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Abstract: Large-volume waste products, such as refrigerators and automobiles, not only consume
resources but also pollute the environment easily. A two-sided disassembly line is the most effec-
tive method to deal with large-volume waste products. How to reduce disassembly costs while
increasing profit has emerged as an important and challenging research topic. Existing studies ignore
the diversity of waste products as well as uncertain factors such as corrosion and deformation of
parts, which is inconsistent with the actual disassembly scenario. In this paper, a partial destructive
mode is introduced into the mixed-model two-sided disassembly line balancing problem, and the
mathematical model of the problem is established. The model seeks to comprehensively optimize
the number of workstations, the smoothness index, and the profit. In order to obtain a high-quality
disassembly scheme, an improved non-dominated sorting genetic algorithm-II (NSGA-II) is pro-
posed. The proposed model and algorithm are then applied to an automobile disassembly line as an
engineering illustration. The disassembly scheme analysis demonstrates that the partial destructive
mode can raise the profit of a mixed-model two-sided disassembly line. This research has significant
application potential in the recycling of large-volume products.

Keywords: multi-objective; mixed-model; two-sided; disassembly line balancing; partial destructive
mode

MSC: 90B30

1. Introduction

The lifecycle of products is continually getting shorter due to the quick development
of new technology and advances in science. Many products are quickly phased out due
to outdated functions, or scrapped, leading to the generation of more and more waste [1].
Remanufacturing is the manufacturing of waste products as raw materials, which can
effectively conserve energy and resources and significantly lowers production costs. Dis-
assembly is the first and mandatory step of remanufacturing; it plays a significant role in
recycling of resources [2–4].

Paced assembly lines are increasingly being used by recycling companies instead of
the fixed disassembly position layout. They have a great advantage in efficiency while
dealing with a significant volume of waste products. In the process of disassembly, the
priorities among parts must be taken into consideration and the toxic residues must be
removed. How to rationally assign the tasks to the stations on the paced line to achieve
the optimal goals under these constraints is called the disassembly line balancing problem
(DLBP), which was first proposed by Gupta and Gungor [5] and has garnered considerable
interest from experts and scholars from related fields.

According to the different objectives and conditions, DLBPs mainly fall into two major
types. As addressed in our study, the type of DLBP that aims to minimize the number
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of workstations for a given cycle time is called DLBP-I. DLBP- II has the objective of
minimizing the cycle time with a fixed number of workstations. The majority of DLBP
research is focused on Type-I, and based on this, the optimization aims are expanded
to include additional factors to make it more practical for disassembly businesses. The
following are some of the most commonly considered objectives: energy consumption [6,7],
workload smoothness index [8], number of workers [9], disassembly profit [7], and line
efficiency [10].

Complete disassembly necessitates the removal of every part, whereas partial dis-
assembly only necessitates the removal of required and hazardous parts, leaving the
remaining parts intact [11]. It is obvious that for disassembling businesses, the partial
disassembly mode is more suited to lowering costs and raising productivity and profits.
In addition to this, unlike assembly lines, disassembly lines are facing uncertainty factors,
such as corrosion and deformation of the connectors, which makes it difficult for each part
to be removed conventionally [12,13]. At the same time, the conventional disassembly
mode is not suitable for the disassembling of low-value and long task time parts. Pointing
to this condition, a partial destructive disassembly mode is considered in this article [7]. In
this mode, the major parts of the waste products are conventionally disassembled, and the
rest of the parts are destructively disassembled or discarded under cost considerations.

Single-model disassembly lines are designed to produce high volumes of standardized
homogeneous products, making them unsuitable for customer demand with a wide range
of products. Firms tend to add a new disassembly line for new waste product during the
recycling process. This strategy has drawbacks such as higher disassembly costs, wasted
layout space, and decreased disassembly efficiency. A more cost-effective alternative for the
disassembly of waste products with comparable assembly structures is to achieve mixed
disassembly of these products on the same disassembly line [14]. When disassembling
on two-sided lines, the disassembly tasks could be distinct because of variations in part
designs, or the disassembly of the same part might result in different operating times
and value because of variations in waste products’ quality [15]. There are few studies on
the mixed model two-sided disassembling line problem, and the existing studies lack the
consideration of the uncertainty of the product state and how to maximize the disassembly
revenue through partial destructive disassembly.

It was proved that DLBP is an NP-complete problem [16]. Since the problem was
proposed, various methods have been developed to solve it. Exact methods primarily
use integer programming and dynamic programming to solve the DLBP in solvers, such
as CPLEX, LINGO, and GUROBI [17,18]. With increasing DLBP scale, exact methods are
unable to provide feasible disassembly solutions in a reasonable time, so heuristic and
metaheuristic methods are proposed [19]. For heuristics, the AHP with PROMETHEE [20]
and a greedy/2-opt algorithms [21] are mainly applied. For meta-heuristics, this includes
traditional algorithms like genetic, simulated annealing, ant colony, artificial bee colony,
etc., [22–24] and recently, other algorithms have been proposed, such as gravitational
search, gray wolf, migrating birds optimization, etc. [25,26]. According to the findings,
meta-heuristics are more computationally efficient than the other two types of approaches,
and they can lead to satisfactory answers [27].

Although the existing literature has made great progress in the research of DLBP,
there are still gaps in the following aspects: Above all, the current research on the mixed-
model two-sided disassembly of large-volume waste products did not take into account the
partial destructive mode and the tool changes during the disassembly process. Secondly,
existing studies only focus on single objectives such as profit maximization or workstation
minimization as optimization goals, without comprehensive consideration of various needs
of enterprises. In the end, there is a lack of a feasible case to provide research for this type
of problem.

In view of the shortcomings of the current research, this paper takes minimizing the
number of workstations, minimizing the smoothness index, and maximizing the profit as
the objectives, and studies the mixed-model two-sided disassembly line balancing problem



Mathematics 2023, 11, 1299 3 of 17

suitable for large-volume waste products disassembling in the partial destructive mode.
The main contributions can be listed as follows. Firstly, a new multi-objective mathematical
model is developed for solving PD-MTDLBP. Secondly, an improved NSGA-II algorithm
is proposed for multi-objective optimisation of PD-MTDLBP. Finally, a multi-model case
transformed from a real disassembly scenario is provided.

The remainder of this paper is structured as follows. In Section 2, the partial destructive
mixed-model two-sided disassembly line balancing problem (PD-MTDLBP) is described,
and the MIP formulation of PD-MTDLBP is presented. In Section 3, the proposed approach
for solving PD-MTDLBP is given in detail. In Section 4, a computational example to validate
the performance of the proposed model and algorithm are given. Conclusions are then
drawn in the final section, along with suggestions for further research avenues.

2. Problem Statement
2.1. Problem Description

In the arrangement of a two-sided disassembly line, the workstations are symmetrically
positioned along both sides of the conveyor. The stations on the left and right sides refer to
one another as a companion station. Together, they form a mated station. Each workstation
has a corresponding operator and disassembly tools [28]. The disassembly task is subject
to the disassembly direction constraint on the two-sided disassembly line, which can be
divided into three types: left type (L), right type (R), and either type (E). Each type of task
is only allowed to be disassembled in its corresponding direction.

A two-sided disassembly line is referred to as a mixed-model two-sided disassembly
line if it is used to disassemble multiple waste products with similar structural charac-
teristics in a mixed flow [29]. Each waste product has a task disassembly precedence
relationship that can be combined to create a joint disassembly precedence diagram.

Generally speaking, destructive disassembly can increase the efficiency of disassembly,
thereby lowering energy consumption and disassembly costs, but it can also make parts less
valuable. Hence, parts that are not in high demand or not hazardous can be disassembled
either conventionally or destructively. High-demand and hazardous parts, on the other
hand, must be disassembled conventionally.

2.2. Mathematical Model

The mathematical model for PD-MTDLBP is as follows, and the parameters and
variables required by the model are as shown in Appendix A.

min f1 = ∑
s∈S

∑
k=1,2

Wsk (1)

min f2 =

√
∑
s∈S

∑
k=1,2

(Tsk −max{Tsk})2/ ∑
s∈S

∑
k=1,2

Wsk (2)

max f3 = ∑
i∈I

∑
e=1,2

xivie − ∑
m∈M

∑
i∈I

∑
s∈S

∑
k=1,2

∑
e=1,2

(xiskcie + xisktm
ie (cs + hich))

− ∑
s∈S

∑
k=1,2

∑
q∈Q

∑
i∈I

∑
j∈I

xiskqxjsk(q+1)zijttcs − |S|c f
(3)

s.t.
xi = 1, ∀i ∈ {i|hm

i + dm
i ≥ 1} (4)

xi ≤ 1, ∀i ∈ {i|hm
i + dm

i = 0} (5)

xj = 1, ∀Pij = 1, xi = 1 (6)

xiei = 1, ∀i ∈ {i|hm
i + dm

i ≥ 1} (7)

ei ≤ 1, ∀i ∈ {i|(hm
i + dm

i = 0) ∧ (xi = 1)} (8)
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∑
s∈S

∑
k=1,2

xisk = 1, ∀i ∈ {i|xi = 1} (9)

∑
m∈M

∑
i∈I

∑
e=1,2

xisktm
ie + ∑

k=1,2
∑

q∈Q
∑
i∈I

∑
j∈I

xiskqxjsk(q+1)z
t
ijtt ≤ CT, ∀s ∈ S, k ∈ {1, 2} (10)

∑
s′∈S

∑
k∈K(j)

s′xjs′k ≤ ∑
s∈S

∑
k∈K(i)

sxisk, ∀Pij = 1, xixj = 1 (11)

∑
i∈I

yibstm
ie ≥ ∑

j∈I
yjastm

je + ∑
k∈K(a)

xasktm
ae , ∀Pba = 1, m ∈ M, s ∈ S, xbxa = 1 (12)

∑
k=1,2

xisk + ∑
k=1,2

xjsk ≤ 1 +
(
yijs + yjis

)
, ∀ij ∈ I, s ∈ S (13)

∑
i∈I

xisk ≤ nWsk, ∀s ∈ S, k = 1, 2 (14)

∑
k=1,2

Wsk − 2Gs − Fs = 0, ∀s ∈ S (15)

Gs ≤ Gs−1, ∀s ∈ {2, . . . , |S|} (16)

In the objective functions, the number of workstations is minimized by Equation (1).
Workloads on of the disassembly line are smoothed by Equation (2). Disassembly profit is
maximized by Equation (3) [30]. In the constraints, Equations (4) and (5) represents that
the parts that are hazardous or demanded must be disassembled; the rest of the parts are
disassembled randomly [7]. All of a task’s immediate predecessors must be completed in
order for it to be performed, as shown in Equation (6). Equations (7) and (8) indicate that the
parts that are hazardous or demanded must be disassembled in conventional mode, whilst
others can be disassembled in destructive or conventional mode. Equation (9) denotes
that the parts selected for disassembly must be assigned to a workstation. Equation (10)
represents the cycle time constraint. For the whole disassembly line, the mated-station index
of the immediate predecessor must not be greater than that of the immediate successor,
as shown in Equation (11). Equation (12) represents the precedence constraint of tasks
within the same workstation. Equation (13) represents the position constraint within the
station, which defines the relative position between two tasks successively assigned to the
same workstation. Equation (14) is the disassembly station and disassembly task constraint,
so that the workstation is opened after the disassembly task is assigned. Equation (15)
indicates that the total number of workstations is equal to the sum of the mated stations
and companion stations [31]. Formula (16) indicates that the mated stations are started one
by one.

3. The Proposed Method

For the purpose of solving multi-objective optimisation problems (MOP), meta-heuristic
algorithms have been repeatedly shown to be very efficient. In this study, the non-
dominated sorting genetic algorithm-II (NSGA-II) is improved and applied to address
the proposed PD-MTDLBP. The NSGA-II algorithm is a Pareto-based approach, and its
optimal solution set is essentially the non-inferior solution to the MOP. The NSGA algo-
rithm is improved from the following aspects. Based on the multi-chromosomes encoding
method proposed by Wang [7] et al., a decoding method suitable for PD-DLBP was con-
structed. Two processes, two-point crossover and single-point mutation, suitable for
multi-chromosomes operations, are applied to generate new populations. The NSGA-II
flowchart is depicted in Figure 1, and the detailed processes are given below.
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3.1. Encoding

Encoding, also known as the process of coming up with a workable disassembly
task sequence, is the first and most important step in solving the PD-MTDLBP problem.
Three integer vectors are employed for the encoding of the PD-MTDLBP based on the
disassembly precedence matrix: the task sequence vector (TS), task decision vector (TD),
and task mode vector (TM). Each vector is a one-dimensional array with Nt elements.
The TS designates the order in which the tasks of the mix-model are carried out on the
two-sided disassembly line.

The TD determines whether the tasks in the TS participate in the disassembly process,
and its encoding process should meet Equations (4)–(6). The TM determines which mode
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the tasks involved in the disassembly should adopt. Its encoding process needs to satisfy
Equations (7) and (8). Taking Figure 2, as an example, assuming that the hazard index of
tasks 4 and 6 is 1, and is 0 for the others; and the demand index of task 2 and 11 is 1, and
is 0 for the others. The TS, TD, and TM of a feasible initial solution can be constructed as
shown in Table 1.
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Table 1. Encoding vector.

Task 1 2 3 4 5 6 7 8 9 10 11 12
TS 3 5 6 9 12 1 2 8 10 4 7 11
TD 1 1 1 0 1 0 1 1 1 1 0 1
TM 1 0 1 - 1 - 1 0 1 1 - 1

3.2. Decoding

During the decoding process, tasks are assigned to each workstation in the order
specified in the task sequence vector, subject to cycle time and disassembly direction
constraints. The decoding processes are as follows:

Step 1: Turn on the first mated station and begin decoding.
Step 2: Determine whether each model’s mated station has received all of the tasks in

the TS. Proceed to step 8 if so. If not, move on to step 3.
Step 3: Assign the first task i in the TS as the active task.
Step 4: If TD[i] = 1, proceed to step 5. Otherwise, remove current task from TS and

return to step 2.
Step 5: Determine the disassembly time of the current task according to TM[i]. If there

is a tool change, add the required time to the disassembly time.
Step 6: Assign the current task to the left or right side of the mated station if it has a

definite disassembly direction (L or R). If E, place it on the side where there is more time
for disassembly.

Step 7: If the cycle time constraint is met, assign the task to the current companion
station, otherwise, assign the task to a new one. After the assignment, remove the current
task from TS and go back to step 2.

Step 8: Output the decoding result.

3.3. Crossover

The crossover of the task sequence vector is usually carried out at random in numerous
research. It is easy to produce infeasible individuals by this type of crossing. In this study,
a two-point crossover operator is adopted to guarantee that the crossed individuals meet
the precedence constraints.

The individuals TS1 and TS2 are used to designate two parents of the two-point
crossover operation, as seen in Figure 3. Two crossover points P1 and P2 are randomly
selected in the parent individuals to determine the section of crossover. Keep the sequences
before P1 and after P2 in TS1 unchanged. The sub-sequence {9, 12, 1, 2, 8, 10} between
P1 and P2 in TS1 becomes {1, 2, 9, 8, 12, 10} through mapping of the same sequence in
TS2, namely, the offspring individual N1 = {3, 5, 6, 1, 2, 9, 8, 12, 10, 4, 7, 11}. Under these
crossover operations, the offspring always satisfy the precedence constraint [32].
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The crossover operation of the task decision vector and task mode vector is consistent
with the crossover of the task sequence vectors. However, it should be noted that after the
completion of the crossover of the task decision vector, the sequence should be checked
and adjusted to ensure that the disassembly decision variable of all the predecessor tasks of
the selected task is 1.

3.4. Mutation

A random mutation of the task sequence vector can also create infeasible individuals.
A single-point mutation operator based on a precedence constraint is employed to find a
feasible individual. The individual TS is regarded as the parent of the single-point mutation
operation, as depicted in Figure 4. In TS, first a mutation point P is chosen at random, and
the closest predecessor {3} and successor {8} tasks of the chosen task are identified. The
chosen task {5} is then randomly inserted between the predecessor and successor to create
the feasible individual set [33]. The offspring individual N {3, 5, 6, 1, 2, 4, 7, 9, 8, 12, 10, 11}
is then chosen at random from the set.
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The task decision vector and task mode vector adopt the same mutation operation as
the task sequence vector. Following the mutation of the task decision vector, the sequence
should also be verified and corrected.

4. Case Study

A practical case of automobile is selected to verify the reliability and validity of the
proposed model and method. Table 2 illustrates the 74 tasks that make up the entire process
of disassembling an automobile. It includes information such as the hazardous property
(h), the demanded property (d), the preferred operation direction (k), the disassembly mode
€, the disassembly time (t) for three models (m), the revenue (v), and the type of tools (o)
of each task. Figure 5 depicts the relationships between tasks in terms of priority. The
precedence relationship, the preferred operation direction, and hazardous property for each
task are taken from Liang [15] et al. The population and iteration times of the algorithm
are set as 100 and 500. The crossover probability and mutation probability involved in the
algorithm are set as 0.8 and 0.2, respectively. Minimum product set is MPS = {1, 1, 1}.

Table 2. Tasks information of the automobile disassembly.

No. Parts h d k

e = 1 e = 0

t v o t v o

m1 m2 m3 - - m1 m2 m3 - -

1 Left engine
hood hinge 0 0 L 20 18 17 19 6 2 2 2 14 9

2 Right engine
hood hinge 0 0 R 17 21 13 19 1 2 2 2 14 9

3 Engine hood 0 1 E 10 15 12 833 6 1 2 1 625 9
4 Airbag 1 1 L 100 103 91 1296 6 9 9 8 972 7
5 Battery 1 0 R 33 39 39 110 5 3 4 4 83 8
6 Fuse Box 1 0 R 28 27 30 18 3 3 3 3 14 8
7 Waste fluid 1 0 E 13 8 16 20 6 2 1 2 15 7
8 Waste oil 1 0 E 195 202 143 2 3 17 17 12 2 7
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Table 2. Cont.

No. Parts h d k

e = 1 e = 0

t v o t v o

m1 m2 m3 - - m1 m2 m3 - -

9 Refrigerant 1 0 E 63 38 43 17 4 6 4 4 13 8
10 Left front wheel 0 0 L 41 31 31 130 1 4 3 3 98 7
11 Left rear wheel 0 0 L 27 41 29 130 5 3 4 3 98 7
12 Right front wheel 0 0 R 32 22 30 130 4 3 2 3 98 8
13 Right rear wheel 0 0 R 38 40 39 130 3 4 4 4 98 9
14 Left fender 0 0 L 22 20 21 31 6 2 2 2 23 8
15 Right fender 0 0 R 22 33 24 31 5 2 3 2 23 8
16 Left front bumper 0 0 L 43 23 43 182 5 4 2 4 137 8
17 Right front bumper 0 0 R 23 38 42 182 2 2 4 4 137 8
18 Front bumper 0 0 E 17 19 14 285 5 2 2 2 214 7
19 Air intake grille 0 0 E 29 18 22 107 2 3 2 2 80 8
20 Left lamps 0 0 L 31 24 26 944 2 3 2 3 708 9
21 Right lamps 0 0 R 25 42 30 944 1 3 4 3 708 7
22 Left front door 0 1 L 38 44 44 1149 1 4 4 4 862 9
23 Left rear door 0 1 L 29 45 48 1149 3 3 4 4 862 8
24 Right front door 0 1 R 51 38 48 746 4 5 4 4 560 9
25 Right rear door 0 1 R 50 34 42 746 2 5 3 4 560 8

26 Left trunk cover
hinge 0 0 L 19 19 17 61 3 2 2 2 46 8

27 Right trunk cover
hinge 0 0 R 20 15 17 61 2 2 2 2 46 9

28 Trunk cover 0 1 E 41 27 22 910 1 4 3 2 683 7
29 Spare wheel 0 0 E 23 20 32 83 5 2 2 3 62 7
30 Left rear bumper 0 0 L 35 24 28 159 4 3 2 3 119 9
31 Right rear bumper 0 0 R 28 33 38 159 5 3 3 4 119 9
32 Rear bumper 0 0 E 13 19 14 244 1 2 2 2 183 8
33 Radiator 0 0 E 56 56 48 742 1 5 5 4 557 9
34 Condenser 0 0 E 48 62 77 409 1 4 6 7 307 9
35 Coolant tank 1 0 E 70 71 53 452 5 6 6 5 339 8
36 Air cleaner 0 0 E 38 35 28 787 5 4 3 3 590 7
37 Wiper 0 0 E 33 32 32 123 5 3 3 3 92 8
38 Wiper motor 0 0 E 37 30 26 58 4 4 3 3 44 8

39 Left front
windscreen 0 0 L 42 56 52 70 4 4 5 5 53 7

30 Right front
windscreen 0 0 R 57 43 42 70 4 5 4 4 53 7

41 Front windscreen 1 0 E 30 32 18 248 3 3 3 2 186 8
42 Left rear windscreen 0 0 L 23 33 25 51 3 2 3 3 38 9

43 Right rear
windscreen 0 0 R 33 33 26 51 3 3 3 3 38 8

44 Rear windscreen 1 0 E 24 23 20 156 5 2 2 2 117 9
45 Left seat 0 1 L 95 126 100 977 3 8 11 9 733 7
46 Right seat 0 1 R 137 134 149 1186 6 12 12 13 890 9
47 Armrest box 0 0 E 37 68 35 25 5 4 6 3 19 9
48 Fuel tank 1 0 R 43 76 77 637 6 4 7 7 478 7
49 Steering wheel 0 0 L 56 39 47 189 2 5 4 4 142 9

50 Left center
console bolt 0 0 L 63 67 59 1 2 6 6 5 1 9

51 Right center
console bolt 0 0 R 50 36 46 2 2 5 3 4 2 8

52 Center console panel 0 0 E 38 34 44 438 3 4 3 4 329 8



Mathematics 2023, 11, 1299 10 of 17

Table 2. Cont.

No. Parts h d k

e = 1 e = 0

t v o t v o

m1 m2 m3 - - m1 m2 m3 - -

53 Dashboard 0 0 L 48 39 35 508 3 4 4 3 381 7
54 Shift handle 0 0 E 68 76 60 106 6 6 7 5 80 9
55 Brake rigging 0 0 L 89 103 77 226 2 8 9 7 170 9
56 Clutch pedal 0 0 L 27 25 35 81 2 3 3 3 61 9
57 Accelerator pedal 0 0 L 39 36 39 81 6 4 3 4 61 8
58 Air conditioner 0 1 E 47 64 70 660 5 4 6 6 495 8
59 Steering system 0 0 L 103 121 121 512 4 9 11 11 384 8
60 Carbon canister 1 0 E 14 13 13 23 1 2 2 2 17 8
61 Bottom guard board 0 0 E 26 30 27 70 2 3 3 3 53 9
62 Exhaust pipe 1 1 E 70 41 53 1440 1 6 4 5 1080 9
63 Drive shaft 0 1 E 99 164 109 577 1 9 14 10 433 7
64 Electric generator 0 0 E 103 100 96 392 1 9 9 8 294 9
65 Front suspension 0 0 E 122 102 109 64 1 11 9 10 48 7
66 Rear suspension 0 0 E 93 116 128 57 6 8 10 11 43 8
67 Engine 0 1 E 163 180 213 6188 4 14 15 18 4641 8
68 Transmission 0 1 E 117 156 93 6562 2 10 13 8 4922 8
69 Left decoration 1 0 L 47 47 80 91 1 4 4 7 68 9
70 Right decoration 1 0 R 45 76 56 62 4 4 7 5 47 7
71 Interior light 1 0 E 24 16 19 8 4 2 2 2 6 9
72 Audio system 0 0 E 44 30 35 244 4 4 3 3 183 9
73 Left wiring harness 0 0 L 35 35 39 385 3 3 3 4 289 7
74 Right wiring harness 0 0 R 21 33 31 331 1 2 3 3 248 7
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The cycle time of the disassembly line is 521 s. The conventional disassembly times
of each model are randomly generated between 1/3~2/3 of the original task times. The
destructive disassembly times are achieved by multiplying the conventional disassembly
times by 1/12. The disassembly costs of different types of tools are shown in Table 3. The
revenue generated from the conventional disassembly is randomly generated within the
range of 20% to 50% of its market value. The revenue generated from the destructive
disassembly is 3/4 of that from a conventional disassembly. The other auxiliary parameters
are as follows: cs = 1 RMB/s, ch = 0.2 RMB/s, c f = 200 RMB, tt = 2 s.

Table 3. Disassembly costs of different types of tools.

o 1 2 3 4 5 6 7 8 9

c 6 10 8 4 7 9 2 5 3

NSGA-II algorithm has been run 10 times and 12 Pareto solutions have been obtained.
The Pareto front of the algorithm is shown in Figure 6. The three objective function values
of the Pareto front corresponding to Figure 6 are shown in Table 4. It can be seen from the
results of f1 and f2 that there is a trade-off between the number of workstations and profit.
This may be related to the longer disassembly time of high-value parts. However, from
the results of f3, there is no significant correlation between the smoothness index and the
number of workstations or between the smoothness index and profit; this is because the
station time varies between disassembly schemes. This is consistent with the conclusion of
Wang [7] et al.
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In order to evaluate the benefits of the partial destructive mode, profits are calculated
for each of the three modes (partial destructive mode, conventional mode, and destructive
mode) as shown in Table 4. In the destructive mode, harmful parts and high-value parts
are still disassembled in a conventional way, and the rest of the parts are disassembled
destructively. The maximum values in the three results are highlighted in bold. It can
be seen that in almost all results, the profit calculated under the partial destructive mode
is the largest. The partial destructive mode clearly outperforms the conventional and
destructive modes.
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Table 4. The computational result of NSGA-II.

No. f1 f2

−f3

Partial Destructive
Disassembly

Conventional
Disassembly

Destructive
Disassembly

1 6 67.4 −92,893.6 −91,939.6 −92,108.6
2 6 49.4 −92,807.6 −92,581.6 −92,126.6
3 6 29.6 −92,397.6 −92,581.6 −92,126.6
4 6 134.9 −93,804.6 −91,963.6 −92,084.6
5 8 15.9 −92,041.6 −91,939.6 −92,084.6
6 8 106.8 −94,004.6 −91,933.6 −92,072.6
7 8 44.9 −92,638.6 −91,945.6 −92,090.6
8 8 82.9 −93,152.6 −91,981.6 −92,090.6
9 8 95.7 −93,770.6 −92,557.6 −92,102.6
10 8 115.3 −94,423.6 −91,963.6 −92,126.6
11 8 29.8 −92,260.6 −91,969.6 −92,078.6
12 8 76.4 −92,911.6 −92,551.6 −92,102.6

The three points marked in Figure 6 correspond to schemes that obtain better value on
each of the three objectives. These are point P1 with the largest profit, point P2 with the best
smoothness, and point P3 with the smallest workstation. The objective values ( f1, f2, − f3)
of the three points are (8, 115.3, −94,423.6), (8, 15.9, −92,041.6), and (6, 29.6, −92,397.6),
respectively. The Gantt charts corresponding to the three points are shown in Figures 7–9.
It shows the task sequence, start, and end time of each task, and the tool changes between
different tasks (filled with black in the figure). The disassembly scheme S1 and S2 are both
performed on eight workstations. The optimal smoothness index can be obtained when
scheme S2 is adopted. A total of 19 tasks are destructively dismantled. Although it has
minimal idle time, its profits are not the highest. When scheme S1 is adopted, 22 tasks are
destructively disassembled. The decrease in conventionally disassembled tasks, combined
with the presence of the multi-constraint, resulted in a large amount of idle time, but it is
still the most profitable scheme. In scheme S3, 31 tasks are destructively disassembled so
that more tasks can be performed in fewer workstations. In this case, the impact on profit
mainly comes from revenue of the parts and disassembly time cost, while the impact on
profit from starting a new workstation is not the main one. Thus, there is a situation where
six workstations have no advantage over eight workstations.
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The disassembly scheme S1 with the maximum profit is selected to analyse the rela-
tionships among task profit, revenue, and cost, as shown in Figure 10. Here, the cost is
expressed as a negative value. As the disassembly operation progresses, the cost increases
gradually. Although four new mated stations are opened, the cost does not change dra-
matically. This indicates that the cost is mainly the time cost of disassembly. The profit of
disassembly increases with the increase in revenue. Among them, when the high-value
parts corresponding to Task 67 (Engine) and Task 68 (Transmission) are disassembled, the
revenue and profit are dramatically improved. This is due to a fact that the revenue of these
two parts is much higher than their disassembly cost.
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As can be seen from the above results, fewer workstations do not lead to higher
profit. At the same time, better smoothness does not effectively increase profits. This is
related to the characteristics of the partial destructive disassembly mode itself. When fewer
workstations are pursued, more tasks may be destructively disassembled to assign more
tasks in one workstation. When pursuing the best smoothness, high-value parts may be
destructively disassembled in order to achieve the balance of tasks among workstations,
thus they are unable to obtain higher benefits. For enterprises, profit is the first priority.
When the factory site is sufficient, the disassembly scheme with a relatively large number
of workstations but the highest profit should be selected.

5. Conclusions

This research innovatively designed a mixed-model two-sided disassembly line con-
sidering a partial destructive mode. Harmful parts and high-value parts are disassembled
in a conventional mode, and other parts are disassembled randomly in a conventional
or destructive mode. The impact of tool change on operation time is considered to more
accurately describe the actual disassembly process. Then, the mathematical model of the
disassembly process is established, and the three objectives of the number of workstations,
the smoothness index, and the profit are optimized. In addition, in order to solve this
combinatorial optimization problem efficiently, NSGA-II, which has been proved to be
superior by many studies, is selected in this study, and the encoding, decoding, crossover,
and mutation rules are redefined according to the characteristics of the problem. The results
show that the partial destructive disassembly mode can maximize profits.

In this work, the mixed-model disassembly of large-volume products is studied from
the perspective of a partial destructive mode, which provides a new research idea for the
disassembly of waste products under uncertain conditions. The mathematical model and
algorithm constructed in this paper can provide theoretical and technical guidance for the
construction of large-volume products disassembly line.

Future research can be extended to many fields. This study did not take into account
the correlation between parts. In the same disassembly sequence, whether the destructive
disassembly of the predecessor will affect the disassembly mode of the successors is a
problem worth further investigation. Further, disassembly lines for large-volume products
can be combined with assembly lines for large-volume products, allowing economic and
environmental indicators of the disassembly to assembly process to be considered at a more
automated disassembly level.
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Appendix A

The parameters and variables required by the model are as follows:

• Indices:
i, j, a, b: Index of tasks, i, j, a, b ∈ I.
s, s′ : Index of mated stations, s, s′ ∈ S.
k : Side of the stations, left side, k = 1; right side, k = 2.
q : Position of the tasks within a workstation, q ∈ Q.
m : Product model, m ∈ M.
• Parameters:
I : Set of tasks, I = {1, 2, . . . , i, . . . , Nt}.
S : Set of mated stations, S = {1, 2, . . . , s, . . . , Ns}.
Q : Set of task positions, Q =

{
1, 2, . . . , q, . . . , Nq

}
.

M : Set of product model, M = {1, 2, . . . , m, . . . , Nm}.
tm
ie : Disassembly time when the task i of model m adopts disassembly mode e.

tt : Tool replacement time.
vie : Disassembly revenue when task i adopts disassembly mode e;
cie : Disassembly cost when task i adopts disassembly mode e;
cs : Unit time cost of running the workstation.
ch : The additional unit time cost to the workstation while handling hazardous tasks.
c f : Fixed cost of starting workstation.
oi : Type of tool for task i.
Tsk : Total disassembly time in workstation.
CT : Cycle time.
MPS : Minimum product set, MPS = {a1, a2, a3, . . . , aM}.
am : Number of models m in MPS, am = Am/L, (m = 1, 2, . . . , Nm).
Am : Number of products m.
L : The greatest common divisor of all Am.
• Decision variables:
xi : 1, if task i is performed, 0, otherwise.
xisk : 1, if task i is assigned to the k side of the mated station s, 0, otherwise.
xiskq : 1, if task i is assigned to position q on k side of the mated station s, 0, otherwise.
ei : 1, if the task i is disassembled conventionally, 0, if the task i is disassembled destructively.
Wsk : 1, if the k side of the mated station s is used, 0, otherwise.
Gs : 1, if the entire mated station s is used, 0, otherwise.
Fs : 1, if only one side of the mated station s is used, 0, otherwise.
yijs : For mated station s, 1, if task i is assigned to the s before task j, 0, otherwise.

• Indicator variables:
hi : 1, if the task i is hazardous, 0, otherwise.
di : 1, if the task i is demanded, 0, otherwise.
zij : 1, if the disassembly tools for task i and task j are different, 0, otherwise.
Pij : 1, if task j is an immediate predecessor of task i, 0, otherwise.
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