
2mλ2

(1− λε)(λ− 1)δ

) 1
3

(2λ2γ2

+ 2b2σ2)
4
3 + m2 +

3
4

(
mλ2

2(1− λε)(1− δ)(λ− 1)2

) 1
3

λ
4
3 θ

4
3
2

+
3
4

(
mλ2

2(1− λε)(1− δ)(λ− 1)2

) 1
3

(λ1γ2 + b1σ2 + m1)
4
3 ,

C̄1 =
λk2

2ε
+ 2k4 + λ3γ1 + b3σ1 + 2(λ− 1)k3 +

λ− 1
λ

+ γ1λ2 + σ1b2

+2(1− λε)(m− 1)k1.

To prove the theorem we need the following lemma.

Lemma 5. If u = e f is a positive solution to (7) and F := t(|∇ f |2 − λ( ft + f̄ )), where
f̄ = Âp + B̂q + ξ then for any ε ∈ (0, 1

λ ) and assuming conditions of Theorem 1 we have
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(∆φ − ∂t)F ≥ 2t(1− λε)
(∆φ f )2

m
− λtk2

2ε
|∇ f |2 − 2λtk2ε|∇φ|2

− 2t(1− λε)(m− 1)k1|∇ f |2 − 2∇F∇ f − F
t
− 2t(λ− 1)k3|∇ f |2 (17)

− nλt
2ε

(k2 + k3)
2 − 3λt

√
nk4|∇ f |2 +H,

whereH = −2t(λ− 1)∇ f̄∇ f − λt∇ f∇φt − λt∆φ f̄ .

Proof. Let u be a solution of (7) and consider F := t(|∇ f |2 − λ( ft + f̄ )),
where f̄ = Âp + B̂q + ξ. Hence

F
t

= |∇ f |2 − λ( ft + f̄ ) (18)

and applying Lemma 1 (Weighted Bochner formula) we have

∆φF = 2t|Hess f |2 + 2t〈∇∆φ f ,∇ f 〉+ 2tRicφ(∇ f ,∇ f )− λt∆φ ft

− λt∆φ f̄ . (19)

Now ∆φ f = − F
t − (λ− 1)( ft + f̄ ), so ∇∆φ f = −∇F

t − (λ− 1)(∇ ft +∇ f̄ ).
Hence

∆φF = 2t|Hess f |2 − 2∇F∇ f − 2t(λ− 1)(∇ ft +∇ f̄ )∇ f + 2tRicφ(∇ f ,∇ f )

− λt∆φ ft − λt∆φ f̄ . (20)

Furthermore,

∂t(∆φ f ) =
F
t2 −

Ft

t
− (λ− 1)( ftt + f̄t). (21)

Using (21) on (20) we get

∆φF = 2t|Hess f |2 − 2∇F∇ f − 2t(λ− 1)(∇ ft +∇ f̄ )∇ f + 2tRicφ(∇ f ,∇ f )

− λF
t

+ λFt + λ(λ− 1)t( ftt + f̄t)− 2λt〈S , Hess f 〉 − 2λt〈divS − 1
2
∇S,∇ f 〉 (22)

+ 2λtS(∇φ,∇ f )− λt〈∇ f ,∇φt〉 − λt∆φ f̄ ,

and
∂tF =

F
t
+ t(∂t|∇ f |2 − λ( ftt + f̄t)). (23)

From (22) and (23) we get

(∆φ − ∂t)F = 2t|Hess f |2 − 2∇F∇ f − 2t(λ− 1)(∇ ft +∇ f̄ )∇ f

+ 2tRicφ(∇ f ,∇ f )− 2t(λ− 1)S(∇ f ,∇ f )

+ 2t(λ− 1)∇ f∇ ft − 2λt〈S , Hess f 〉 (24)

− 2λt〈div S − 1
2
∇S,∇ f 〉+ 2λtS(∇φ,∇ f )− λt∇ f∇φt

− λt∆φ f̄ − F
t

.

or, (∆φ − ∂t)F = 2t|Hess f |2 + 2tRicφ(∇ f ,∇ f )− 2∇F∇ f − F
t

− 2t(λ− 1)S(∇ f ,∇ f ) + 2λtS(∇φ,∇ f )− 2λt〈S , Hess f 〉 (25)

− 2λt〈div S − 1
2
∇S,∇ f 〉+H,
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whereH = −2t(λ− 1)∇ f̄∇ f − λt∇ f∇φt − λt∆φ f̄ .
Given that

−(k2 + k3)gij ≤ Sij ≤ (k2 + k3)gij, (26)

which implies
|S|2 ≤ n(k2 + k3)

2, (27)

as Sij is a symmetric tensor.

Following [14], for any ε ∈ (0, 1
λ ) using Young’s inequality, we have

〈S , Hess f 〉 ≤ ε|Hess f |2 + n
4ε

(k2 + k3)
2, (28)

2λtS(∇φ,∇ f ) ≥ −λtk2

2ε
|∇ f |2 − 2λtk2ε|∇φ|2. (29)

Also
|div Sij −

1
2
∇S| ≤ 3

2
√

nk4. (30)

Using Lemma 3, Equations (26)–(30) and bounds of Ricm−n
φ , S in (25) we have (17).

Proof of Theorem 1. Consider a C2-function ψ on [0, ∞),

ψ(s) =

{
1, s ∈ [0, 1],
0, s ∈ [2, ∞),

and it satisfies ψ(s) ∈ [0, 1], −c0 ≤ ψ′(s) ≤ 0, ψ′′(s) ≥ −c1 and |ψ
′′(s)|2
ψ(s) ≤ c1, where c1 is a

constant and for R ≥ 1 we defined a function

η(x, t) = ψ

(
r(x, t)

R

)
,

where r(x, t) = d(x, x0, t). Applying the same argument as in [3] we can apply a maximum
principle and use Calabi’s trick [29] to assume everywhere smoothness of η(x, t), as ψ(s)
is Lipschitz.

By generalized Laplacian comparison theorem [14], we have

1. ∆φr(x) ≤ (m− 1)
√

k1 coth(
√

k1r(x)),
2. ∆φη ≥ − c0

R (m− 1)(
√

k1 +
2
R )−

c1
R2 ,

3. |∇η|2
η ≤ c1

R2 .

Let G = ηF. Fix any T1 ∈ (0, T] and assume G achieves maximum at (x0, t0) ∈ Q2R,T1 .
If G(x0, t0) ≤ 0 then the result is trivial and hence nothing to be proved, so assume that
G(x0, t0) ≥ 0.

Thus, at (x0, t0) we have

∇G = 0, ∆G ≤ 0, ∂tG ≥ 0.

Therefore
∇F = − F

η
∇η (31)

and
0 ≥ (∆φ − ∂t)G = F(∆φ − ∂t)η + η(∆φ − ∂t)F + 2〈∇η,∇F〉. (32)

By [16], there is a constant c2 such that

−Fηt ≥ −c2k2F. (33)
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Using (31) and (33) in (32) we get

0 ≥ −
(

c0

R
(m− 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2

)
F + η(∆φ − ∂t)F. (34)

Following [14,20,23], we set

ξ =
|∇ f |2

F

∣∣∣∣
(x0,t0)

≥ 0,

then at (x0, t0) we have

|∇ f | =
√

ξF, (35)

(ξ − t0ξ − 1
λt0

)F = |∇ f |2 − ( ft + f̄ ), (36)

η〈∇ f ,∇F〉 ≤
√

c1

R
η

1
2 F|∇ f |, (37)

3λ
√

nk4|∇ f | ≤ 2k4|∇ f |2 + 9
8

nλ2k4. (38)

Using Lemma 5 in (34) we have

0 ≥ −
(

c0

R
(m− 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2

)
F +

2ηt0(1− λε)

m
(∆φ f )2 − ληt0k2

2ε
|∇ f 2|

− 2λt0ηk2ε|∇φ|2 − 2ηt0(1− λε)(m− 1)k1|∇ f |2 − 2η∇F∇ f − ηF
t0

(39)

− 2t0(λ− 1)ηk3|∇ f |2 − nηλt0

2ε
(k2 + k3)

2 − 3ηλt0
√

nk4|∇ f |+ ηH.

Multiplying (39) with ηt0 and using results from (35)–(38) we get

0 ≥ −
(

c0

R
(m− 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2

)
Gt0 +

2η2t2
0(1− λε)

m
(∆φ f )2

−
ληt2

0k2ξ

2ε
G− 2λη2t2

0k2ε|∇φ|2 − 2ηξt2
0(1− λε)(m− 1)k1G− 2t0

√
c1

R
G

3
2 ξ

1
2

− ηG− 2η2t2
0(λ− 1)k3|∇ f |2 −

nη2t2
0λ

2ε
(k2 + k3)

2 − 2k4t2
0ξGη (40)

− 9
8

nλ2η2k4t2
0 + η2t0H.

Now we use Young’s inequality by choosing suitable values for a, b, α, p, q as in Lemma 4.
Set a =

2
√

c1
R G

1
2 , b = Gξ

1
2 , p = 2, q = 2, α = mλ2

4(1−λε)(λ−1) and apply Lemma 4 (Young’s
inequality) we get

2t0

√
c1

R
G

3
2 ξ

1
2 ≤ 4(1− λε)

mλ2 (λ− 1)ξG2t0 +
mλ2c1t0G

4(1− λε)(λ− 1)R2 . (41)

Cauchy–Schwarz inequality gives

η2λ〈∇ f ,∇φt〉 ≤ η2λ|∇ f ||∇φt|

≤ λθ2G
1
2 ξ

1
2 .
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Set a = λθ2, b = ξ
1
2 G

1
2 , p = 4

3 , q = 4, α =
(

mλ2

2(1−λε)(1−δ)(λ−1)2

) 1
4 and apply Lemma 4 we get

η2λ〈∇ f ,∇φt〉 ≤
(1− λε)(1− δ)

2mλ2 (λ− 1)2ξ2G2 +
3
4

(
mλ2

2(1− ελ)(1− δ)(λ− 1)2

) 1
3

λ
4
3 θ

4
3
2 ,

for all δ ∈ (0, 1). (42)

We have f̄ = Âp + B̂q + ξ. Hence

∇ f̄ = pÂ f∇ f + qB̂ f∇ f + Â∇p + B̂∇q +∇ξ,

∆ f̄ = ∇∇ f̄

= (Â∆p + B̂∆q) + p(Â f f |∇ f |2 + Â f ∆ f ) + q(B̂ f f |∇ f |2 + B̂ f ∆ f )

+ 2(Â f 〈∇ f ,∇p〉+ B̂ f 〈∇ f ,∇q〉) + ∆ξ.

Hence

∆φ f̄ = η2(∆ f̄ −∇φ∇ f̄ )

= (Â∆φ p + B̂∆φq) + (pÂ f + qB̂ f )∆φ f + (pÂ f f + qB̂ f f )|∇ f |2 (43)

+ 2(Â f 〈∇p,∇ f 〉+ B̂ f 〈∇q,∇ f 〉) + ∆φξ.

Again

2η2 Â f 〈∇p,∇ f 〉 ≤ 2λ2η2|∇p||∇ f |, using Cauchy-Schwarz inequality

≤ 2λ2γ2η2|∇ f | (44)

≤ 2λ2γ2ξ
1
2 G

1
2 .

Similarly

2η2B̂ f 〈∇q,∇ f 〉 ≤ 2b2σ2ξ
1
2 G

1
2 . (45)

Adding (45) and (45) gives

2η2(Â f 〈∇p,∇ f 〉+ B̂ f 〈∇q,∇ f 〉) ≤ 2(γ2λ2 + b2σ2)ξ
1
2 G

1
2 . (46)

Using (46) in (43) and applying Young’s inequality with a = 2(γ2λ2 + b2σ2), b = ξ
1
2 G

1
2 ,

p = 4
3 , q = 4 and α =

(
2mλ2

(1−λε)δ(λ−1)

) 1
4 we obtain

η2∆φ f̄ ≤ (λ1γ3 + b1σ3) + (γ1λ2 + σ1b2)η
2∆φ f

+ (λ3γ1 + b3σ1)ξG +
2(1− λε)δ

mλ2 (λ− 1)2ξ2G2 (47)

+
3
4

(
2mλ2

(1− λε)δ(λ− 1)

) 1
3

(2λ2γ2 + 2b2σ2)
4
3 + m2.
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Similarly we get

η2〈∇ f̄ ,∇ f 〉 ≤ (1− λε)(1− δ)(λ− 1)2

2mλ2 ξ2G2

+
3
4

(
mλ2

2(1− λε)(1− δ)(λ− 1)2

) 1
3

(λ1γ2 + b1σ2 + m1)
4
3 (48)

+ (γ1λ2 + σ1b2)ξG.

Equations (47) and (48) are the quantities that estimatesH.
From (36) we have

∆φ f = |∇ f |2 − ( ft + f̄ )

=

(
ξ − t0ξ − 1

λt0

)
F.

Thus

2η2t2
0(1− λε)

m
(∆φ f )2 =

2(1− λε)

mλ2 G2 − 4ξt0(1− λε)(λ− 1)
mλ2 G2

+
2(1− λε)

mλ2 ξ2t2
0(λ− 1)2G2 (49)

and

η2∆φ f = − 1
λt0

G− t0(λ− 1)
λt0

ξG. (50)

Set

C̄1 :=
{

λk2

2ε
+ 2k4 + λ3γ1 + b3σ1 + 2(λ− 1)k3 +

λ− 1
λ

+ γ1λ2 + σ1b2 + 2(1− λε)(m− 1)k1

}
and apply Peter-Paul inequality with a = ξG, b = C̄1, α = mλ2

(1−ελ)(1−δ)(λ−1)2 we get

C̄1ξG ≤ (1− ελ)(1− δ)(λ− 1)2

mλ2 ξ2G2 +
mλ2

4(1− λε)(1− δ)(λ− 1)2 C̄1
2. (51)

Set

D1 := 1 + t0

(
c0

R
(m− 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2 +
mλ2c1

4(1− λε)(λ− 1)R2 +
1
λ

)
, (52)

E1 :=
mλ2

4(1− λε)(1− δ)(λ− 1)2 C̄1
2
+ 2λk2εθ2

1

+
nλ

2ε
(k2 + k3)

2 +
9
8

nλ2k4 + (λ1γ3 + b1σ3) +
3
4

(
2mλ2

(1− λε)(λ− 1)δ

) 1
3

(2λ2γ2

+ 2b2σ2)
4
3 + m2 +

3
4

(
mλ2

2(1− λε)(1− δ)(λ− 1)2

) 1
3

λ
4
3 θ

4
3
2 (53)

+
3
4

(
mλ2

2(1− λε)(1− δ)(λ− 1)2

) 1
3

(λ1γ2 + b1σ2 + m1)
4
3 .
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Using (41) to (52) in (40) we obtain

0 ≥ 2(1− λε)

mλ2 G2 − D1G− t2
0E1. (54)

For a positive number p and two non-negative numbers q, r, the quadratic inequality of the
form px2 − qx− r ≤ 0 implies that x ≤ q

p +
√

r
p .

So at (x0, t0) we have

G ≤ D1
mλ2

2(1− λε)
+ t0

√
mλ2E1

2(1− λε)
. (55)

Since η(x, t) = 1 whenever d(x, x0, T1) ≤ R, hence

F(x, T1)

T1
= (|∇ f |2 − λ( ft + f̄ ))

∣∣∣∣
(x,T1)

≤ G(x0, t0)

T1
≤ 1

T1

(
D1

mλ2

2(1− λε)
+ t0

√
mλ2E1

2(1− λε)

)
.

Since t0 ≤ T1, so

1
T1

(
D1

mλ2

2(1− λε)
+ t0

√
mλ2E1

2(1− λε)

)
≤ mλ2

2T1(1− λε)
+

D̃
T1

mλ2

2(1− λε)
+

√
mλ2E1

2(1− λε)
,

where D̃ = t0D̃1 and D̃1 =

(
c0
R (m − 1)(

√
k1 +

2
R ) +

3c1
R2 + c2k2

)
+ mλ2c1

4(1−λε)(λ−1)R2 + 1
λ

satisfying D̃
T1
≤ D̃1. Since T1 is arbitrary so

|∇ f |2 − λ( ft + Âp + B̂q + ξ) ≤ mλ2

2t(1− λε)
+

mλ2

2(1− λε)
D̃1 + Ẽ1, (56)

where Ẽ1 =

(
mλ2

2(1−λε)
E1

) 1
2

.

Substituting f = log u on (56) and using the definition of Â, B̂, we get (16). This completes
the proof.

Corollary 1. If k1, k2, k3, k4 are positive constants such that

Ricm−n
φ ≥ −(m− 1)k1g, −k2g ≤ S ≤ k3g, |∇S| ≤ k4

on M, then for any λ > 1 and δ ∈ (0, 1) we have

|∇u|2
u2 − λ

(
ut

u
+

A(u)
u

p +
B(u)

u
q + ξ

)
≤ mλ2

2t(1− λε)
+

mλ2

2(1− λε)
D̃2 + Ẽ2, (57)
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where

D̃2 = c2k2 +
1
λ

,

Ẽ2 =

(
mλ2

2(1− λε)
E2

) 1
2

,

E2 =
mλ2

4(1− λε)(1− δ)(λ− 1)2 C̄2
2
+ 2λk2εΘ2

1 +
nλ

2ε
(k2 + k3)

2

+
9
8

nλ2k4 + (Λ1Γ3 + B1Σ3) +
3
4

(
2mλ2

(1− λε)(λ− 1)δ

) 1
3

(2Λ2Γ2 + 2B2Σ2)
4
3

+ M2 +
3
4

(
mλ2

2(1− λε)(1− δ)(λ− 1)2

) 1
3

λ
4
3 Θ

4
3
2

+
3
4

(
mλ2

2(1− λε)(1− δ)(λ− 1)2

) 1
3

(Λ1Γ2 + B1Σ2 + M1)
4
3 ,

C̄2 =

(
λk2

2ε
+ 2k4 + Λ3Γ1 + B3Σ1 + 2(λ− 1)k3 +

λ− 1
λ

+ 2(1− λε)(m− 1)k1

)
.

Proof. We know g(t) is uniformly equivalent to the initial metric g(0). For a fixed δ ∈ (0, 1)
if we let R tend to +∞ then we obtain our result.

Theorem 2. If k1, k2, k3, k4 are positive constants such that

Ricm−n
φ ≥ −(m− 1)k1g, −k2g ≤ S ≤ k3g, |∇S| ≤ k4

on M and let u be a positive solution to (7) under the flow (8) then we have the Harnack inequality

u(y1, s1) ≤ u(y2, s2)(
s2

s1
)

mλ
2(1−λε) exp

{
λ

4
I(s1, s2) + (s2 − s1)(Λ1Γ1 + B1Σ1 + M3 +

1
λ

F̃2)

}
, (58)

where I(s1, s2) = inf
ζ

∫ s2
s1
|ζ ′(t)|2dt and ζ : [s1, s2] → M is a path joining the points (y1, s1),

(y2, s2) in M× [0, T] and F̃2 = mλ2

2(1−λε)
D̃2 + Ẽ2.

Proof. Set F̃2 = mλ2

2(1−λε)
D̃2 + Ẽ2 then (57) becomes

|∇u|2
u2 − λ

(
ut

u
+

A(u)
u

p +
B(u)

u
q + ξ

)
≤ mλ2

2t(1− λε)
+ F̃2. (59)

For u = e f we have

|∇ f |2 − λ

(
ft + Âp + B̂q + ξ

)
≤ mλ2

2t(1− λε)
+ F̃2. (60)

Let (y1, s1), (y2, s2) ∈ M× [0, T] be such that s1 < s2. Take a geodesic path ζ : [s1, s2]→ M
satisfying ζ(s1) = y1, ζ(s2) = y2. Using (60) we obtain
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f (y1, s1)− f (y2, s2) = −
∫ s2

s1

d
dt

f (ζ(t), t)dt

= −
∫ s2

s1

∂t f dt−
∫ s2

s1

〈∇ f , ζ ′(t)〉dt

≤ mλ

2(1− λε)
ln(

s2

s1
) + (s2 − s1)(Λ1Γ1 + B1Σ1 + M3 +

1
λ

F̃2) (61)

−
∫ s2

s1

1
λ
|∇ f |2dt−

∫ s2

s1

〈∇ f , ζ ′(t)〉dt.

Now using the relation −ax2 − bx ≤ b2

4a , we set x = ∇ f , a = 1
λ and b = ζ ′(t) we get

f (y1, s1)− f (y2, s2) ≤
mλ

2(1− λε)
ln(

s2

s1
)−

∫ s2

s1

λ|ζ ′(t)|2
4

dt

+ (s2 − s1)(Λ1Γ1 + B1Σ1 + M3 +
1
λ

F̃2). (62)

Take infimum of (62) over all possible curves ζ on M and put f = ln u to obtain (58).

4. Conclusions

In this paper, we have established Li–Yau-type estimate for a positive solution of
the equation

∆φu =
∂u
∂t

+ A(u)p(x, t) + B(u)q(x, t) + ξ(x, t)u(x, t),

along the flow ∂tgij = 2Sij and related Harnack type inequality. In particular if ξ(x, t) = 0,
B(u) = ua+1 then the results are same as in Section 2 of [14]. Thus, our paper generalizes
some results of [14].

Further A(u) = B(u) = ξ(u) = 0 gives the classical Li–Yau-type estimate for positive
solution of the weighted heat equation

∆φu = ∂tu (63)

under the geometric flow ∂tgij = 2Sij. To obtain this estimate we put

1. A(u) = B(u) = ξ(x, t) = 0
2. λ1 = λ2 = λ3 = 0
3. b1 = b2 = b3 = 0
4. p(x, t) = q(x, t) = 0

in (16) and get

|∇u|2
u2 − λ

ut

u
≤ mλ2

2t(1− λε)
+

mλ2

2(1− λε)
D̃3 + Ẽ3, (64)

where

D̃3 =
c0

R
(m− 1)(

√
k1 +

2
R
) +

3c1

R2 + c2k2 +
mλ2c1

4(a− λε)(λ− 1)R2 +
1
λ

,

Ẽ3 =

(
mλ2

2(1− λε)
E3

) 1
2

,
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E3 =
mλ2

4(1− λε)(1− δ)(λ− 1)2 C̄3
2
+ 2λk2εθ2

1 +
nλ

2ε
(k2 + k3)

2 +
9
8

nλ2k4

+
3
4

(
mλ2

2(1− λε)(1− δ)(λ− 1)2

) 1
3

λ
4
3 θ

4
3
2 ,

C̄3 =
λk2

2ε
+ 2k4 + 2(λ− 1)k3 +

λ− 1
λ

+ 2(1− λε)(m− 1)k1.

Here if we let R→ +∞ then we get the classical Li–Yau-type global gradient estimate for
(63) along the flow ∂tgij = 2Sij. The key ingredient in this estimation is the assumption
of bounds for the weight function φ and its derivative |∇φ| (see Preliminaries section), it
would be interesting if one can derive Li–Yau-type estimation for a positive solution u of
(7) without assuming bounds for φ, |∇φ|. One can consider this problem as a future work
for this article.
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