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Abstract: Hyperledger Fabric is a distributed ledger solution platform based on a modular archi-
tecture. The cryptographic algorithm is the core of the platform to ensure the security and tamper-
resistant of the data on the chain. However, the original Fabric platform lacks the protection of
user’s keys and cryptographic operations. To this end, this paper proposes a data privacy protection
method for Hyperledger Fabric based on Trustzone technology, which places the user‘s key and the
cryptographic operation process of private data in the trusted execution environment for protection.
The experimental results based on the existing blockchain network show that the scheme can effec-
tively ensure the security of data encryption process and key static storage, greatly reduce the trusted
computing base and the attack surface. The performance loss is within an acceptable range.

Keywords: Hyperledger fabric; Trustzone; privacy
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1. Introduction

In recent years, blockchain technology has developed rapidly around the world,
and its application has extended to the field of Internet of Things (IoT). Moreover, leading
IoT companies have begun to deploy blockchain technology. IBM, Microsoft, Amazon,
and SAP all provide blockchain services on their respective cloud platforms to deliver
elastic resource pools for future massive IoT device access. As a distributed and trustless
technology [1], blockchain can provide usable, transparent, traceable, and non-tamperable
data-storage protection measures for the IoT; however, this also brings with it issues
regarding data privacy disclosure. To this end, Hyperledger Fabric, an enterprise-level
commercial blockchain project alliance chain platform, designed a BCCSP (Blockchain
Cryptographic Service Provider)module to provide encryption algorithm-related services
for the SDK of the client to protect user privacy [2,3]. That is, before data are uploaded to the
chain, the client is encrypted by calling the chaincode to ensure that the hash or ciphertext
of the original data is stored on the chain. This method provides high independent privacy,
since only offline authorized users can view the original data. However, there are certain
security risks, as shown in Figure 1.

As shown in Figure 1, for the current fabric blockchain node, the smart contract runs
in a rich execution environment (REE) with a low-security level, and the contract logic
may be maliciously tampered with, resulting in untrustworthy changes to the state data.
In addition, data encryption on the REE side lacks root key protection, and malicious
applications may monitor the private data-processing process, thereby threatening the
security of private data.
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Figure 1. The security risks present in ordinary smart contract engines.

1.1. Related Works

Aiming at the privacy disclosure problems existing in Fabric, researchers have pro-
posed some privacy protection schemes for Fabric in recent years. Brandenburger et al. [4,5]
used Trusted Execution Environment (TEE) to protect the privacy of chaincode data com-
putation from potentially untrusted peers square influence. Cheng et al. [6] proposed the
Ekiden model, which adopts the mechanism of separating computation and consensus,
and computing nodes complete the computation of private data in an offline trusted ex-
ecution environment. Fan et al. [7] placed the sensitive private information-processing
process in the blockchain transaction process in the Intel Software Guard Extensions (SGX)
security area for protection. Results presented from the above research works can help
protect the data privacy of Fabric to a certain extent, but these are only applicable to the
server platform of the X86 architecture and not suitablefor IoT devices.

Zhou [8] implemented a blockchain network for IoT systems called BeeKeeper 2.0.
It uses homomorphic encryption technology to protect data. However, this method is
less efficient. Dai et al. [9] designed a safe and readily available digital wallet based on
Trustzone technology; however, the logic of the smart contract used in this method can
easily to be tampered with. Müller et al. [10] designed a prototype for Hyperledger Fabric
chaincode execution with Trustzone; however, it does not provide secure key storage.

1.2. Our Goal and Contribution

We summarized some relevant work in recent years, as shown in Table 1. We can see
that most of the current research employs SGX technology to protect data privacy in Fabric
and is more effective. However, this requires the node to have an Intel processor. When
Fabric is applied to the IoT system, there is no perfect solution to ensure the privacy and
security of data. Therefore, this paper proposes a data-privacy protection method of Fabric
blockchain based on Trustzone technology for IoT devices. It uses the trusted execution
environment to undertake the operation of chaincode, and places the user key and privacy
data-processing process in the trusted execution environment for protection. This method
can resist malicious-application monitoring in the process of chaincode encryption and
improve the security of key static storage in Fabric. In addition, this method safely conceals
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the cryptographic details of Fabric from users, greatly reducing the trusted computing base
and attack surface, thus reducing the risk of private data disclosure.

Table 1. Summary of some related works.

Scheme Research Work Resistance to Attacks

SGX

Brandenburger et al. [4,5] Privacy stealing and rollback attack

Cheng et al. [6] Privacy stealing and key disclosure attack

Fan et al. [7] Privacy stealing and replay attack

Yannick et al. [11] Privacy stealing, key disclosure, image
replacement and MITM attack

Trustzone

Dai et al. [9] Key disclosure attack
Müller et al. [10] Privacy stealing attack

This work Privacy stealing, key disclosure,
image replacement attack

In summary, our main contributions are as follows:

1. Aiming at solving data confidentiality issues when applying Fabric blockchain on IoT
devices, we propose a data-privacy protection method of Fabric blockchain based on
Trustzone technology, using TEE to provide Fabric with encryption algorithm services
to protect data privacy.

2. According to the TEE standard specification, we store the key in the trusted execution
environment by designing the directory file and key encryption file, which improves
security of the key stored in the Fabric blockchain node.

3. In order to reduce the impact of the trusted execution environment on the performance
of data-encryption operations, we improve the data-copying stage, changing from
data transfer to pointer transfer to optimize program performance.

The rest of the paper is organized as follows: Section 2 introduces the relevant knowl-
edge involved in this paper. Section 3 presents our overall design. In Section 4, a detailed
description of the scheme is provided. Section 5 presents an experimental configuration
and analysis. Lastly, we provide concluding remarks.

2. Background
2.1. Hyperledger Fabric

Hyperledger Fabric is a consortium blockchain. Obtaining identity authentication and
organizational permission is a prerequisite for accessing the Fabric network. After joining
the network, members jointly maintain a distributed ledger. All data operations are
public, and will be permanently recorded and cannot be tampered with. In Hyperledger
Fabric, the communication security of each network node is guaranteed by the Public Key
Infrastructure (PKI), which signs and authenticates user identities and communication
messages [12–15].

2.2. Security and Cryptographic Services for Fabric Networks

The technical architecture of the Fabric network is shown in Figure 2. The blockchain
cryptographic service provider (BCCSP) module is most closely related to the research
work of this paper. Based on BCCSP, the common security and cryptographic services
of the Fabric network can be implemented, providing secure and pluggable membership
service management (MSP), consensus services and chaincode services for upper-layer
applications [16,17].
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Figure 2. The technological architecture of the Fabric alliance chain network.

The BCCSP module encapsulates two types of BCCSP instances, SW based on software
implementation and PCAS11 based on hardware implementation. Each type of instance
provides four types of functional interfaces including key management, hashing, signature
verification and encryption and decryption for upper-layer service calls. The cryptographic
algorithms supported by the BCCSP module mainly include hash cryptographic algorithms,
symmetric cryptographic algorithms and asymmetric cryptographic algorithms. The in-
stance selected by BCCSP can be specified through the CSP option to provide corresponding
support for upper-layer applications.

2.3. Smart Contract

A smart contract [18,19] is a set of digital commitments that can be triggered for
automatic and trusted execution. By deploying it on the blockchain, the smart contract
code can be triggered by authorized members, and the credibility of the execution result
will be determined by each nodes to guarantee [20].

In Hyperledger Fabric, smart contracts are referred to as a chaincode, which supports
Go, Node.js or JAVA and other multilingual programming. Chaincode status includes
system chaincode and user chaincode. The system chaincode runs in the peer node and
is assigned to perform specific system tasks, such as processing functions related to the
life cycle of smart contracts, processing the configuration of user node side channels,
and providing account book query APIs such as obtaining blocks and transactions. User
chaincode is a user-defined chain code, which is executed on the docker container side.
According to the business needs of users performing different tasks, the execution logic is
encapsulated into the contract code.

2.4. Trustzone Technology

In order to implement a trusted execution environment in mobile devices, ARM in-
troduced Trustzone technology in the ARM v6 architecture, which can provide protection
and isolation of hardware resources at the chip level. The ARM core that supports the
Trustzone technology divides the working state into two states: safe state (corresponding
to trusted execution environment) and non-safe state (corresponding to rich execution
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environment) [21,22].Among them, the application running in the trusted execution en-
vironment is called TA (Trusted Application), and the application running in the rich
execution environment is called CA (Client Application). The system switches between
the safe and non-safe state of the ARM core by calling the SMC (Safety Monitor Mode Call)
instruction. When the processor core is in a safe state, the processor can not only run the
code on the TEE side, but also has permission to access the resources on the REE side. When
it is in a non-safe state, it can only run the code on the REE side, and can only obtain those
specific data and call specific functions on the TEE side through the previously defined
interface. A block diagram of the system software level of Trustzone technology used in
ARMv7 architecture is shown in Figure 3.

Figure 3. System software framework for Trustzone technology in ARMv7.

As shown in Figure 3, in addition to the user mode and privileged mode that typically
exist in the two worlds, the secure world can also run in a third mode called monitor mode.
When the user mode of the normal world wants to obtain services from the secure world, it
needs to enter the privileged mode of the normal world first, and then invoke the security
monitor call instruction. The processor enters the monitor mode, stores the context of the
normal world in the monitor mode, then loads the privileged mode of the secure world,
and finally loads the user mode of the secure world and provide corresponding services.

In this paper, OP-TEE [23] is selected as TEE. OP-TEE is a trusted execution environ-
ment based on Trustzone technology, and is developed according to GP specifications [24].

3. System Architecture

The system architecture proposed in this paper is shown in Figure 4. It includes an
order, a peer, and a client. Chaincode_proxy runs as a chaincode on the same node as the
peer node. In addition, in our structure, there is also a node for performing cryptographic
operations in the secure world of OP-TEE. This node needs to have an ARM processor and
support OP-TEE. CA runs in the normal world of OP-TEE and is responsible for processing
and forwarding messages from chaincode_proxy and TA. A detailed description of the
components we added is as follows.

• Chaincode_proxy. The chaincode_proxy is installed and instantiated as a chaincode,
which is deployed on Fabric network nodes, runs in an isolated sandbox (currently a
Docker container), and interacts with corresponding peer nodes through the gRPC
protocol to manipulate data in the distributed ledger. it is responsible for forward-
ing chaincode encryption request to the CA or receiving processing responses from
CA. After installation and instantiation, the UUID corresponding to the TA must be
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passed to the chaincode_proxy so that it can communicate with the TA that provides
cryptographic services.

• CA. The CA for cryptographic operations runs in the normal world REE and is used
to forward messages between chaincode_proxy and TA. Communication between the
chaincode_proxy and the CA is achieved through gRPC remote procedure calls and the
session between the CA and the TA is achieved through the TEE Client API function.

• TA. The TA for cryptographic operations runs in the TEE secure world and is called by
CA. It replaces the BCCSP module in Fabric to provide encryption services for Fabric,
including key generation, key storage, symmetric encryption, hash calculation, digital
signature and other modules.

Figure 4. Proposed architecture in this paper.

4. Implementation Details
4.1. Interactive Process

The interaction process between the various parts of this paper is shown in Figure 5.
Among them, Figure 5a shows the process of invoking encryption transaction to encrypt
ledger data, and Figure 5b presents the process of invoking query transaction to decrypt
ledger data.

(a) (b)

Figure 5. The interaction process between the various parts: (a) invoking encryption transaction;
(b) invoking query transaction.

As shown in Figure 5a, the communication between the chaincode_proxy and the
CA is achieved through gRPC remote procedure calls [25]. In order to enable both the
chaincode_proxy and the CA to send data streams to each other, we adopt the bidirec-
tional streaming RPC mode, the protocol used is the buffer language syntax proto3 [26].
The chaincode_proxy acts as the gRPC client, and the CA acts as the gRPC server, listening
on port 50051. Whenever the client calls the chaincode_proxy, the chaincode_proxy creates
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a gRPC client data stream, and sends the function name, UUID , data (key–value) and
related parameters to the CA, and then waits for the CA’s message.

When the CA receives the message, the CA will call the TEEC_OpenSession function
to open the session, establish a connection with the corresponding TA in the TEE according
to the received UUID value and call the TEEC_RegisterSharedMemory function to register
a shared memory, which is then used for the communication between the CA and the
TA. Subsequently, the CA writes function name, data to be encrypted and parameters
into shared memory, and calls the TEEC_InvokeCommand function to send it to the
corresponding TA. TA initializes the session context when the initial function is called
according to the received function name and the data to be operated, and then performs the
specified operation on the data (see Sections 4.3 and 4.4 for details). When the TA execution
is completed, the TA puts the key and the value after the operation into the shared memory,
adds the putstate request to the parameter and returns it to the CA, indicating that the
execution has been completed. The CA forwards the response to the chaincode_proxy,
and then uses the TEEC_CloseSession and TEEC_FinalizeContext functions to close the
session with the TA and release resources.The chaincode_proxy receives the putstate request
and write the encrypted value into the ledger. This encryption process is complete.

In addition, the biggest difference between the query transaction in Figure 5b and the
encrypted transaction in Figure 5a is that it needs one GetState and no PutState.

4.2. Key Storage Module in TA

In native Fabric, the keystore.go file in the BCCSP directory defines the KeyStore
interface, which provides key management and storage functions. We redesign these
functions and implement them in a trusted environment to improve key security.

4.2.1. Creation of Directory Files and Key Encrypted Files

Before creating the file to store the user key, we need to create a directory file to manage
the key encryption file first . The directory file is divided into three areas, which are used to
save the file header, node, and data, respectively. The file header part stores the content of
the fs_htree_image structure.The node part stores the content of the fs_htree_node_image
structure. The data area stores the relevant information of all encrypted files, using
dirfile_entry structure represents the basic structure of the encrypted file. The definition of
the three part structure is shown in Figure 6.

Figure 6. Structure definition.

After the directory file is created, we start to create the key encryption file. The format
of the encrypted file is roughly the same as that of the directory file, except that the data
block stores the user’s key. The process of creating an encrypted file is shown in Figure 7.
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Figure 7. Creation process of encrypted files.

When creating an encrypted file, the data area of the encrypted file will be initialized,
and then the tee_fs_htree_node_image area of the encrypted file and the tee_fs_htree_image
area saved in the file header will be updated. In order to enable the directory file to find
the encrypted file later, it is also necessary to update the contents of the encrypted file
information defined by the data area dirfile_entry in the directory file.To here, the creation
process of the encrypted file ends.

4.2.2. Writing and Reading of Key Encryption File

Before writing and reading the key encrypted file, we need to open it first, so we
need to find the storage number of the encrypted file by reading the dirfile_entry structure
corresponding to the encrypted file in the data area of the directory file. For the write
operation, we call the TEE_WriteObjectData function, which will obtain the TA’s session ID
and running context, check the permissions, and then complete the data writing through
the ree_fs_write function. Similarly, for the read operation, we call the ree_fs_write function,
which will call the ree_fs_read function to read the encrypted file. The ree_fs_read function
calculates which data block the read data belongs to, then finds the node ID corresponding
to the block, so as to obtain the IV value used in the encryption and decryption of the data
block, and finally decrypts the read plaintext data through FEK and IV.

4.3. Symmetric Encryption and Signature Module in TA

In the native Fabric, BCCSP provides data encryption in AES-CBC mode, the spe-
cific types supported are AES128/AES192/AES256, and the padding method used is:
pkcs7Padding, Therefore, we implement the above three encryption types in the trusted
execution environment to complete chaincode encryption instead of BCCSP. The specific
implementation steps are as follows:

1. When the TA receives the TEEC_InvokeCommand command request from the CA, it
calls the TEE_AllocateOperation function to allocate an operation handle for crypto-
graphic operations, and sets the algorithm type and mode to determine whether the
cryptographic algorithm is encrypted or decrypted. Where the mode parameter is set
to EN_MODE_CBC.

2. Call the TEE_AllocateTransientObject function to allocate an uninitialized temporary
space. After the allocation operation is successful, call the TEE_InitRefAttribute and
TEE_PopulateTransientObject functions to set the key object parameters, and then call
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the TEE_SetOperationKey function to save the contents of the object storing the key
to the operation handle.

3. Call the TEE_CipherInit function to initialize the configuration.
4. Call the TEE_CipherUpdate function interface to transmit the data to be calculated.
5. Call the TEE_CipherDoFinal function to complete the AES encryption and decryption

operation, and return the operation result.

In addition, the signature algorithm used in the native Fabric network is Elliptic Curve
Digital Signature Algorithm (ECDSA), which mainly supports ECDSAP384/ECDSAP256.
Since optee’s trusted execution environment provides two interfaces, TEE_ALG_ECDSA_P256
and TEE_ALG_ECDSA_P384, we can implement the two signature algorithms in the
trusted environment through interface calls, and the steps are similar to the AES encryp-
tion method.

4.4. Data Encryption and Signature Module in TA

The hash algorithms used in the native Fabric are SHA-256, SHA-384, SHA3-256,
and SHA3-384. Similarly, we implement the above algorithms in a trusted execution
environment to replace BCCSP to complete the hash operation. The implementation steps
are as follows:

1. When a link is established between the TA and the CA through the OpenSession
operation, the TEE_AllocateOperation function is called to specify the type of digest
algorithm (for example: SHA-256, SHA-384, etc.)

2. Call the TEE_DigestDoFinal function to send the data to be calculated (this function
can be called continuously to send the data).

3. Call the TEE_DigestUpdate function to perform the digest calculation operation,
and feed the data back to the TA.

4. Finally, the functions of CloseSession and FinalizeContext are called in turn to release
resources and avoid resource occupation caused by data.

5. Experimental Configuration and Analysis
5.1. Experimental Environment

The blockchain server configuration employed in this paper: Intel Core i5-8400 CPU @
2.80 GHz 2.81 GHz. This paper uses qemu-v8 to simulate IoT devices to run OP-TEE system.
We set the core number -smp of qemu-v8 to 4, the trusted thread CFG_NUM_THREADS
to 4, and the NUM_CQS (the number of queues at the gRPC server which will listen to
incoming RPCs) to 1. The detailed configuration of the experiment is shown in Table 2.

Table 2. Experimental environment configuration.

Environment Version Notes

operating system Ubuntu 18.04 server x64 -
blockchain network Hyperledger Fabric1.4.3 Open source blockchain architecture

gRPC v.1.20.0 For remote procedure calls
OP-TEE v3.8.0 Provide the trusted environment

Go language Go 1.14.6 Smart contract development language

5.2. TCB Size

The Trusted Computing Base (TCB) [27] is a collection of all implementation strategies
and mechanisms to achieve data security. The smaller the TCB, the fewer corresponding
errors and the more secure the system. In order to calculate the TCB of our scheme, we use
the code statistics tool–CLOC, and the results are shown in Table 3.
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Table 3. Lines of code for each component.

Go C C++ Protocol Buffer Total

chaincode_proxy 191 0 0 40 231
CA 0 0 388 40 428
TA 0 896 0 0 896

According to Table 3, since the CA, the chaincode_proxy is not trusted, and the TA
in the TEE is trusted. Therefore, the TCB of our scheme consists of TA, i.e., 896 lines of
trusted code. For native Fabric, the number of lines of code related to BCCSP module is
about 5600 lines. By providing cryptographic algorithm services for Hyperledger Fabric
only in the trusted environment, instead of completing cryptographic operations through
the BCCSP interface in the whole peer, the trusted computing base and attack surface are
greatly reduced.

5.3. Security Analysis
5.3.1. Analysis of Potential Attack Scenarios

This section mainly analyzes the current attacks and privacy disclosure risks suffered
by Fabric, and introduces the defense of our scheme against these attacks.

• Key disclosure attack

Currently, the user’s private key of Fabric is encrypted and stored in the Keystore.
If the attacker attempts to delete this file directly after obtaining the root permission of the
terminal device, the user will not be able to encrypt and decrypt the private data normally.
In this scheme, the access and operation requests for the directory file and key encrypted file
in TEE will be subject to the strict security verification of the security extension component,
and the encrypted files in TEE are independent of each other.The key required for the
encrypted file is only randomly generated in the trusted memory during the operation
of the code in the Trustzone and will not be disclosed to the outside. Therefore, even an
attacker with root privileges cannot destroy the encrypted file.

• Privacy Stealing Attack

Privacy stealing attack means that in the scenario where the attacker invades the Fabric
container, the chaincode running in the original Fabric is not protected. Since the plaintext
of data and keys will be involved in the operation process, malicious applications can
steal user data and key information by monitoring encryption processes. In this scheme,
the operation process of providing cryptographic services for Fabric is completed inside TA.
Through the memory isolation, interrupt isolation and other mechanisms of Trustzone, it is
ensured that the program in REE cannot access the instructions and data of TEE. Therefore,
the malicious application on the REE side cannot perform malicious monitoring and other
operations on the cryptographic operation process, which can effectively ensure the security
of the execution process.

• Image Replacement Attack

When the Fabric container is created, it relies on the image tag to create an operating
environment for the chaincode. Image replacement attack means that since the image is
stored locally, an attacker can use a malicious image with a backdoor to replace the original
image and use the label of the original Fabric. In this scheme, the startup process of the IoT
device is secure booted by the ATF [9]. The ATF will verify the kernel image before starting
the image of the next stage to ensure that the boot kernel image has not been illegally
tampered with, and then OPTEE_OS verify the TA when loading the trusted application
into the secure memory to ensure that the TA is legal and not the replaced application of
the same name, thus ensuring the logical security of the TA.
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5.3.2. Compared with E-Fabric

We compare our scheme with E-Fabric [11]. E-Fabric is a method to build a trusted
execution environment for lightweight fabric chaincode based on SGX. It is improved on the
basis of Ref. [5] and provides better privacy protection capability for Fabric. The comparison
results are shown in Table 4.

Table 4. Comparison of E-Fabric and our scheme.

Feature E-Fabric Our Scheme

Technology Intel SGX ARM Trustzone
Resist root attacker

√ √

Chaincode confidentiality
√ √

Remote attestation
√

×
Data encryption

√ √

Key safety storage ×
√

Both our scheme and E-Fabric can ensure the security of the chaincode encryption
process. E-Fabric is applicable to nodes with Intel processors, while our scheme is applicable
to nodes with ARM processors. Our scheme provides key management and storage
functions for Fabric by designing directory file and key encryption file, while E-Fabric does
not provide secure storage of keys.

In E-Fabric, peer nodes can remotely authenticate and exchange keys with the chain-
code container to confirm that the transaction proposal is executed by the authorized
chaincode enclave. However, since Trustzone itself does not provide remote authentication
support, our scheme loses the verification of chaincode execution by an authorized TEE.

5.4. Performance Evaluation
5.4.1. Performance of Hash Operation Module

First, we tested the time it took for the client to invoke the chaincode_proxy to perform
a hash operation (That is, the time used for the whole process in Figure 5a). The results are
shown in Figure 8. Among them, Figure 8a shows the latency of a single client invoking
the chaincode_proxy to perform sha256 and sha384 operations on different data sizes.
Figure 8b shows the average latency of different numbers of clients repeatedly invoking the
chaincode_proxy in parallel to perform the SHA256 operation on 64 KB data within 30 s.
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Figure 8. Latency for the execution of the chaincode hash transaction invoked by client: (a) one single
client; (b) multiple clients.
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From Figure 8a, it can be seen that for small data lengths (less than 256 KB), the over-
all time spent performing SHA256 and SHA384 operations is not significantly different.
With the increase in data length, the time cost of SHA384 increases significantly faster than
that of SHA256. Furthermore, we observe from Figure 8b that the average latency of all
single transactions increases with an increasing number of clients.

In order to understand the duration of each subsection in the above process, we
take the process of the client calling the chaincode_proxy to perform sha256 hash cal-
culation on 64 KB data as an example. We measured the time required for each part
(as shown in Figure 5a), where T1 represents the initialization time of chaincode_proxy and
the time to send data, function name and other parameters to the CA. T2 includes the
initialization of the CA, the time to establish a connection with the corresponding TA in
the TEE and copy the data to the shared memory through the TEEC_InvokeCommand
function, T3 is the time for the TA to perform cryptographic operations, T4 is the time
when TA returns key–value pairs and putstate request to CA. T5 is the time when the CA
forwards putstate request to the chaincode_proxy. T6 is the time when the chaincode_proxy
writes data to the ledger. The running time of each part is shown in Table 5.

Table 5. The running time of each part.

Average (ms) Min (ms) Max (ms)

T1 9.46 7.37 13.24
T2 + T3 30.36 26.13 34.24

T4 1.61 1.52 1.68
T5 0.02 0.02 0.02
T6 0.47 0.41 0.61

sum 41.92 — —

From Table 5, it can be seen that the average time of the whole process is 41.92 ms,
of which T2 + T3 accounts for the largest proportion of the whole process. That is, the main
time-consuming part of the whole process is during the stage when CA calls TA to complete
the hash operation.

In order to reduce the impact of T2 on the whole process, we study the impact of data
copying in shared memory in T2 on program performance. In T2, CA reads the original
data into the CA data area first. When calling and executing TA, CA copies the required
data into the shared memory, and then copies the shared memory data into the TA data
area. In the whole process, multiple data memory copies are faced, which reduces program
performance, and the larger the amount of copied data, the more program overhead,
and the lower the program execution efficiency.

To this end, we change data passing to pointer passing to optimize program perfor-
mance. Specifically, after the CA registers and allocates the shared memory, the original
data is directly read into the shared memory, and only the pointer of the data block in the
shared memory is passed when calling the execution TA to pass the parameters. When
performing hash operations in TEE, data is directly read from shared memory to decrease
the times of memory data copy.

As can be seen from Figure 9, when allocating different shared memory sizes, hash
operations are performed on 64 KB, which reduces the number of memory copies. As the al-
located shared memory gradually increases, the efficiency improvement can be maintained
at about 8%.
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Figure 9. Performance improvement brought by reducing memory copies under different shared
memory sizes.

After writing the hash calculation results into the ledger, we measured the throughput
of query transaction in our method, the control group and the native fabric. The measure-
ment is completed by repeatedly querying the results on the chain in parallel for different
number of clients (1–8) over a period of time. In order to verify the impact of TEE on system
throughput, we set the control group. The control group implements the logic of TA in this
scheme by CA, that is, it does not interact with TEE. The results are shown in Figure 10.

(a) (b)

Figure 10. Throughput of parallel calls to query transactions by different number of clients: (a) mea-
surements are done for the plain Hyperledger Fabric; (b) measurements are done for our method and
control group.

We found that for our method, the throughput increased slightly from 1 client to
2 clients (factor < 1.2). When there are more than two clients, the throughput is stagnant.
For native fabrics, the throughput will increase significantly as the number of clients in-
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creases, until the number of clients equals 6 (cores). Therefore, the Go program does not
affect the throughput of our scheme. In addition, for the control group, when NUM_CQS
is set to 1 or 2, the throughput increases 1.6 times and 1.72 times from 1 client to 2 clients,
respectively.Compared with 1 client, 8 clients increased 2.14 times and 2.64 times, respec-
tively, Therefore, gRPC is not the main reason that affects the throughput of our scheme.
From this, we can conclude that the execution of chaincode in the TEE is mainly responsible
for the throughput of our scheme.

5.4.2. Read and Write Performance of Key Encrypted Files

We tested the read and write performance of the key-encrypted files in this paper,
as shown in the following Table 6.

Table 6. Read and write performance of key encrypted files.

Key Size Writing (ms) Reading (ms)

128 B 58.27 36.61
192 B 61.33 38.07
256 B 65.15 39.36

From the Table 6, it can be seen that the reading and writing of secure storage does
incur some time overheads. However, because the objects stored are relatively small,
the key size to be saved is 128/192/256 bytes, so the time performance loss is deemed
acceptable. Furthermore, the write operation will be carried out only when the user creates
it. Only read operations are performed during transaction execution.

5.4.3. Performance of Symmetric Encryption Module

We perform AES128-CBC encryption and decryption on plaintext data in the TA of
this paper, in the enclave of SGX and in the native Fabric, respectively. We measure its
running time, and convert it into throughput rate to observe the changes in computing
performance overhead. Among them,the AES encryption and decryption functions in the
SGX SSL extension library (based on OpenSSL) are used in the enclave of SGX. The results
are shown in the following Figure 11.

4KB 16KB 64KB 256KB 1MB 4MB
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Native Hyperledger  Fabric

Figure 11. Comparison of AES encryption efficiency.
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According to the results of the experiment, when the length of plaintext is short, the per-
formance loss of this paper will be more obvious. This is because when the length of plaintext
is short, the additional overheads such as allocating shared memory and world switching are
too obvious compared with the encryption and decryption overheads. However, with the
increasing number of bytes, the time-consumption of encryption and decryption operations
gradually becomes dominant, and the performance gradually improves.

In addition, the trusted execution environment provided by Intel SGX technology
is suitable for the server platform of X86 architecture, and the method proposed in this
paper is aimed at IoT devices of ARM architecture, so its performance is weaker than SGX.
However, the computing time is still within the millisecond range, indicating that it is
possible to protect blockchain data privacy through IoT devices.

6. Conclusions

This paper proposes a data-privacy protection method of Hyperledger Fabric based
on Trustzone for IoT devices. The method replaces the BCCSP module in the native Fabric
to complete the chaincode encryption by designing and implementing modules such as key
storage, hash operation, and symmetric encryption in TEE. The experimental results show
that this method can resist malicious application monitoring in the process of chaincode
encryption and improve the security of key static storage in Fabric. In addition, this method
safely conceals the cryptographic details of Fabric from users, greatly reducing the trusted
computing base and attack surface, thus reducing the risk of privacy data disclosure.
Compared with the chaincode-encryption scheme of native Fabric, the performance loss of
this method lies within an acceptable range.
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