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Abstract: The clustering ensemble method has attracted much attention because it can improve the
stability and robustness of single clustering methods. Among them, similarity-matrix-based methods
or graph-based methods have had a wide range of applications in recent years. Most similarity-
matrix-based methods calculate fully connected pairwise similarities by treating a base cluster as
a whole and ignoring the importance of the relevance ranking of samples within the same base
cluster. Since unreliable similarity estimates degrade clustering performance, constructing accurate
similarity matrices is of great importance in applications. Higher-order graph diffusion based on
reliable similarity matrices can further uncover potential connections between data. In this paper,
we propose a more substantial graph-learning-based ensemble algorithm for local-sample-weighted
clustering, which implicitly optimizes the adaptive weights of different neighborhoods based on the
ranking importance of different neighbors. By further diffusion on the consensus matrix, we obtained
an optimal consistency matrix with more substantial discriminative power, revealing the potential
similarity relationship between samples. The experimental results showed that, compared with the
second-best DREC algorithm, the accuracy of the proposed algorithm improved by 17.7%, and that
of the normalized mutual information (NMI) algorithm improved by 15.88%. All empirical results
showed that our clustering model consistently outperformed the related clustering methods.

Keywords: clustering ensemble; localized weighted; sparse; graph diffusion

MSC: 68-04

1. Introduction

Data clustering is an essential unsupervised learning technique widely studied in
different fields, such as statistics, pattern recognition, machine learning, and data mining.
Clustering divides data objects into separate subsets, each of which is called a cluster. An
effective clustering process makes the objects in a cluster as similar as possible, but as
dissimilar as possible from the objects in other clusters. Although significant progress has
been made in knowledge discovery, traditional machine learning methods still need to
achieve satisfactory performance when dealing with complex data such as unbalanced
data, high-dimensional data, data with noise, etc. These methods have difficulty capturing
information, such as various features and the underlying structure of the data.

The clustering ensemble method provides a framework for combining multiple weak
data set clusters to generate a consensus clustering [1]. As a research hotspot, the clustering
ensemble method aims to integrate data fusion, modeling, and mining into a unified
framework [2]. Specifically, the clustering ensemble method first generates several sets of
consensus information through different mechanisms. Based on these learned features,
multiple consensus learning algorithms are applied to create preliminary prediction results
with low confidence. Finally, consensus learning can fuse the knowledge with enough
information to achieve knowledge discovery and obtain better prediction performance
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using constrained source information. The clustering ensemble method uses the consensus
learning technique to find a new data division based on multiple clustering results, which
shares the clustering information of all the input clustering results on the data set to the
greatest extent. The clustering ensemble method can effectively improve the robustness
and stability of a single cluster [3]. The clustering ensemble technique has high parallelism
and expansibility [4].

Over the past few decades, researchers have proposed many clustering ensemble
algorithms. Among these methods, one popular method in recent years has been the
similarity-matrix-based clustering ensemble method. The similarity-matrix-based clus-
tering ensemble method is easy to implement and has the advantage of being a simple
concept [5]. In addition, the consensus matrix provides a reasonable basis for subsequent
analysis. Similarity-matrix-based methods [6–9] transform the information provided by
the base clustering into a similarity matrix and then obtain the final clustering ensemble
results by various methods such as agglomerative clustering and invoking partitioning.
Although showing improved performance, exploring and exploiting local structures within
these similarity-matrix-based clustering ensemble methods still encounter the following
two critical issues:

• Existing methods based on the similarity matrix take advantage of the information
of all sample relationships. However, in the clustering ensemble method, the quality
of the base clusters plays a crucial role in the clustering process. Low-quality base
clusters may seriously affect the consensus results [10]. This approach ignores the
ranking importance of sample relevance and may suffer from unreliable proximity
relationships, which degrade the clustering performance [11].

• Although similarity-based methods have shown exemplary performance in many
applications, consensus matrix structures may sometimes fail to capture complex
higher-order correlations between instances. In clustering ensemble tasks, the relation-
ships between samples may be too challenging to describe, as different basic clustering
methods may find other data structures [8,12].

To solve these problems, we propose a new structured similarity matrix learning
clustering ensemble method with graph diffusion based on the learned structured similarity
matrix in this paper. Unlike the traditional similarity-matrix-based clustering ensemble
method, we propose a new local sample weighting model, i.e., different samples are ranked
differently in importance for similarity. We first learned a consensus affinity matrix among
multiple clustering results to reveal the underlying local structure. At the same time, we
imposed a rank constraint on the Laplacian matrix of the learned similarity matrix to assign
the ideal nearest neighbors so that the connected components in the data are accurate
with respect to the number of clusters, with each connected component corresponding to
one cluster. The model learns the data similarity matrix and the clustering structure to
obtain the best clustering results [13]. The underlying flow structure is ignored in the direct
calculation of the metric sample pair similarity [14]. We saw that only one type of similarity
could not fully reveal the intrinsic relationship between objects. Therefore, we extended the
analysis to consider higher-order relationships recursively [15]. Meanwhile, we also took
the ranking importance of the sample relevance by using a generalized form of sparsified
graph diffusion. The main contributions are summarized as follows:

• We explored the optimal affinity by the local sample reconstruction coefficient, which
depends on its similarity matrix and the correlation of its neighbors to improve
the discrimination and alleviate the redundancy of highly similar samples within a
local clique.

• We exploited the affinity matrix by global heat kernel diffusion, which aggregates
tight local cliques and extracts high-order similarity to consolidate the connection and
reduce the noise across local cliques.

• We integrated the exploration of the local structure and global structure into successive
steps; the effectiveness of each step can be verified, and the efficiency was improved
compared to the common learning method.
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2. Related Work

The clustering ensemble method aims to integrate multiple candidate weak clustering
results to obtain a better result. Strehl and Ghosh proposed the concept of the clustering en-
semble for the first time in [4]. According to the data representation form of the base cluster
and the final clustering result generation algorithm, clustering ensemble methods can be
roughly divided into the following four categories. (1) Label-alignment-based methods:
These methods first realize the mutual mapping between the cluster from different base
clusterings by solving the label-matching problem of the cluster and then combine multiple
base clusterings on the aligned cluster. Representative algorithms include the alternative
vote method based on mutual information proposed by Zhou et al. [16]. Li et al. [17]
proposed the selective fusion method based on evidence theory. (2) Sample cluster binary-
relation-based methods: These methods sequentially splice the results of different base
clusters to obtain a new sample cluster relation matrix and use different strategies to en-
hance the sparse matrix and carry out ensemble learning. The related studies proposed
enhancing the sample cluster relationship based on the link cluster relationship and the
utility function based on entropy [18–20]. Fern et al. extended the graph cut method to
the clustering ensemble method [21]. Li et al. proposed a method based on non-negative
matrix decomposition [7]. (3) Graph-division-based methods: The base cluster set contains
different objects, such as samples and clusters, and their relationships. Strehl et al. [4]
proposed three different types of hypergraph models and ensemble algorithms, namely
the Meta Clustering Algorithm (MCLA), the Cluster-based Similarity Partitioning Algo-
rithm (CSPA), and the Hypergraph Partitioning Algorithm (HGPA). Huang et al. [22]
used bipartite graphs based on the relationship between samples and clusters. (4) Con-
sistent common-matrix-partition-based methods: A single base cluster can construct the
co-association matrix between samples, and the consistent co-association matrix can be
obtained by selecting, weighting, merging, enhancing, and other steps. The final inte-
gration result can be obtained by dividing the matrix. The main methods include (4.1)
the spectral method based on a common consensus matrix. Yu et al. [23] proposed using
the spectral method to carry out ensemble learning from the consistent co-linked matrix.
Jia et al. [24] proposed combining the bagging-based base clusteringselection method and
spectral method for ensemble learning of subsets. Liu et al. [25] further studied the robust-
ness and generalization of spectral methods in the clustering ensemble. (4.2) A hierarchical
clustering method based on the consistent co-linking matrix: In the literature [6,26–28],
the evidence accumulation method has been used to construct the similarity graph, and
the hierarchical clustering algorithm has been used to generate the integration results.
Wang et al. [29] proposed a fast hierarchical clustering algorithm based on the co-linked
matrix tree structure. Zhong et al. [27] enhanced the sample similarity by using cluster
tendency Visualization Analysis Technology (VAT). Hu et al. [28] proposed to use fuzzy
distance and knowledge roughness in soft computing to characterize and enhance the
similarity. Huang et al. [30] proposed the LWEA algorithm based on cluster uncertainty
local weighting.

Although showing significant improvement in the final clustering result, most of these
methods treat a base cluster as a whole and ignore the importance of sample correlation
within the same base cluster. Unlike previous works, which did not simultaneously impose
appropriate constraints to capture the underlying structure and weight of the similarity
matrix, we learned a structured consensus matrix with local-sample-weighted enhancement.
We further conducted high-order graph diffusion to enhance the discrimination ability by
capturing the long-range connections among samples.

3. Proposed Method

This section details our proposed method and provides an efficient optimization
solution. We first introduce some main notations in Table 1.
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Table 1. Description of the main notations.

Notations Descriptions

n Number of instances.
m Number of base clusterings.
ci Number of the i-th base clusters.
wi The weight of the i-th co-association matrix.
k The number of neighbors.

Hi ∈ Rn×ci The i-th incidence matrix of base clusterings.
Si ∈ Rn×n The i-th pairwise co-association matrix.
Z ∈ Rn×n The consensus co-association matrix.

DZ ∈ Rn×n The node degree matrix of Z.
LZ ∈ Rn×n The Laplacian matrix of Z.
P ∈ Rn×n The symmetric transition matrix of Z.

3.1. Local-Sample-Weighted Clustering Ensemble

Given a set of unlabeled samples X = {x1, . . . , xn}, we can obtain a collection of base
clusterings H = {H1, . . . , Hm}, where m is the number of base clusterings, Hi ∈ Rn×ci

denotes the result of the i-th clustering, and ci denotes the number of clusters. Given Hi,
a pairwise co-association matrix can be equivalently expressed as Si = HiHT

i ∈ Rn×n,
where each entry is either 1 if they are in the same cluster or 0 otherwise. Given a set of
co-association matrices, we can search these candidates to obtain the consensus one by
minimizing the aggregated reconstruction errors between them, which can be formulated
as follows:

min
Z

m

∑
i=1

∥Si − Z∥2
F (1)

s.t. Z ≥ 0, Z1 = 1,

where Z is the consensus co-association matrix, 1 ∈ Rn×1 is a column vector with n
elements where each entry is 1, Z ≥ 0 ensures the non-negative property, and Z1 = 1 is
used for row normalization. It can be seen that the larger the distance between sample
pairs, the smaller the similarity. Equation (1) can be reformulated as

min
Z

m

∑
i=1

tr(SiST
i − 2SiZT + ZZT)

= min
Z

m

∑
i=1

tr(SiST
i )− 2

m

∑
i=1

tr(SiZT) +
m

∑
i=1

tr(ZZT)

= min
Z

− 2
m

∑
i=1

tr(SiZT) + mtr(ZZT) (2)

s.t. Z ≥ 0, Z1 = 1.

It can be seen that the first term captures the pairwise alignment between the candidate
results and the consensus one, while the second term captures the uniform prior of Z. To
further improve the flexibility for consensus learning, we introduced a hyperparameter η
to balance these two terms, which can be written as

min
Z,w

−
m

∑
i=1

witr(SiZT) + η∥Z∥2
F (3)

s.t. Z ≥ 0, Z1 = 1,
m

∑
i=1

w2
i = 1, wi ≥ 0,
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where wi is the weight of the i-th co-association matrix. The simplex constraint on w is to
avoid the trivial solution. It can be seen that Equation (3) leads to unnecessarily extremely
sparse results when η → 0, and Equation (3) leads to uniform and dense affinity when
η → ∞.

The introduction of η in the problem in Equation (3) also leads to two problems. First,
the additional parameter η should be well-tuned to achieve good performance. However,
tuning such parameters in an unsupervised task is not easy without the guidance of
supervised information. Second, it is vitally important to characterize the underlying
manifold structure within these local affinities, i.e., the consensus co-association matrix
Z. However, it is hard to keep the local structure for each row of Z by such a global
hyperparameter.

The optimization of Z can be naturally decoupled into n subproblems, where only
one row is associated at once. Based on such a structure of the optimization problem, we
further addressed the above two issues by replacing the global parameter η with a set of
local regularization parameters γγγ = (

√
γ1,

√
γ2, . . . ,

√
γn) and γγγ ∈ Rn×1, each of which

is obtained from the corresponding row of Z. Although there are more hyperparameters
introduced by using γγγ, the behavior of the local regularization parameter can be more
easily analyzed on each row of Z. The main purpose of γi is to control the sparsity of the
i-th row of Z. It is expected only to keep the top k nonzero entries and discard the others
for each row of Z. Such results could be obtained by setting the optimal value of γi. The
values of these local regularization parameters can also be determined empirically without
additional tuning, as illustrated in Section 4.4. Thus, the optimization problem can be
written as

min
Z,w

−
m

∑
i=1

witr(ZTSi) + ∥Q ⊙ Z∥2
F (4)

s.t. Z ≥ 0, Z1 = 1,
m

∑
i=1

w2
i = 1, wi ≥ 0,

where Q = 1γγγT and ⊙ denotes the elementwise Hadamard product. Inspired by the recent
work in structural similarity learning [13], we also required that the affinity matrix has
exactly c connected components. This can be achieved by imposing the rank constraint on
the induced Laplacian matrix. We then obtain the following problem:

min
Z,w

−
m

∑
i=1

witr(ZTSi) + ∥Q ⊙ Z∥2
F (5)

s.t. Z ≥ 0, Z1 = 1,
m

∑
i=1

w2
i = 1, wi ≥ 0, rank(LZ) = n − c,

where LZ = DZ − ST+S
2 is the Laplacian matrix, and the degree matrix DZ ∈ Rn×n is

defined as a diagonal matrix where the i-th diagonal element is ∑j(Zij + Zji)/2.
According to the above formula, the proposed method, Local-Sample-Weighted Clus-

tering Ensemble (LSWCE) , jointly optimizes a reasonable weight for each similarity matrix,
consensus graph learning, and consensus neighborhood into a unified framework. LSWCE
implements the implicit optimization of adaptive weights according to the sorting relation
of different neighbors and corresponding samples. Instead of adjusting hyperparameter γi
with a grid search, hyperparameter γi can be determined in advance. Consequently, the
underlying local structure among these base clusterings can be well characterized by the
consensus co-association matrix, where the clustering performance could also be improved
by such local affinity learning.

3.2. Consensus Affinity Graph Smoothing via Graph Diffusion Convolution

After examining the discrepancy between the structured consensus matrix and the
ground truth, there are two unsatisfying points [31,32]:
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• The consensus matrix is not smooth. It can be easily verified that the consensus matrix
Z is sparse, as mentioned before. The coefficients between sample xi and most samples
within the sample cluster were set to be 0. Such a weighting coefficient breaks the
connections between these pairs, separates these samples into disjoint groups, and
blocks the identification of the underlying cluster structure.

• The coefficient matrix is noisy. It is expected that samples should reconstruct the
sample in the same cluster. Since the results of the base clusters are not accurate, the
neighborhood relationship used for local reconstruction within all base clusterings
is inevitably not accurate, as expected. For example, on the one hand, the sample xj

in the top-k neighbors N i of a sample xi may not be in the same cluster as xi, leading
to unexpected reconstruction coefficient Zij > 0. On the other hand, many samples
in the same cluster of xi are not used to reconstruct xi. As a result, the induced local
reconstruction coefficient would be somewhat noisy.

We remedied the consensus matrix by resorting to the graph diffusion convolution,
expected to obtain a smooth and denoised graph. The immediate information could be
characterized by passing messages between neighboring samples. For example, given
a symmetrical consensus affinity graph Z, the diagonal degree matrix of nodes DZ, the

symmetric transition matrix P = D
−1
2

Z ZD
−1
2

Z , and the normalized graph Laplacian matrix
L = I − P, the second-order relationship between sample xi and sample xj can be obtained
by the aggregation of the first-order neighbors in the form of P2

ij = ∑n
i′=1 Pii′Pi′ j. We

aimed to capture a larger range of immediate higher-order neighborhood information by
recursively introducing a series of matrices P2, P3, · · · , P∞ in the following form:

P2 = PP (6)

P3 = P2P. (7)

We finally considered all exponents at once and obtained the following diffusion matrix.

G =
∞

∑
t=0

wtPt, (8)

where wt is the immediate weighting coefficient and P0 = I is the identity matrix where a
sample is only connected to itself.

Choosing a different weight will affect the performance of the clustering results. We
found that adopting the heat kernel is an effective choice [33].

wt = e−θ θt

t!
, (9)

where θ is a non-negative value that can be expressed as temperature. It can be verified
that ∑∞

t=0 wt = 1, wt ∈ [0, 1]. The heat kernel diffusion satisfies the heat equation and can
be viewed as describing the heat flowing along the edge of the graph with time, where the
Laplacian of the graph determines the flow rate. The final diffusion matrix can be written as

G =
∞

∑
t=0

wtPt = e−θ
∞

∑
t=0

θt

t!
Pt

=
∞

∑
t=0

(−θ)t

t!
(I − P)t = exp−θL, (10)

where the last two equations hold according to the definition of the matrix exponential, as
seen above; when t is small, the heat kernel is dominated by locally connected structures
encoded in Laplacian L. As t increases, the heat kernel is ruled by the global structure of
the graph. θ is the diffusion parameter.
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Instead of discretization on Z directly, in the proposed method, Local-Sample-Weighted
Clustering Ensemble with High-order graph diffusion (LSWCEH), we utilized it using
the global heat kernel diffusion procedure, as shown in (8), and generated an enhance-
ment graph. The heat kernel diffusion filters out the larger eigenvalues corresponding to
the fine details, but is also noisy via exponential decay transformation while amplifying
the smaller eigenvalues corresponding to the top clusters in the graph. The heat kernel
diffusion smooths out the neighborhood by bridging the local and global structure via
the aggregation of intermediate higher-order information. Consequently, the heat-kernel-
diffusion-induced graph smoothing helps reduce undesirable distortions and noise while
preserving important manifold structures.

4. Optimization and Analysis

We introduce how to optimize objective function Equation (5). We first need to
handle the rank constraint. Since rank(LZ) = n − c, the c smallest eigenvalues of LZ
should be zeros. To deal with this, we minimized ∑m

i=1 ϕ(LZ), where ϕ(LZ) denotes the
i-th smallest eigenvalues of LZ. According to the Ky Fan theorem [34], by introducing
an orthogonal auxiliary matrix F ∈ Rn×c, we have ∑m

i=1 ϕ(LZ) = minFTF=I tr(FTLZF).
Therefore, Equation (5) can be rewritten as follows:

min
Z,F,w

− tr(
m

∑
i=1

wiSiZT) + ∥Q ⊙ Z∥2
F + 2λtr(FTLZF) (11)

s.t. Z ≥ 0, Z1 = 1,
m

∑
i=1

w2
i = 1, wi ≥ 0,

FTF = I,

where λ is a self-adaptive parameter; as the rank changes, λ is updated automatically and
should be large enough to control the rank of LZ. We initialized λ = 1e−4 and adjusted
it automatically during the iterations, i.e., doubled it if rank(LZ) > n − c or halved it if
rank(LZ) < n − c. Since the optimization objective is not convex, the original problem was
separated into three subproblems.

4.1. Update with Respect to w

Given Z and F, the rest of the subproblem with respect to w becomes

max
w

m

∑
i=1

wiδi (12)

s.t.
m

∑
i=1

w2
i = 1, wi ≥ 0,

where δi = tr(SiZT). This problem could be easily solved with a closed-form solution
as follows:

wi =
δi√

∑m
i=1 δ2

i

. (13)

4.2. Optimization w.r.t. Z

Given F and w, the rest of the subproblem with respect to wi and (11) is transformed
to n subproblems, and each one can be independently solved. Let bi denote the i-th row of
Z, and each subproblem can be solved by:
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min
bi

γibibT
i + (2λdi −

m

∑
p=1

wiSp[i,:])bi (14)

s.t. bi1 = 1, bi ≥ 0,

where Sp[i,:] denotes the i-th row of the p-th base clustering. di denotes the i-th rows of the
Z Euclidean distance matrix squared. Furthermore, (14) can be rewritten as a Quadratic
Programming (QP) problem:

min
bi

1
2

biAbT
i + eibT

i (15)

s.t. bi1 = 1, bi ≥ 0,

where A = 2γiIn and ei = (2λdi − ∑m
p=1 wiSp[i,:]), and (15) can be simplified as:

min
bi

1
2
∥bi − b̂i∥2

2 (16)

s.t. bi1 = 1, bi ≥ 0,

where b̂i = − ei
2γi

. The analytical solution of (16) is as follows [11]:

bi = max(bi + βi1T
n , 0), (17)

where βi can be solved by Newton’s method efficiently with the constraint bi1 = 1.

4.3. Optimization with Respect to F

When optimizing F, Equation (11) can be simplified as

min
F

tr(FTLZF) (18)

s.t. FTF = I.

According to Ky Fan’s theorem, F is the c smallest eigenvectors before LZ.

4.4. Initialize the Consensus Matrix Z and Hyperparameter γi

To prefer a sparse discriminative affinity matrix, each row of Z should have k nonzero
values that denote the affinity of each instance corresponding to its initialized neighbors.
According to (11), Z will be naturally sparse by constraining γi within reasonable bounds,
and by constraining the L0-norm of bi to be k with maximal γi, the problems is as follows:

max
γi

γi, s.t. ∥bi∥0 = k. (19)

Recall the subproblem of optimizing bi in (16); its equivalent form can be written
as follows:

min
bi

1
2
∥bi −

ei
2γi

∥2
2 (20)

s.t. bi1 = 1, bi ≥ 0,

where ei = (2λdi − ∑m
p=1 wiSp[i,:]), anddi denotes i-th row of the Z Euclidean distance

matrix squared. We suppose the rows ei1, ei2, . . . , ein are ordered in ascending order. For
each row, ∑m

p=1 wiSp[i,:] is constant, dii = 0, and eii has the smallest value; therefore, eii
ranks first. The invalid eii should be neglected since the similarity with itself is useless. We
use DoutN = ei,k+2 to represent the first sample distance that is not in the neighborhood,



Mathematics 2023, 11, 1340 9 of 17

DsumN = ∑k+1
h=2 eih, as the sum of the neighbor distance for the i-th row, and DN = ei,j+1

indicates the distance between the j-th neighbor in i-th row. To satisfy ∥bi∥0 = k, the
maximal γi is as follows [11]:

γi =
k
2

DoutN − 1
2

DsumN , (21)

In the meantime, the initial z∗ij is as follows:

z∗ij =


DoutN − DN

kDoutN − DsumN
, j ≤ k

0, j > k
(22)

By initializing a sparse discriminant affinity graph, each row has k nonzero values.
Once the initial γi has been calculated, γi will remain constant throughout the iteration to
avoid unnecessary tuning. The initial affinity diagram involves the number of neighbors k,
based on the assumption of a balanced cluster; we set k = n

c .

4.5. Obtaining G

Given the consensus matrix Z, the immediate high-order information can be captured
by the diffusion process in Equation (8). The closed-form solution can be computed from
Equation (10).

We summarize the overall iterative optimization algorithm of our proposed method
in Algorithm 1. Figure 1 demonstrates the process of the whole algorithm.
 

Dataset

Generation mechanism using the k-means algorithm with 

a fixed number of clusters

Clustering 1

Local Sample-Weighted Clustering Ensemble

Consensus Affinity Graph Smoothing Via 

Graph Diffusion Convolution

Cluster2

Cluster1

Cluster3

Clustering 2

Cluster1

Cluster3

Cluster2

Cluster3

Cluster2

Cluster1

. . .

Cluster3

Cluster2

Cluster1

Clustering m

Base Clusterings

Final Clustering

Cluster1

Cluster2

Cluster3

Figure 1. Schematic diagram of the algorithm process.
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Algorithm 1 The algorithm of the proposed method.

Input: The m similarity matrix S1, . . . , Sm, the self-adaptive parameter λ = 1e−4, the
number c of clusters, the diffusion parameter θ = 3.
Initialize: The neighborhood size k = n

c , Z, and γi by Equations (21) and (22).
repeat

Update w according to Equation (13);
Update Z by solving Equation (17);
Update F by solving the smallest eigenvectors;
Update λ automatically;

until Converges
Compute graph diffusion consensus matrix G according to Equation (10);

Output: Perform spectral clustering on consensus matrix G.

4.6. Complexity Analysis

Since we need to save and construct the similarity matrix sets S , the space complexity
is O(mn2).

The computational complexity of (14) is O(n2m). Optimize F by solving (18) with
the eigenvalue decomposition of LZ, costing O(n2c). By computing the closed-formed
solution (17) of (16), the computational complexity of (16) is reduced to O(nm). Optimize
Z to solve n the subproblems (17); the total complexity is O(n2m). Therefore, the whole
time complexity is O((n2m + n2c + nm)t), where t is the number of iterations.

5. Experiments

This section compares our proposed LSWCEH with the state-of-the-art clustering
ensemble methods on benchmark data sets.

5.1. Dataset

In the experiment, this paper used 12 common types of common data sets for the
clustering ensemble method, including AR [35], BASEHOCK (http://qwone.com/jason/
20Newsgroups/, accessed on 6 August 2022), Coil20 [36], CSTR, MSRA25 [37], News4b,
ORL400 (https://jundongl.github.io/scikit-feature/datasets.html, accessed on 6 August
2022) PCMAC (http://featureselection.asu.edu/datasets.php), BBCNews (http://mlg.
ucd.ie/datasets/bbc.html, accessed on 6 August 2022), Binary Alphadigits (BA) (http:
//ida.first.fraunhofer.de/projects/bench/benchmarks.html, accessed on 6 August 2022),
Tr12 [38], and WRP [39]. Different types of data sets can better evaluate the algorithm’s
performance. The detailed information of the data sets is shown in Table 2.

Table 2. Description of the data sets.

Data Sets # of Instances # of Features # of Classes

AR 840 768 120
BASEHOCK 1993 4862 2

Coil20 1440 1024 20
CSTR 476 1000 4

MSRA25 1799 256 12
News4b 3874 5652 4
ORL400 400 1024 40
PCMAC 1943 3289 4

BA 1404 320 36
BBCNews 737 1000 5

Tr12 313 5804 8
WRP 1560 8460 20

 http://qwone.com/ jason/20Newsgroups/
 http://qwone.com/ jason/20Newsgroups/
https://jundongl.github.io/scikit-feature/data sets.html
http://featureselection.asu.edu/data sets.php
http://mlg.ucd.ie/data sets/bbc.html
http://mlg.ucd.ie/data sets/bbc.html
http://ida.first.fraunhofer.de/projects/bench/benchmarks.html
http://ida.first.fraunhofer.de/projects/bench/benchmarks.html
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5.2. Compared Algorithms

To demonstrate how the proposed approach can improve the clustering performance,
we compared the results of the following algorithms:

• KC [40]: This represents the average of the k-means clustering results. Clustering
ensemble methods often use it as the baseline.

• Hypergraph Partitioning Algorithm (HPGA) (the code of the algorithm is provided at
http://www.strehl.com/diss/node80.html, accessed on 2 October 2022) [4]: A neigh-
borhood partition method based on hypergraphs, the clustering ensemble problem
is described as dividing hypergraphs by cutting a minimum number of subgraphs,
which uses a given cluster to repartition the data. In order to avoid a large number of
scattered partitions, the algorithm sets the hypergraph’s hyperedges and the weights
of all vertices to equal values.

• Meta Clustering Algorithm (MCLA) (see Section 5.2) [4]: This algorithm transforms
the clustering ensemble problem into a cluster consistency problem.

• Dense Representation Clustering Ensemble (DREC) (the code of the algorithm is
provided at https://github.com/zhoujielaoyu/2018-NC-DREC, accessed on 2 October
2022) [10]: This is an clustering ensemble method based on dense representation. This
method introduces a slimming strategy to reduce the input data size by using the
information that must be linked between instances to further reduce the time cost of
constructing the similarity matrix.

• Probability-Trajectory-based Graph Partitioning (PTGP) (the code of the algorithm
is provided at https://www.researchgate.net/publication/284259332, accessed on
15 October 2022) [41]: The graph-based method uses sparse graph representation and
a random walk process to explore the graph information.

• Locally Weighted Evidence Accumulation (LWEA) (the code of the algorithm is pro-
vided at https://www.researchgate.net/publication/316681928, accessed on 15 Oc-
tober 2022) [30]: The hierarchical agglomerative clustering ensemble method uses a
local weighting strategy.

• Locally Weighted Graph Partitioning (LWGP) (see Section 5.2) [30]: This is a graph
partitioning algorithm based on a local weighting strategy. This method constructs a
bipartite graph and regards both clusters and objects as graph nodes. In addition, the
reliability of clusters is judged by the criterion of entropy.

• Non-negative Matrix Factorization-based Consensus clustering (NMFC) [42]: This is a
consensus clustering method based on non-negative matrix factorization.

• Self-Paced Clustering Ensemble (SPCE) [43]: This is a self-paced clustering ensemble
method. The method learns from easy to hard and integrates difficulty evaluation and
integration learning in a unified framework.

• Multiview Clustering Ensemble (MEC) [44]: This is a robust multi-view clustering
ensemble method using low rank and sparse decomposition for the clustering ensem-
ble and noise detection. The method uses low-rank sparse decomposition, explicitly
considers the relationship between different views, and detects the noise in each view.

• Robust Spectral Clustering Ensemble (RSEC) [9]: This is a robust clustering ensemble
method based on spectral clustering. This method learns the robust representation
of the co-association matrix by a low-rank constraint and then finds the consensus
partition by spectral clustering.

• LSWCE: This is the proposed method without graph diffusion convolution. To eval-
uate the effectiveness of graph propagation, we obtain the final clusters from the c
connective component in Z.

• LSWCEH (our code is provided at https://github.com/sxu-datalab/LSWCEH, ac-
cessed on 2 December 2022): This is the proposed method with high-order graph
diffusion based on LSWCE.

http://www.strehl.com/diss/node80.html
 https://github.com/zhoujielaoyu/2018- NC- DREC
https://www.researchgate.net/publication/284259332
https://www.researchgate.net/publication/316681928
https://github.com/sxu-datalab/LSWCEH
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5.3. Experimental Settings

K-means results were used as the basic clustering in the experiment. K-means were
run 200 times with different initializations on all data sets to obtain 200 basic clustering
results, which were further divided into 10 subsets, each with 20 basic results. Finally, we
applied all the clustering ensemble methods to each subset and report the average results
for the ten subsets. It should be pointed out that there are usually two ways to generate
base clusters using the k-means algorithm: (1) the number of clusters c is fixed, which
remains unchanged during the running of the algorithm, and c cluster centers are randomly
selected each time. (2) Change the c value; allow the c value to change within a certain
range; make an appropriate c value interval for each run; then, randomly select c cluster
centers. This experiment adopted the first method, which has been widely used.

For our proposed LSWCEH, the self-adaptive hyperparameter λ varies set 1 × 10−4 .
Based on the assumption of balanced clusters, the number of neighbors only needs to take
the average size of each cluster. The diffusion parameter was set as 3, so the algorithm has
fixed parameters and does not need to conduct a grid search.

The clustering performance was evaluated by two widely employed criteria, clustering
Accuracy (ACC) and Normalized Mutual Information (NMI). The experimental results
were obtained on a desktop with an Intel Core i7 8700K CPU (3.7 GHz), 64-GB RAM, and
MATLAB2022a (64-bit).

5.4. Experimental Results

The mean results of the ACC, NMI, and standard deviation are shown in Tables 3
and 4. The bold font in the table indicates the best results, and the next-best results are
underlined. According to the experimental results, the following can be seen:

• The results of the LSWCE method were usually better than the compared methods.
As seen from the visual display of the clustering accuracy in Table 3, the LSWCE
method improved the clustering performance. It can be seen from Table 4 that the
clustering result was generally improved under the NMI index. In the LSWCE results,
the accuracy evaluation index was improved by 5.4% compared with the second-best
algorithm DREC, and the NMI evaluation index was flat compared with the second-
best algorithm DREC. The LSWCE method considers the correlation among samples
within a local clique. Thus, the redundancy and correlation between these highly
similar samples could be primarily alleviated and greatly enhance local discrimination.

• The LSWCEH method achieved the best or second-best results on most data sets. In
the LSWCEH results, the accuracy evaluation index was improved by 17.7% compared
with the second-best algorithm, DREC, and improved by 15.88% wit theNMI evalu-
ation index compared with the second-best algorithm, DREC. Overall, the average
values of the ACC and NMI index on all the data sets were better than those of the
compared clustering ensemble methods. Such results demonstrated the superiority of
our method well.

• The GDC can improve the clustering performance. From the results of LSWCEH, the
accuracy evaluation index increased by 11.6% compared with LSWCE, and the NMI
evaluation index increased by 17.6%. These results demonstrated the effectiveness of
GDC. The clustering results were not significantly improved on a few data sets after
GDC. This phenomenon may be because some bad clusters were used as the input,
which affects the overall clustering effect.

• The variance of LSWCEH was 2.3% higher than RSEC under the accuracy evaluation
index. In Table 4, the variance is 11.9% higher than RSEC under the NMI evaluation
index. These results were due to our method being affected by the extreme values.
By carefully observing each clustering index of the BASEHOCK and PCMAC data
sets obtained by the compared methods, we can see that, although the fluctuation of
the variance was small, the clustering effect was unsatisfactory. This means the other
compared methods failed on these two data sets and had little effect. LSWCEH greatly
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improved the two data clustering indexes, which not only increased the variance, but
also greatly improved the clustering performance.

• Our approach made the data cluster structure clearer. The process of our method
learning the consensus matrix on the ORL data set is illustrated in Figure 2. In
Figure 2a is the mean of the input ORL data set. It can be seen from (a) that the
similarity matrix in (a) is dense and the cluster structure is unclear. After consensus
learning with the local-sample-weighted clustering ensemble, the consensus matrix
was sparse. Compared to the original input, as shown in (b), the sample was connected
to the neighbor of greater importance, while the neighbor of lesser importance was
ignored. The consensus matrix was now noisy, and the local reconstruction using
neighborhood relations in all clusters needs to be more accurate. Through higher-
order graph diffusion, we obtained a smoother reconstruction consensus matrix. As
shown in (c), the graph diffusion strengthened the sample relationship. At this time,
the consensus matrix had a weak correlation among some samples due to the graph
diffusion, so we need to make it sparse again to obtain a more reliable relationship
between samples to obtain a clear structure, as shown in (d). It can also be seen from
Figure 3 our method separates the clusters more clearly. Each sample is connected to
only a finite number of points.

0
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0.4

0.5
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0.8
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1

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

(c)

0

0.05

0.1

0.15

0.2

0.25

0.3

(d)

Figure 2. ORL data set clustering structure in the learned consensus matrix at different stages. (a) is
the uniform-weight-averaged co-association matrix of the input ORL data set. (b) shows that the
sample is connected to the neighbor of greater importance. (c) is the consensus matrix after graph
diffusion convolution. (c,d) After making it sparse.
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Figure 3. Illustrations of the clustering structure in the learned consensus matrices from different
methods on the CSTR data set. (a) is the mean of the input similarity matrix S. (b,c) Learned
consensus matrices by the robust methods MEC and RSEC. (d) is our LSWCEH method. Note that
our method of learned consensus is sparse. Each sample is connected to only a finite number of
points, and our method separates clusters more clearly.

Table 3. Clustering results measured by the accuracy of the compared methods.

Data Sets KC HGPA MCLA DREC PTGP LWEA LEGP MEC NMFC RSEC SPCE LSWCE LSWCEH

AR 0.3301
±0.015

0.3807
±0.012

0.3337
±0.115

0.3815
±0.007

0.3200
±0.004

0.3898
±0.013

0.3645
±0.013

0.2787
±0.012

0.3692
±0.006

0.2938
±0.007

0.3499
±0.007

0.3955
±0.008

0.4002
±0.008

BASEHOCK 0.5018
±0.001

0.5027
±0.001

0.5029
±0.001

0.5014
±0.001

0.5033
±0.000

0.5009
±0.001

0.5029
±0.001

0.5008
±0.000

0.5029
±0.001

0.5033
±0.000

0.5033
±0.000

0.5057
±0.004

0.7286
±0.129

Coil20 0.5498
±0.053

0.5447
±0.052

0.6695
±0.023

0.5560
±0.054

0.4781
±0.025

0.5817
±0.025

0.5916
±0.058

0.5875
±0.039

0.6615
±0.030

0.5894
±0.045

0.6723
±0.023

0.7021
±0.008

0.7074
±0.010

CSTR 0.7331
±0.087

0.2897
±0.032

0.7966
±0.029

0.8293
±0.071

0.8974
±0.000

0.8019
±0.004

0.8432
±0.057

0.9004
±0.010

0.7842
±0.084

0.8589
±0.074

0.8046
±0.008

0.8949
±0.009

0.8983
±0.006

MSRA25 0.5094
±0.048

0.4076
±0.051

0.5609
±0.025

0.5522
±0.036

0.5415
±0.025

0.5189
±0.019

0.5364
±0.048

0.5509
±0.043

0.5445
±0.032

0.4818
±0.035

0.5472
±0.020

0.5866
±0.024

0.5619
±0.028

News4b 0.2576
±0.004

0.2561
±0.002

0.2608
±0.003

0.2564
±0.009

0.2596
±0.001

0.2573
±0.001

0.2566
±0.001

0.2609
±0.012

0.2580
±0.009

0.2627
±0.009

0.2577
±0.002

0.2651
±0.012

0.5363
±0.068

ORL400 0.4859
±0.032

0.5768
±0.021

0.5878
±0.012

0.5968
±0.024

0.6053
±0.013

0.5735
±0.029

0.5328
±0.031

0.4613
±0.031

0.5745
±0.016

0.3688
±0.020

0.5310
±0.013

0.6205
±0.015

0.6210
±0.018

PCMAC 0.5050
±0.000

0.5021
±0.002

0.5049
±0.000

0.5049
±0.000

0.5049
±0.000

0.5049
±0.000

0.5049
±0.000

0.5052
±0.000

0.5049
±0.000

0.5049
±0.000

0.5053
±0.000

0.5087
±0.008

0.7678
±0.117

BBCNews 0.5922
±0.078

0.2246
±0.005

0.6049
±0.053

0.6712
±0.044

0.6608
±0.000

0.6678
±0.064

0.6288
±0.045

0.6780
±0.050

0.6469
±0.068

0.5484
±0.030

0.6362
±0.060

0.6967
±0.039

0.6863
±0.044

BA 0.4088
±0.019

0.3620
±0.018

0.4542
±0.009

0.4724
±0.009

0.4717
±0.008

0.4033
±0.010

0.4190
±0.029

0.4269
±0.022

0.4463
±0.020

0.2958
±0.069

0.3627
±0.012

0.4729
±0.005

0.4778
±0.009

Tr12 0.4739
±0.078

0.4920
±0.060

0.5466
±0.085

0.6198
±0.048

0.5827
±0.007

0.6240
±0.068

0.5623
±0.081

0.5958
±0.045

0.5898
±0.055

0.4048
±0.112

0.4537
±0.070

0.6348
±0.055

0.6364
±0.031

WRP 0.4202
±0.047

0.3610
±0.021

0.4876
±0.061

0.5144
±0.042

0.5392
±0.014

0.5785
±0.013

0.4799
±0.040

0.4622
±0.046

0.4952
±0.041

0.4893
±0.099

0.4376
±0.038

0.5228
±0.033

0.5810
±0.052

Avg 0.4806
±0.039

0.4083
±0.023

0.5259
±0.035

0.5380
±0.029

0.5320
±0.008

0.5335
±0.021

0.5186
±0.034

0.5174
±0.026

0.5315
±0.030

0.4668
±0.042

0.5051
±0.021

0.5673
±0.018

0.6335
±0.043
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Table 4. Clustering results measured by the NMI of the compared methods.

Data Sets KC HGPA MCLA DREC PTGP LWEA LEGP MEC NMFC RSEC SPCE LSWCE LSWCEH

AR 0.6533
± 0.0093

0.7039
± 0.0065

0.6878
± 0.0047

0.6911
± 0.0072

0.6327
± 0.0058

0.6748
± 0.0073

0.6825
± 0.0086

0.5634
± 0.0154

0.6948
± 0.0037

0.5828
± 0.0147

0.7297
± 0.0021

0.7083
± 0.0048

0.7108
± 0.0038

BASEHOCK 0.0024
± 0.0018

0.0000
± 0.0000

0.0041
± 0.0010

0.0017
± 0.0011

0.0045
± 0.0000

0.0008
± 0.0010

0.0041
± 0.0010

0.0005
± 0.0000

0.0040
± 0.0013

0.0045
± 0.0000

0.0045
± 0.0000

0.0006
± 0.0014

0.2924
± 0.2209

Coil20 0.7061
± 0.0271

0.6756
± 0.0224

0.7570
± 0.0121

0.7300
± 0.0542

0.6454
± 0.0183

0.7317
± 0.0152

0.7289
± 0.0302

0.7363
± 0.0221

0.7635
± 0.0110

0.7360
± 0.0181

0.7810
± 0.0275

0.7950
± 0.0092

0.7959
± 0.0062

CSTR 0.6390
± 0.0635

0.0150
± 0.0164

0.6734
± 0.0190

0.7100
± 0.0713

0.7829
± 0.0000

0.6902
± 0.0080

0.7183
± 0.0431

0.7726
± 0.0171

0.6944
± 0.0251

0.7526
± 0.0439

0.6703
± 0.0183

0.7507
± 0.0193

0.7578
± 0.0135

MSRA25 0.5820
± 0.0439

0.4481
± 0.0729

0.6098
± 0.0185

0.6364
± 0.0358

0.6364
± 0.0168

0.6250
± 0.0170

0.5983
± 0.0349

0.6182
± 0.0306

0.6165
± 0.0221

0.5496
± 0.0321

0.6477
± 0.0084

0.6651
± 0.0075

0.6281
± 0.0282

News4b 0.0063
± 0.0030

0.0002
± 0.0002

0.0030
± 0.0017

0.0064
± 0.0088

0.0097
± 0.0007

0.0042
± 0.0006

0.0074
± 0.0020

0.0075
± 0.0065

0.0071
± 0.0043

0.0104
± 0.0058

0.0114
± 0.0018

0.0090
± 0.0059

0.3292
± 0.0516

ORL400 0.6898
± 0.0195

0.7616
± 0.0079

0.7534
± 0.0057

0.7741
± 0.0237

0.7688
± 0.0038

0.7616
± 0.0097

0.7270
± 0.0164

0.6477
± 0.0205

0.7547
± 0.0086

0.5802
± 0.0206

0.7663
± 0.0047

0.7795
± 0.0106

0.7821
± 0.0079

PCMAC 0.0001
± 0.0000

0.0000
± 0.0000

0.0001
± 0.0000

0.0001
± 0.0000

0.0001
± 0.0000

0.0001
± 0.0000

0.0001
± 0.0000

0.0000
± 0.0000

0.0001
± 0.0000

0.0001
± 0.0000

0.0000
± 0.0000

0.0006
± 0.0009

0.3329
± 0.1627

BBCNews 0.4133
± 0.0776

0.0050
± 0.0041

0.4246
± 0.0399

0.5209
± 0.0440

0.5123
± 0.0000

0.4817
± 0.0551

0.4268
± 0.0484

0.5233
± 0.0456

0.4548
± 0.0538

0.3977
± 0.0295

0.4927
± 0.0247

0.5077
± 0.0346

0.5034
± 0.0291

BA 0.5700
± 0.0101

0.5296
± 0.0082

0.5866
± 0.0045

0.6033
± 0.0090

0.6041
± 0.0062

0.5540
± 0.0057

0.5710
± 0.0185

0.5693
± 0.0198

0.5856
± 0.0071

0.4078
± 0.0932

0.5953
± 0.0029

0.6038
± 0.0041

0.6044
± 0.0044

Tr12 0.3859
± 0.0805

0.4105
± 0.0585

0.4759
± 0.0949

0.6028
± 0.0476

0.6177
± 0.0036

0.5429
± 0.0535

0.5374
± 0.0515

0.5768
± 0.0525

0.5501
± 0.0547

0.2321
± 0.1705

0.2752
± 0.0787

0.6053
± 0.0395

0.6063
± 0.0379

WRP 0.5180
± 0.0237

0.4584
± 0.0150

0.5684
± 0.0239

0.5994
± 0.0422

0.6025
± 0.0039

0.5480
± 0.0150

0.5561
± 0.0228

0.5558
± 0.0181

0.5723
± 0.0227

0.5026
± 0.0935

0.3556
± 0.0586

0.5875
± 0.0113

0.6103
± 0.0184

Avg 0.4305
± 0.0300

0.3340
± 0.0177

0.4620
± 0.0188

0.4897
± 0.0288

0.4848
± 0.0049

0.4679
± 0.0157

0.4631
± 0.0231

0.4643
± 0.0207

0.4748
± 0.0179

0.3964
± 0.0435

0.4441
± 0.0190

0.4823
± 0.0124

0.5675
± 0.0487

6. Conclusions

In this article, we proposed a novel LSWCEH method. Unlike traditional clustering
ensemble methods that use the number of all sample neighbors in integration learning, we
distinguished the order of sample importance in our learning. In the LSWCEH framework,
we used an efficient graph diffusion algorithm to improve the clustering result. We conducted
extensive experiments on the benchmark data set, and the experimental results showed that
our method had significant performance improvement over the base clustering results.
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