
Citation: Huang, Y.; Sun, L.; Han, C.;

Guo, J. A High-Precision Two-Stage

Legal Judgment Summarization.

Mathematics 2023, 11, 1320. https://

doi.org/10.3390/math11061320

Academic Editor: Ioannis G. Tsoulos

Received: 7 February 2023

Revised: 2 March 2023

Accepted: 7 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A High-Precision Two-Stage Legal Judgment Summarization
Yue Huang 1,2 , Lijuan Sun 1,2,*, Chong Han 1,2 and Jian Guo 1,2

1 College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2 Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing University of Posts

and Telecommunications, Nanjing 210003, China
* Correspondence: sunlj@njupt.edu.cn

Abstract: Legal judgments are generally very long, and relevant information is often scattered
throughout the text. To complete a legal judgment summarization, capturing important, relevant
information comprehensively from a lengthy text is crucial. The existing abstractive-summarization
models based on pre-trained language have restrictions on the length of an input text. Another
concern is that the generated summaries have not been well integrated with the legal judgment’s
technical terms and specific topics. In this paper, we used raw legal judgments as information
of different granularities and proposed a two-stage text-summarization model to handle different
granularities of information. Specifically, we treated the legal judgments as a sequence of sentences
and selected key sentence sets from the full texts as an input corpus for summary generation. In
addition, we extracted keywords related to technical terms and specific topics in the legal texts and
introduced them into the summary-generation model as an attention mechanism. The experimental
results on the CAIL2020 and the LCRD datasets showed that our model achieved an overall 0.19–0.41
improvement in its ROUGE score, as compared to the baseline models. Further analysis also showed
that our method could comprehensively capture essential and relevant information from lengthy
legal texts and generate better legal judgment summaries.

Keywords: legal judgment; text summarization; generative network; attention mechanism

MSC: 68U15

1. Introduction

In the legal field, previous judgment documents are important references for legal
practitioners to determine the measurements of the penalties and judgment scales. Legal
practitioners must read through hundreds of judgment documents to identify precedents
that conform to a specific case’s characteristics. Therefore, the automatic summarizations
of legal judgments are very important. Saravanan et al. proposed legal-field-specific ap-
proaches to implement automatic summarization for legal judgment documents, to a certain
extent [1,2]. However, the complex textual structure of a legal document is different from
that of an academic paper. An academic paper typically has a conclusion section that sum-
marizes the work, while a legal judgment’s conclusion may be scattered throughout the text.
Figure 1 demonstrates how the key information was scattered throughout a specific case
judgment document. Therefore, extracting key information from a lengthy text is crucial
for the implementation of summarization automation on legal judgment documentation.

To promote this research direction, Erkan et al. employed LexRank to extract the
summary of a judgment document [3]. LexRank is an extractive text summarization
method that treats text summarization as a sentence-ranking task and can handle lengthy
text input. However, the summaries generated by LexRank had sentence redundancies
and incoherence, and LexRank could not fully cover the text. Rush et al. further adopted
an abstract text summarization method [4]. They used the abstractive-summarization
model to combine and arrange words in the lexicon to form generalized new sentences.

Mathematics 2023, 11, 1320. https://doi.org/10.3390/math11061320 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061320
https://doi.org/10.3390/math11061320
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0001-6506-481X
https://orcid.org/0000-0002-2657-1464
https://orcid.org/0000-0001-5944-3103
https://doi.org/10.3390/math11061320
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061320?type=check_update&version=1

Mathematics 2023, 11, 1320 2 of 16

Although their method was flexible and conformed to the generation method of natural
summarization, it had some issues, such as factual bias and textual repetition. Moreover,
abstractive-summarization models usually are unable to handle long texts due to their high
memory requirements.

Figure 1. Example of case judgment. This shows how key information is scattered throughout this
specific case judgment document.

With the development of deep learning, a neural-network-based summarization model
using seq2seq has become a research hotspot. To handle the factual biases and textual
repetition issues, See et al. proposed a pointer-based seq2seq model that solved the
problem of unrecorded words and rare words, to a certain extent [5]. In addition, See et al.
tackled sequence duplication using a coverage mechanism. Although the readability of
the summaries generated by their seq2seq model was better, a large corpus was required
for training. Due to legal restrictions, large volumes of legal judgment documentation
and reference summaries are not freely available. Current legal case datasets have less
than 30k training examples [6], which is one-tenth of academic datasets, such as arXiv and
PubMed [7]. Therefore, unsupervised and self-supervised model-based text summarization
methods are gaining more attention in the legal field.

The pre-trained language model was introduced into legal text summarization as a
self-supervised neural-network-based model. Feijo et al. proposed a pre-training model-
based method [8] called LegalSumm. LegalSumm created different views on the source
text to handle lengthy legal judgments and added a hidden module to determine the
authenticity of candidate summaries, relative to the source text. However, their method
used the RulingBR dataset (which was in Portuguese), where the documentation and
its summaries were much shorter in length than typical legal judgments. The lengthy
legal judgment issue was, therefore, not entirely resolved. In addition, legal judgments
usually contain an abundance of technical terms and keywords related to specific topics [9],
which can be difficult to interpret. Although a pre-trained language summary model can
better integrate the contextual information, its attention mechanism becomes too sparse to
focus on relevant topics when processing a lengthy text. Therefore, integrating keyword
information into the summary-generation model is also challenging.

To tackle with these issues, we used raw legal judgment documentation as information
at different granularities, including the text, the sentences, and the keywords. To shorten the
length of the input text and capture the key information scattered throughout the complete
text, we treated the legal judgment documentation as a sequence of sentences and selected
key sentence sets from the full text as an input corpus for abstractive summarization. At

Mathematics 2023, 11, 1320 3 of 16

the same time, the keyword information, such as technical terms and specific topics, was
extracted from the text as an attention mechanism and introduced into the text-generation
model, so the final summary could better integrate key information.

In this study, we proposed a two-stage summary-generation model to handle different
granularities of information. As shown in Figure 2, our model combined extractive and ab-
stractive summarization. The model’s first stage comprehensively extracted key sentences
from legal judgment texts using extractive summarization. Specifically, we first divided the
judgment documentation into a linear sequence of sentences annotated with [x1, x2, . . . , xn]
and introduced a hierarchical sentence-vector-representation method to realize rapid sen-
tence vectorization. Next, we utilized the BERT+LSTM model to annotate the sequences
of sentence vectors in order to indicate whether the extractive summary model should
contain the corresponding sentences, to realize the extraction of key sentences. The model’s
second stage involved inputting the previously extracted key sentences into the abstractive
summary model to complete the final summary generation. Our abstractive summarization
method was based on the unified pre-trained language model (UNILM) [10], which only
required a specific self-attention mask for the seq2seq text-generation task. In addition,
we adopted a keyword extraction method based on a BiLSTM to extract keywords related
to professional terms and specific topics in the judgment text. Moreover, we introduced
these into the text-generation model as an attention mechanism to better integrate these
keywords into the final generated summary. Furthermore, we introduced a sparse softmax
and copy mechanism into our model to avoid over-fitting and any factual deviation in the
generated summary. To summarize, our contributions were as follows:

• We proposed a two-stage summary-generation model. Our model generated a text
summarization after extracting key information, thereby aggregating the relevant
important information that was scattered throughout lengthy legal judgment texts.

• We introduced keywords related to technical terms and specific topics in legal judg-
ment texts as an attention mechanism for our proposed model, so key information
could be better integrated into the final generated summary.

• We demonstrated the effectiveness of our proposed approach through extensive
experiments on datasets comprised of legal judgment documentation.

 LSTM-based extractor

Input
E1

E2

EN

…

CONV

BERT

Keywords extraction

 Key sentences

 Key words
UniLM

BIO-Copy

Outpt

Extractor

LSTM

UNILM

Summarization

Copy-Attention

Generator

Figure 2. Overall framework of our proposed two-stage model. In stage one, we utilized the CONV +
BERT + LSTM model to realize the extraction of key sentences and adopted an extractive method
based on BiLSTM to extract keywords. In stage two, we sent this information to the abstractive
model, which consisted of a UNILM model and an attention mechanism, which then could generate
a summary.

Mathematics 2023, 11, 1320 4 of 16

The rest of this paper is organized as follows: First, in Section 2, we introduce the
relevant work and the research status. Then, we introduce the proposed method in detail
and analyze it theoretically in Section 3. We present our experimental design and result
analysis in Section 4. Finally, we summarize the study in Section 5.

2. Related Work

In this section, we provide an overview the recent advances in pre-trained language
models and text summarization.

Pre-training Methods: This was a model based on its predecessors to resolve similar
issues. When solving a problem, researchers typically begin with a model that has been
trained on similar issues, instead of training a new model from scratch. A pre-trained
language model provides a state-of-the-art approach for many NLP tasks and saves con-
siderable time and resources. The existing pre-trained methods generally fall into two
categories: (1) language models, such as GPT [11], which is a sequential generation model
that predicts the next word based on the previous context; and (2) masked language models,
such as BERT [12], RoBERTa [13], and ALBERT [14], which randomly mask some input
words and predict these masked words. Masked language models have the advantage of
being bi-directional, rather than uni-directional, which means that they view a text from
both the left and the right of the token being predicted.

Automatic Text Summarization (ATS): ATS can be divided into two categories: (1) ex-
tractive summarization and (2) abstractive summarization. The extractive summarization
method attempts to create a summary by selecting essential sentences or phrases from
the source documents. Zhang et al. [15] regarded the extraction of a summary as a latent
variable-inference problem. When predicting an output summary, Liu et al. [16] applied
the concept of structured attention to induce multiple dependent tree representations of
documents. Narayan et al. [17] optimized the objective function to extract an importance
statement and form a summary through reinforcement learning. Nallapati et al. [18]
obtained concise sequences by using a recurrent neural network (RNN) as an encoder.

The abstractive summarization approach considers input documents as an interme-
diate representation, from which an output summary is then generated. It generates new
texts, rather than simply selecting and combining sentences from the source document.
Some encoder–decoder methods [4] have generated sentences using the deep-learning
method RNN. Paulus et al. [19] proposed a deep reinforcement-learning model for abstrac-
tive summarization. Narayan et al. [20] proposed a convolutional neural network and
further conditioned it on topic distributions.

In addition, recent studies [21] have focused on summarization via pre-trained lan-
guage models. Zhang et al. and Liu et al. [22,23] first applied BERT to fine-tune text
summarizations. By using BERT’s word-embedding as input, Wang et al. [24] integrated ex-
tractive and generative networks into a unified model. This enabled the model to learn how
to extract and generate information from the input text in an iterative and adaptive approach.

Inspired by the above research, we abandoned the limitations of a single method and
combined extractive summarization with abstractive summarization in this study.

3. Method
3.1. Problem Definition

The problem of a two-stage legal judgment summarization was defined as follows:
Input: The source document of legal judgment.
Stage One: Extract essential sentences and keywords: Firstly, we introduced a hi-

erarchical sentence-vector-representation method to realize rapid sentence vectorization.
Next, we utilized the BERT + LSTM model to annotate a sequence of sentence vectors to
realize the extraction of key sentences. In addition, we adopted an extractive method based
on a BiLSTM to extract keywords related to professional terms and specific topics in the
judgment text.

Mathematics 2023, 11, 1320 5 of 16

Stage Two: Generate summarization: Firstly, we input the previously extracted key
sentences into the abstractive summary model based on a UNILM. Then, we introduced the
previously extracted keywords into the text-generation model as an attention mechanism
to better integrate these keywords into the final generated summary.

Output: The generated legal judgment summary.
Next, we present the proposed model in detail. Particularly, we discuss the extraction

of key sentences and keywords, the abstractive-summarization model, and the relevant
designs of these two components.

3.2. Extractive Model

To identify the most expressive sentences in the full text, we first split both the source
text and the reference summary into sentences. Then, for each sentence in the summary,
we searched for the sentences with the closest meaning in the complete source text.

Specifically, we divided the text into a linear sequence of sentence units marked as
[x1, x2, ..., xn]. Extractive summarization was defined as a sequence-annotation task. It
provided a label yi ∈ {0, 1} to each sentence xi to indicate whether the summary should
include the sentence. In the next step, we converted the original generative corpus into a
sequence-labeled one. An overview of the extractive method is shown in Figure 3. The
extractive-summarization model was a process, rather than a result, and the extracted
results still had to be further optimized by the abstractive-summarization model. The
principle of the extractive-summarization model was to be comprehensive, that is, to cover
all the information required by the final summary.It was worth noting that extractive
summarization methods also organized the extracted text to streamline the data, but these
methods usually have discouraging performance in terms of text coherence. Therefore, we
used the summary-generation approach to polish the summary.

3.2.1. Hierarchical Sentence Representation

We employed a temporal convolutional model [25] to compute the representation
of each individual sentence in the document, so that sentence coding could be realized
quickly and simultaneously. BERT [26] was applied to the convolutional output to further
capture the long-range semantic dependencies among sentences, and it ensured the context
semantics. Moreover, it enabled a strong representation, denoted as hj, for the j-th sentence
in the document to be learned, and therefore, the contexts of all previous and future
sentences were considered in the same document.

r1 r2 r3 r4

BERT

L
S
T

M

L
S
T

M

L
S
T

M

L
ST

M

h1 h2 h3 h4

y1

y2

y3

y4

Conv

Encoded Sentence Representations

Convolutional Sentence Encoder

E
m

b
e
d

d
ed

 W
o
r
d

 V
e
cto

r
s

0 1 0 1

A
tt

en
ti

o
n

D
is

tr
ib

u
ti

o
n

H
id

d
en

S
ta

te
s

V
o
ca

b
u
la

ry

D
istrib

u
tio

n

Figure 3. The overview of the extractive model. First, we employed a temporal convolutional model
to compute the representation of each individual sentence in the document. Then, we annotated
the sequence of the sentence vectors to indicate whether the extractive summary should contain the
corresponding sentences, in order to realize the extraction of key sentences.

3.2.2. Sentence Selection

For the purpose of selecting the extracted sentences on the basis of the above sentence
representations, we annotated the sequences of the sentence vectors to indicate whether the
extractive summary model should contain the corresponding sentences, in order to realize

Mathematics 2023, 11, 1320 6 of 16

the extraction of key sentences. Chen et al. [27] further proved that the combination of long
short-term memory(LSTM) with a transformer had unique advantages. In this paper, we
employ an LSTM model to annotate the sequences of the sentence vectors. Furthermore,
LSTM introduced a gating mechanism to remove and add information. Additionally, the
gate determined the information that should be removed or updated through a sigmoid
neural network layer, effectively avoiding the problem of long-term dependence on text
processing. The LSTM had three of these gates, including a forget-gate, an input-gate, and
an output-gate.

After the preceding sentence representations, the sentence-embedding s = {s1, s2, . . . , sn}
was obtained as input for the LSTM. At t-time, we assumed that the current input was st and
the output of the previous moment was ht−1. The first step in the LSTM was to determine
which information from the cell state would be discarded by the forget-gate, as shown below:

ft = sigmoid
(

w f [ht−1, st] + b f

)
(1)

where ft is the forget-gate, and w f and b f are the weight and the bias, respectively, of the
forget-gate.

Subsequently, the input-gate determined what new information we would store in the
cell state. The cell-state-update value was obtained from st and ht−1 through an activation
function of tanh. Furthermore, the process of the calculation was as follows:

it = sigmoid(wi[ht−1, st] + bi) (2)

c̃t = tanh(wc[ht−1, st] + bc) (3)

where it is the input-gate, wi and bi are the weight and the bias, respectively, of the input-
gate, c̃t is the cell state-update value, wc and bc are the weight and the bias, respectively, of
the cell state.

In the next step, we combined the above two expressions to create an update of the
cell state ct.

ct = ft ∗ ct−1 + it ∗ c̃t (4)

The output-gate determined the output information. The current output was ob-
tained by filtering the new cell state through the output-gate; the calculation formula was
the following:

ot = sigmoid(wo[ht−1, st] + bo) (5)

ht = ot ∗ tanh(ct) (6)

where ot is the output-gate, wo and bo are the weight and the bias, respectively, of the
output-gate, and ht is the current output.

Eventually, we adopted a sigmoid function to calculate the final prediction score yt of
the input sentence, aiming to determine whether the extractive summary needed to contain
this sentence, as indicated below:

yt = sigmoid
(

w
′
ht + b

′)
(7)

3.2.3. Keywords Extraction

Legal judgment texts usually contain many keywords related to technical terms and
specific topics, which are difficult to interpret. In order to integrate the keyword information
into the summary, we added a keyword-extraction component to obtain the keywords. At
present, the term frequency–inverse document frequency (TF-IDF) method [28] has been
widely used to extract keywords. The TF-IDF method indicated that if a word frequently
appeared in an article but rarely in other articles, we could assume that the word was
important. Although TF-IDF was simple and efficient, it measured the importance of words
only by frequency, without considering the word order or semantics. To overcome this

Mathematics 2023, 11, 1320 7 of 16

problem, we introduced a BiLSTM and an attention mechanism because the BiLSTM could
learn contextual semantic information well, and the attention mechanism could identify
the relevant information in the full text. In this study, we used a seq2seq network [29]
to perform keyword-extraction tasks. An overview of the model is shown in Figure 4.
Specifically, the BiLSTM encoded the input sequence [x1, x2, . . . , xn] into a hidden layer
state [h1, h2, . . . , hn], respectively, where xi is the i-th input token and hi represent the i-th
hidden state. Then, the hidden state sequence [h1, h2, . . . , hn] could be updated by the
attention mechanism and introduced to the decoder LSTM to generate an output sequence
[k1, k2, . . . , kn], respectively. The variable kt is the generated keyword at t time, and it is
according to the kt−1 at the t-1 time, the current hidden state ĥt, and the context vector ct,
as shown below:

kt = f (ĥt, kt−1, ct) (8)

In the attention mechanism, the contribution degree of each hidden state ĥi to the prediction
kt was controlled by the attention weight αt.

ĥt = αt ∗ f (h1, h2, . . . , hn) (9)

where αt is obtained according to the correlation between kt−1 and the hidden layer state at
t time.

O3 O2 O1

h1 h2 h3 h4

LSTM

[end] KeyKeyword word

Semantic
Information

Decoder

Encoder

Attention

Source Text

biLSTM

Figure 4. Keyword-extraction model. We introduced a BiLSTM and an attention mechanism to
perform keyword-extraction tasks.

3.3. Abstractive Model
3.3.1. seq2seq Learning of UNILM

Due to the good performance of the RoBERTa-wwm-ext [30] pre-trained language
model, we chose its parameters to initialize our generation model and used the mask
strategy of the UNILM mask. At the same time, we input the text sequence in the format
of “document + reference summary”. Here, the ”document” was composed of the key
sentences obtained from the model in the first step.

We input data in the format of “[cls] document [sep] reference summary [sep]”,
assuming that the input x = [x1, x2, ..., xn], x was an n-dimensional vector. The model was
composed of multi-layer transformers, assuming that the output of the transformer after
the L layer was expressed as hl , as shown below:

hl = Transformer1

(
hl−1

)
(10)

hl =
[

hL
1 , hL

2 , . . . , hL
n

]
(11)

Mathematics 2023, 11, 1320 8 of 16

In UNILM, the calculation of the attention head Al was similar to that in BERT, except
for introducing the self-attention mask matrix M.

Q = hl−1WQ
l

K = hl−1WK
l

V = hl−1WV
l

(12)

Mij =

{
0 allow to attend
−∞ prevent f rom attending

(13)

Al = Attention(Q, K, V) = softmax

(
QK>√

dk
+ M

)
Vl (14)

where the previous layer’s output hl−1 ∈ R|x|×dh is linearly projected to a triplet of queries,
keys, and values, using parameter matrices WQ

l , WK
l , WV

l ∈ Rdh×dk , respectively, and the
mask matrix M ∈ R|x|×|x| determined whether a pair of tokens could be related to each
other.Different mask matrices M were used to control attention for different contexts. As
shown in (13), tokens in the first sequence (document) could be related to each other, while
tokens in the second sequence (reference summarization) could only be related to the left
tokens. For example, based on a document sequence “x1x2x3” and its reference summary
sequence “x4x5”, the input sequence of the model was “[cls]x1x2x3[sep]x4x5[sep]”. Here,
each token in “[cls]x1x2x3[sep]” could related to each other, but “x4” in “x4x5[sep]” could
only relate to the five tokens on the left.

3.3.2. Generator Network

In order to generate the summary, the model decoder was decoded by a multi-layer
transformer, and the output was connected to a linear classifier (such as the softmax
classifier) to generate the probability distribution of the vocabulary, thereby generating the
summary text. Specifically, we used the “document” sequence instead of the “document
+ reference summary” sequence as the input text. Here, the ”document” was composed
of the key sentences obtained from the first step of the extractive model. Assuming that
the given input was “[cls]x1x2x3[sep]”, we first attached a “[mask]” token at the end of
the sequence.

[cls]x1x2x3[sep][mask] (15)

Then, we adjusted its corresponding attention mask matrix so that the tokens in
“[cls]x1x2x3[sep]” could be related to each other but could not be related to “[mask]”. Further-
more, “[mask]” could be related to all tokens in “[cls]x1x2x3[sep][mask]”. After the sequence
was input into the UNILM model, the representation vectors h[cls],h1,h2,h3,h[sep],h[mask] of
each token were obtained. Then, the representation vector h[mask] made linear changes
and fed them into the sparse softmax function to realize the probability distribution of
the vocabulary:

Pvocab = sparsemax(w
′
(wh[MASK] + b) + b

′
) (16)

where w
′
, w, b

′
, and b are learning parameters.

Since the conventional softmax was prone to over-learning and over-fitting, we chose
the sparse softmax function, sparsemax, to alleviate this problem [31]. The formula was
defined as follows:

sparsemax(z)j =

{ ezi

∑j∈Ωk
ezj , i ∈ Ωk

0 , i /∈ Ωk

(17)

where ΩK represents the subscript set of the first k elements after (z1, z2, . . . , zn) were
arranged from large to small. In other words, when using sparsemax to calculate the
probability, only the probability of the first k elements needed to be retained, and the rest
were directly set to 0.

Mathematics 2023, 11, 1320 9 of 16

We added the generated keyword semantic information vector k as an additional input
for the attention mechanism and modified it, according to (16):

Pvocab = sparsemax(w
′
(wh[MASK] + wkk j + b) + b

′
) (18)

where wk is a learning parameter. By extracting keywords from the legal judgment text, we
could introduce them into the summary-generation model as an attention mechanism in
order to integrate the keyword semantic information into the final generated summary.

3.3.3. Copy Mechanism and Loss function

Copy mechanism: Furthermore, the generation probability Pgen was introduced to
represent the probability of generating words from the vocabulary, and 1−Pgen represented
the probability of generating words from the original text, as shown in Figure 5. The Pgen
was calculated by the sigmoid function, as follows:

Pgen = sigmoid(whH
′
t + wmht−output + wxxt) + b

′′
) (19)

where wh,wm,wx and b
′′

are learning parameters, H
′
t is the context vector, ht−output is the

output of the decoder at time t, and xt is the input of the decoder at the time t. Since Pgen
was obtained, the improved vocabulary probability distribution could be calculated:

P(w) = PgenPvocab(w) +
(
1− pgen

)
∑

i:wi=w
at

i (20)

If w was a word outside the vocabulary, Pvocab(w) = 0 indicated that words could not
be generated from the vocabulary and would need to be copied from the source document.
The expression ∑i:wi=w at

i represented the probability of copying from the source document,
according to the distribution of attention.

L
S
T

M

L
S
T

M

L
S
T

M

L
ST

M

E
m

b
e
d

d
ed

 W
o
r
d

 V
e
cto

r
s

UNILM

[CLS] [MASK][SEP]

×Pgcn×(1-Pgcn)

A
tt

en
ti

o
n

D
is

tr
ib

u
ti

o
n

H
id

d
en

S
ta

te
s

Context

Vector

Pgcn

SummarizationDocument

V
o
ca

b
u
la

ry

D
istrib

u
tio

n

k1 ... km

I1 I2 I3

K

Keyword Information

Figure 5. The overall of summary-generation model. Our model was based on a unified pre-training
language model. We introduced keywords into the text-generation model as an attention mechanism.
Furthermore, we introduced sparse softmax and a copy mechanism into our model to avoid over-
fitting and any factual deviation in the generated summary.

Loss function: In order to avoid any duplication of the results when generating
the summary, we added a coverage loss to the original loss in the model. A coverage
vector ct obtained by summing the attention weights of the previous time steps was

Mathematics 2023, 11, 1320 10 of 16

calculated. The attention distribution of the original text at time t was affected by the
previous attention distribution, thus avoiding excessive repeated attention on the same
position and preventing the repetition of the generated results.

ct =
t−1

∑
i=0

ai (21)

covlosst = ∑
i

min
(
at

i , ct
i
)

(22)

where ct
i is the coverage vector at time t, at

i represents the attention weight at time t, and the
final loss of each step was obtained by adding the coverage loss to the original loss function:

losst = − log P(w∗t) + λ ∑
i

min
(
at

i , ct
i
)

(23)

4. Experimental Results

In this section, we first discuss the datasets used in this paper and the baselines in the
existing text summarization research. Then, we describe the corresponding experiments
on the datasets. Finally, we detail the ablation experiments that verified the effectiveness
of every component.

4.1. Datasets

Two datasets were used in this study for comparison. The first experimental dataset
was sourced from the legal summarization competition, the China Legal Research Cup
CAIL2020 (The CAIL2020 data used to support the findings of this study are available
at https://www.kaggle.com/datasets/weipengfei/sfzy-small (accessed on 26 January
2023)).These data were provided and notated by the Beijing Judicial Big-Data Institute,
including 9848 civil judgments in the first instance. The judgment document was divided
into several sentences in advance, each sentence was annotated with a label of importance,
and the corresponding reference summary was provided. The second was the Legal Case
Reports Dataset (LCRD) [32], which contained Australian legal cases from the Federal
Court of Australia (FCA). There were 4000 judgment texts with corresponding reference
summaries in this dataset. The above two datasets were both long-text summary datasets.
Before summary generation, we pre-processed the texts and reference abstracts in the
datasets, including text de-noising, word segmentation, sentence segmentation, etc.

Due to the uncertainty and randomness of the datasets, splitting the datasets into
training and testing sets only once could lead to a certain degree of bias in the evaluation
results of the model. In order to solve this problem, we adopted a k-fold cross-validation
method and randomly divided the datasets multiple times when training and evaluating
the model. The datasets were divided into different training sets and testing sets each time
to evaluate the stability and generalization abilities of the model. Specifically, we chose
k = 5 and divided the labeled data into five parts, four of which were used to train the
extraction model. For each round of cross-validation, we randomly selected one as the
testing set and the remaining four as the training set. We used the training set to train the
model and then evaluated the model’s performance on the testing set. For each of the five
rounds, we selected a different testing set each time, and then we finally took the average
of the five performance indicators as the model’s performance index.

4.2. Implementation Details
4.2.1. Justification for the Applied Techniques

In this study, we applied various techniques to develop legal judgment summarization
models, and we justified each technique in terms of its applicability to the corresponding
task. First, we used a pre-trained language model based on the transformer architecture,
which has shown promising results in various natural-language-processing tasks. Using

https://www.kaggle.com/datasets/weipengfei/sfzy-small

Mathematics 2023, 11, 1320 11 of 16

the transformer in legal judgment summarization was justified because it could capture
the domain-specific language and the structures of legal texts, which could be challenging
for other general language models. Second, we adopted a two-stage summary-generation
method. Our model extracted key sentences using an extractive method and then fed
them into an abstractive model to generate text summaries. This technique was reasonable
because it could effectively solve issues concerning lengthy texts and scattered important
information. Third, we introduced technical terms and topic-specific keywords from legal
judgment texts as an attention mechanism in the summarization model. It was reasonable
because the attention mechanism provided the model with domain-specific knowledge to
improve model performance on summarization tasks.

In summary, we carefully chose the techniques for our model of legal judgment
summarization. Transformer architecture, two-stage summarization methods, and attention
mechanisms were justified based on their contributions towards improving the performance
and quality of the generated summaries.

4.2.2. Parameter Setting

The UNILM model was constructed by using the bert4keras8 toolkit [33]. The number
of transformer layers of the UNILM was set at 12, the hidden vector dimension was set at
768, num_training_steps was set at 10,000, and the epochs were set at 55. The learning rate
of the Adam optimizer was 3× 10−5, and the linear decay function of the learning rate was
used to ensure the learning rate decayed linearly, from the first step to the last step, at 50%
of the initial learning rate. In the decoding stage, we used a beam search to generate the
text summaries, and the beam size was set at 5.

4.3. Baselines

We compared the performance of our model with three types of text-summarization
models: an extractive model, an abstractive model, and a two-stage model. We chose these
methods as the baselines because they have been commonly used for text summarization.
All comparison models are described in detail, as follows.

• Lead-3: This model is an extractive summarization that selects the document’s first
three sentences as the text summary.

• TextRank: This model was proposed by Mihalcea et al. [34]. It uses the PageRank
algorithm to determine significant sentences and then rank and reorganize them.

• SummaRuNNer: This model was proposed by Nallapati et al. [18]. It uses a recurrent
neural network to capture the final subset of the source document.

• Pointer-Generator: This model was proposed by See et al. [5]. Using a pointer mecha-
nism, it copies the words directly from the source document into the generated text.

• BERTSumABs: This model was proposed by Liu and Lapata et al. [23]. It learns the general
language representation through pre-training and uses it for text summary generation.

• KESG: This model proposes a two-stage task and uses keyword extraction for text
summarization to achieve the best performance [29].

4.4. Metrics

ROUGE (recall-oriented understudy for gisting evaluation) [35] was a set of metrics
for evaluating automatic summarization and machine translation. In general, ROUGE
evaluated a summary based on the co-occurrence of information in n-grams in the sum-
mary and was an evaluation method for n-gram recall. ROUGE-N was an n-gram recall,
computed as follows:

ROUGE− N =

∑
s∈re f

∑
gramn∈S

Countmatch(gramn)

∑
s∈re f

∑
gramn∈S

Count(gramn)
(24)

Mathematics 2023, 11, 1320 12 of 16

The denominator is the number of n-grams in the artificial summary (that is, the
standard summary), and the numerator is the number of n-grams that co-occur (coincide)
between the artificial summary and the machine-generated automatic summary. ROUGE
was very similar to the definition of recall metrics. We chose ROUGE-1, ROUGE-2, and
ROUGE-L (the indicator following “ROUGE” expressed the longest common sub-sequence
between the two text units) as metrics in this paper.

4.5. Results

In this subsection, we describe the series of experiments conducted to investigate the
performance of our proposed model.The details are presented in Table 1, which shows the
automatic evaluation results of our model and the comparison models on the datasets. The
first three models in the table are the comparison baselines of the extractive-summarization
models. The following two are the comparison baselines of the abstractive-summarization
models. KESG [29] is the state-of-the-art Chinese two-stage text-summarization model; the
last is our model. Based on our results, we could draw several general conclusions:

• The extractive method did not exhibit good performance on the legal dataset because
the legal documents had complex text structures and the relevant elements had been
scattered throughout the text. Furthermore, while the abstractive model performed
better than the extractive model, it required a very long time to train.

• As compared to the traditional model, the performance of the model based on pre-
training was better under different evaluation criteria, indicating that the pre-trained
language model could capture key information and summarize texts effectively.

• As compared to the extractive and abstractive summarization models, the two-stage
model had a higher score in the ROUGE index. This suggested that the two-stage sum-
marization model could fully use the advantages of the above two models, prioritized
the key information of the source text, and improved the accuracy and readability of
the generated text.

• Our framework achieved the best performance, as compared to all the baselines. Our
method realized a 0.19–0.41 improvement over the best results on the two datasets.

Table 1. Comparison results on two datasets. We compared the performance of our model with three
types of text-summarization models.

Model
CAIL2020 LCRD

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Lead-3 18.48 5.06 11.94 17.36 5.13 10.58
TestRank 20.57 5.15 13.53 20.24 5.62 13.06

SummaRuNNer 22.55 6.25 15.64 21.57 6.19 14.83

Pointer-Generator 38.37 21.09 30.26 37.59 20.14 29.56
BERTSumABs 43.23 26.94 35.15 42.02 26.07 34.56

KESG 43.51 26.91 35.21 42.86 26.10 34.63

Our Model 43.76 27.11 35.62 43.15 26.32 34.95

In summary, the experiments verified the superiority of our approach for text summariza-
tion. However, the distinctive effect of each individual mechanism had to be further clarified.
To this end, we conducted ablation experiments, as described in the next subsection.

4.6. Ablation Experiments

To prove the validity of each component, we removed certain modules from the
framework separately and observed the performance. As discussed, our framework had
two components (the extractive model and the abstractive model). We listed the baselines
and compared their performance, as follows:

Mathematics 2023, 11, 1320 13 of 16

• Our-EM: This variant removed the extractive summarization component and used
only keyword extraction.

• Our-RWE: This variant did not use the parameters of RoBERTa-wwm-ext to initialize
our generation model and, instead, used the parameters of the basic BERT to initialize
the model.

• Our-SS: This variant removed the sparse softmax function and used the traditional
softmax function.

• Our-KE: This variant removed the keyword-extraction method.
• Our-CM: This variant removed the copy mechanism.

The performance of all ablation variants is displayed in Table 2, which revealed that
all our proposed components achieved continuous progress in terms of ROUGE-1, ROUGE-
2, and ROUGE-L. At the same time, the results showed that the integrated framework
significantly outperformed all the alternative ablative variants on all three metrics. This
verified the effectiveness of our complete framework. Specifically, we had the following
findings based on the results of the ablation experiments:

• The extractive component had important significance in our summarization task and
provided significant improvement for our model. It extracted the key sentences that
were most relevant to the reference summary from the original text and provided
complete contextual text information for the generation model.

• The sparse softmax component improved our model by 1–2%. Since our model used a
pre-trained model, the application of the sparse softmax prevented over-fitting and
enhanced the interpretability.

• Although the keyword extraction component had little impact on the improvement of
our model, it introduced the keyword information, such as technical terms and specific
topics in the legal judgment text, into the summary-generation model. Moreover, our
model did not significantly regress if the keyword extraction was ablated.

• The copy mechanism improved our model by 0.5–1%. Although the improved score
was not very high, it ensured the fidelity between the summary and the original text
and mitigated professional errors. Therefore, it was quite necessary for practical use.

Table 2. Results of ablation experiments on two datasets. We removed specific modules from the
framework separately and compared the performance.

Model
CAIL2020 LCRD

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

Our-EX 40.52 23.95 32.27 40.23 23.54 32.68
Our-RWE 41.03 24.88 33.26 42.36 25.93 34.23

Our-SS 43.03 26.65 35.04 42.76 26.15 34.78
Our-KE 43.66 27.05 35.53 43.06 26.28 34.81
Our-CM 43.36 26.98 35.34 42.93 26.01 34.62

Our Model 43.76 27.11 35.62 43.15 26.32 34.95

Through the ablation experiments, we found that some methods improved the model
significantly while others contributed only minor improvements to the model’s performance.

In general, our integrated model achieved the best performance, as compared to all
the baselines, indicating that our model integrated these components well.

4.7. Impact of Hyper-Parameters

In this subsection, we investigate how different hyper-parameters affected the pro-
posed framework. Figure 6 shows the results when we selected the hyper-parameter k = 10
of sparse softmax, as this model obtained the best performance on the CAIL2020 and LCRD
datasets. At the same time, Figure 7 shows that the number of keywords that also had an
impact on the final performance. For the CAIL2020 dataset, the model performed best when

Mathematics 2023, 11, 1320 14 of 16

the number of keywords was 15. For the LCRD dataset, when the number of keywords
was between 15 and 20, the model achieved the best performance.

4 6 8 10 12 14
K sparse softmax

30
32
34
36
38
40
42

R
ou

ge
 sc

or
e

CAIL2020

ROUGE-1
ROUGE-2
ROUGE-L

4 6 8 10 12 14
K sparse softmax

30
32
34
36
38
40
42

R
ou

ge
 sc

or
e

LCRD

ROUGE-1
ROUGE-2
ROUGE-L

Figure 6. Experimental results for k sparse softmax.

5 10 15 20 25 30
Number of keywords

30
32
34
36
38
40
42

R
ou

ge
 sc

or
e

ROUGE-1
ROUGE-2
ROUGE-L

5 10 15 20 25 30
Number of keywords

30
32
34
36
38
40
42

R
ou

ge
 sc

or
e

ROUGE-1
ROUGE-2
ROUGE-L

CAIL2020 LCRD

Figure 7. Experimental results for the number of keywords.

4.8. Uncertainty Analysis

This research aimed to develop a legal judgment summary model to summarize a
given legal judgment’s critical points effectively. Although our model achieved encouraging
results on several evaluation indicators, several uncertainties had to be considered: Firstly,
the uncertainty of the training data. Although we used a large corpus of legal judgments to
train our model, the representativeness and relevance of these judgments could vary, and
they may not have fully covered the range of data required for legal judgment summaries,
which could also have affected the performance of our model. Secondly, the uncertainty
associated with the model. For different types of legal judgments, our model may not
have been able to capture all the nuances of legal judgments effectively or could have been
biased towards certain types of legal judgments.

To reduce these uncertainties in future research, we plan to explore the quality and
relevance of datasets further and evaluate the effectiveness of training with more diverse
and representative datasets. In addition, we plan to explore alternative modeling ap-
proaches that could better capture the nuances of legal judgments and evaluate the impact
of different modeling choices on summarization performance.

4.9. Complexity Analysis

The proposed legal judgment summarization model was based on the advanced
transformer architecture proven effective for natural-language-processing tasks. However,
such architectures are relatively complex and require significant computing resources to be
trained and used effectively. We analyzed the primary sources of model complexity: first,
the size of the model. Our model had to learn a large number of parameters during training,
which could lead to long training times and high memory requirements. To address this
complexity, we explored the use of computationally efficient techniques in our model,
such as using sparse attention or pruning techniques to reduce the number of parameters.
The second source of model complexity was the vast number of different legal domains.
The model had to be trained on large amounts of labeled data to perform well, but not
all of the data pertained to all legal judgment documents. Therefore, the model required

Mathematics 2023, 11, 1320 15 of 16

extensive hyper-parameter tuning for different legal domains. To address this, we plan to
explore techniques such as transfer learning. Third, the complexity of model evaluation
was another source of model complexity. Our model required massive computing resources
to train, and evaluating its performance on large datasets was time-consuming. To address
this complexity, we plan to explore more efficient evaluation techniques.

In conclusion, while our legal judgment summarization model showed promising
results, its complexity posed challenges for practical deployment. By exploring methods
such as model compression, transfer learning, and optimized evaluation, we aim to reduce
this complexity and enable more efficient and effective legal judgment summarization in
the future.

5. Conclusions

In this study, we proposed a two-stage legal judgment summarization model that was
used to comprehensively capture important and relevant information from lengthy legal
texts. We treated legal judgments as a sequence of sentences and selected key sentence sets
from the full texts as the input corpus for the abstraction summarization. We extracted
keywords related to professional terms and specific topics in the judgment texts and
introduced them into the summary-generation model as an attention mechanism so that
these keywords could be integrated into the final generated summary. We confirmed the
validity of our model on a variety of datasets and conducted a comprehensive evaluation
to demonstrate the importance of each component of the presented model.

Author Contributions: Funding acquisition, L.S.; Methodology, Y.H. and L.S.; Resources, Y.H., L.S.,
C.H. and J.G.; Writing—original draft, Y.H.; Writing—review and editing, Y.H., L.S., C.H. and J.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (No.
61873131, No. 61872194, No. 61902237), and the “Sailing Program” of Young Science and Technology
Talents, supported by Shanghai Science and Technology Commission (19YF1418200).

Data Availability Statement: Restrictions apply to the availability of part of the data. Two datasets
were used in this study. One was obtained from China Legal Research Cup and is available from
https://www.kaggle.com/datasets/weipengfei/sfzy-small (accessed on 26 January 2023) with the
permission of Pengfei Wei. Another is available in a publicly accessible repository that does not issue
any DOI. This data can be found here: https://tianchi.aliyun.com/dataset/88798 (accessed on 24
January 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saravanan, M.; Ravindran, B.; Raman, S. Improving legal document summarization using graphical models. Front. Artif. Intell.

Appl. 2006, 152, 51.
2. Saravanan, M.; Ravindran, B.; Raman, S. Automatic identification of rhetorical roles using conditional random fields for legal

document summarization. In Proceedings of the Third International Joint Conference on Natural Language Processing: Volume-I,
Hyderabad, India, 7–12 January 2008 .

3. Erkan, G.; Radev, D.R. Lexrank: Graph-based lexical centrality as salience in text summarization. J. Artif. Intell. Res. 2004, 22,
457–479. [CrossRef]

4. Rush, A.M.; Chopra, S.; Weston, J. A neural attention model for abstractive sentence summarization. arXiv 2015, arXiv:1509.00685.
5. See, A.; Liu, P.J.; Manning, C.D. Get To The Point: Summarization with Pointer-Generator Networks. arXiv 2017, arXiv:1704.04368.
6. Xu, H.; Savelka, J.; Ashley, K.D. Accounting for sentence position and legal domain sentence embedding in learning to classify

case sentences. In Legal Knowledge and Information Systems; IOS Press: Amsterdam, The Netherlands, 2021; pp. 33–42.
7. Cohan, A.; Dernoncourt, F.; Kim, D.S.; Bui, T.; Kim, S.; Chang, W.; Goharian, N. A discourse-aware attention model for abstractive

summarization of long documents. arXiv 2018, arXiv:1804.05685.
8. de Vargas Feijo, D.; Moreira, V.P. Improving abstractive summarization of legal rulings through textual entailment. Artif. Intell.

Law 2021, 31, 91–113 . [CrossRef]
9. Turtle, H. Text retrieval in the legal world. Artif. Intell. Law 1995, 3, 5–54. [CrossRef]

https://www.kaggle.com/datasets/weipengfei/sfzy-small
https://tianchi.aliyun.com/dataset/88798
http://doi.org/10.1613/jair.1523
http://dx.doi.org/10.1007/s10506-021-09305-4
http://dx.doi.org/10.1007/BF00877694

Mathematics 2023, 11, 1320 16 of 16

10. Dong, L.; Yang, N.; Wang, W.; Wei, F.; Liu, X.; Wang, Y.; Gao, J.; Zhou, M.; Hon, H.W. Unified language model pre-training
for natural language understanding and generation. In Proceedings of the 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019 ; Volume 32.

11. Ethayarajh, K. How contextual are contextualized word representations? comparing the geometry of BERT, ELMo, and GPT-2
embeddings. arXiv 2019, arXiv:1909.00512.

12. Tenney, I.; Das, D.; Pavlick, E. BERT rediscovers the classical NLP pipeline. arXiv 2019, arXiv:1905.05950.
13. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly

optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.
14. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language

representations. arXiv 2019, arXiv:1909.11942.
15. Zhang, X.; Lapata, M.; Wei, F.; Zhou, M. Neural latent extractive document summarization. arXiv 2018, arXiv:1808.07187.
16. Liu, Y.; Titov, I.; Lapata, M. Single document summarization as tree induction. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Minneapolis, MN, USA, 2–7 June 2019; pp. 1745–1755.

17. Narayan, S.; Cohen, S.B.; Lapata, M. Ranking sentences for extractive summarization with reinforcement learning. arXiv 2018,
arXiv:1802.08636.

18. Nallapati, R.; Zhai, F.; Zhou, B. Summarunner: A recurrent neural network based sequence model for extractive summarization of
documents. In Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

19. Paulus, R.; Xiong, C.; Socher, R. A deep reinforced model for abstractive summarization. arXiv 2017, arXiv:1705.04304.
20. Narayan, S.; Cohen, S.B.; Lapata, M. Do not give me the details, just the summary! topic-aware convolutional neural networks

for extreme summarization. arXiv 2018, arXiv:1808.08745.
21. Zhang, X.; Wei, F.; Zhou, M. HIBERT: Document level pre-training of hierarchical bidirectional transformers for document

summarization. arXiv 2019, arXiv:1905.06566.
22. Zhang, H.; Xu, J.; Wang, J. Pretraining-based natural language generation for text summarization. arXiv 2019, arXiv:1902.09243.
23. Liu, Y.; Lapata, M. Text summarization with pretrained encoders. arXiv 2019, arXiv:1908.08345.
24. Wang, Q.; Liu, P.; Zhu, Z.; Yin, H.; Zhang, Q.; Zhang, L. A text abstraction summary model based on BERT word embedding and

reinforcement learning. Appl. Sci. 2019, 9, 4701. [CrossRef]
25. Kim, Y. Convolutional Neural Networks for Sentence Classification. arXiv 2014, arXiv:1408.5882.
26. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the NAACL-HLT 2019, Minneapolis, MN, USA, 2–7 June 2018.
27. Chen, M.X.; Firat, O.; Bapna, A.; Johnson, M.; Macherey, W.; Foster, G.; Jones, L.; Parmar, N.; Schuster, M.; Chen, Z.; et al. The best

of both worlds: Combining recent advances in neural machine translation. arXiv 2018, arXiv:1804.09849.
28. Joachims, T. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization; Technical report; Carnegie-Mellon

University Pittsburgh pa Department of Computer Science: Pittsburgh, PA, USA, 1996.
29. Deng, Z.; Ma, F.; Lan, R.; Huang, W.; Luo, X. A two-stage Chinese text summarization algorithm using keyword information and

adversarial learning. Neurocomputing 2021, 425, 117–126. [CrossRef]
30. Cui, Y.; Che, W.; Liu, T.; Qin, B.; Yang, Z. Pre-training with whole word masking for chinese bert. IEEE/ACM Trans. Audio, Speech,

Lang. Process. 2021, 29, 3504–3514. [CrossRef]
31. Su, J. SPACES: An Extraction-Generation Summarization In Long Text (The summary of the “Legal AI Challenge”). 2021.

Available online: https://spaces.ac.cn/archives/8046 (accessed 1 January 2021). (In Chinese)
32. Galgani, F.; Compton, P.; Hoffmann, A. Citation Based Summarisation of Legal Texts. In Proceedings of the PRICAI 2012,

Kuching, Malaysia, 3–7 September 2012. Springer: Berlin/Heidelberg, Germany, 2012; Volume LNCS 7458, pp. 40–52.
33. Su, J. bert4keras. 2020. Available online: https://bert4keras.spaces.ac.cn (accessed on 25 January 2023).
34. Mihalcea, R.; Tarau, P. Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural

Language Processing, Barcelona, Spain, 25–29 October 2004; pp. 404–411.
35. Lin, C.Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out: Proceedings of the

ACL-04 Workshop; Association for Computational Linguistics: Barcelona, Spain, 2004; pp. 74–81.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app9214701
http://dx.doi.org/10.1016/j.neucom.2020.02.102
http://dx.doi.org/10.1109/TASLP.2021.3124365
https://spaces.ac.cn/archives/8046
https://bert4keras.spaces.ac.cn

	Introduction
	Related Work
	Method
	Problem Definition
	Extractive Model
	Hierarchical Sentence Representation
	Sentence Selection
	Keywords Extraction

	Abstractive Model
	seq2seq Learning of UNILM
	Generator Network
	Copy Mechanism and Loss function

	Experimental Results
	Datasets
	Implementation Details
	Justification for the Applied Techniques
	Parameter Setting

	Baselines
	Metrics
	Results
	Ablation Experiments
	Impact of Hyper-Parameters
	Uncertainty Analysis
	Complexity Analysis

	Conclusions
	References

