
Citation: Yan, B.; Zhang, X.; Tang, C.;

Wang, X.; Yang, Y.; Xu, W. A Random

Forest-Based Method for Predicting

Borehole Trajectories. Mathematics

2023, 11, 1297. https://doi.org/

10.3390/math11061297

Academic Editors: Aleksandr

Rakhmangulov and Jakub Nalepa

Received: 7 December 2022

Revised: 21 February 2023

Accepted: 3 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Random Forest-Based Method for Predicting
Borehole Trajectories
Baoyong Yan 1,2, Xiantao Zhang 1,2, Chengxu Tang 3, Xiao Wang 3, Yifei Yang 3 and Weihua Xu 3,*

1 State Key Laboratory of the Gas Disaster Detecting, Preventing and Emergency Controlling,
Chongqing 400039, China

2 CCTEG Chongqing Research Institute, Chongqing 400039, China
3 College of Artificial Intelligence, Southwest University, Chongqing 400715, China
* Correspondence: chxuwh@swu.edu.cn; Tel.: +86-159-9892-1583

Abstract: Drilling trajectory control technology for near-horizontal directional drilling in coal mines
is mainly determined empirically by manual skew data, and the empirical results are only qualitative
and variable, meanwhile possessing great instability and uncertainty. In order to improve the accuracy
and efficiency of drilling trajectory prediction, this paper investigates a random forest regression-
based drilling trajectory prediction method after applying numerous machine learning methods to
experimental data for comparison. In the selection of prediction features, this paper replaces all
feature variables of the borehole trajectory with feature values with higher cumulative influence
weights, and screens out three variables with high importance, azimuth, inclination and bend at the
present moment of the drill, as the input variables of the model, and the increments in the borehole in
a horizontal direction, left and right direction, and up and down direction at the present moment
and the next moment as the output variables of the model. In the model training, the model in this
paper uses the bootstrap self-service method resampling technique to collect training sample data,
constructs a random forest regression model, and takes the mean value of the decision tree output as
the result of the borehole trajectory prediction. To further improve the model accuracy, the paper
improves the prediction performance of the model by adjusting the parameters of the random forest
model such as tree, depth, minimum sample of leaf nodes, minimum sample number of internal node
division, etc. The model is also evaluated by using common machine learning evaluation metrics
R2 score, RAE, RMSE and MSE. The experimental results show that the average absolute error of
the model drops to 1% on the prediction of the horizontal direction and up and down direction; the
average absolute error of the model drops to 9% on the prediction of the left and right direction,
and this error rate reaches the error requirement in the actual construction process, so the model
can effectively improve the prediction accuracy of borehole trajectory while improving the safety of
directional construction.

Keywords: borehole trajectory prediction; random forest regression model; feature and predictor
variable selection; parameter tuning

MSC: 68T30; 68U35

1. Introduction

Coal mine target-application trajectory drilling has now become the main technical
way of geological exploration and gas extraction at home and abroad. In the new era of
development, China’s energy structure continues to be optimized and the proportion of
clean energy continues to rise, but coal is still a pillar energy source in China’s energy
structure at the current stage and for some time to come, and occupies an important posi-
tion in the national economy and social development. With the increase in mining depth,
mechanization and automation level, coal mining involves science and technologies that
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are also constantly developing, underground gas management [1], water exploration and
release, hole instead of alley and many other operational needs for coal mine underground
near-horizontal directional drilling equipment, technology, process, etc. Thus, new re-
quirements are put forward, the development of the underground automatic, autonomous,
intelligent operation of the long drilling directional-precision construction function of the
equipment and its supporting processes, collaborative operation line, related technologies
and methods of directional drilling borehole-trajectory control, etc., has been the focus of
the progress of coal mine underground-drilling construction in recent years and for the
next few years, so directional drilling borehole-trajectory control technology can achieve
targeted drilling [2].

At present, underground directional drilling in coal mines is carried out by the manual
operation of drilling tools and equipment; moving, anchoring, opening, loading and
unloading drilling tools, trajectory measurements, drilling control, data uploading and
analysis are all manual operations, which completely rely on manual experience for the
effective control of drilling construction to ensure that the drill hole operates according
to the designed drilling trajectory. The drilling trajectory control technology applicable
to the near-horizontal directional drilling in coal mines is mainly determined by manual
experience on the measured inclination data, and the effectiveness of the adjustment of the
bending head on the control of the drilling trajectory is determined by the prediction of the
drilling trajectory trend at the next measurement point through manual experience based
on the measured data and the approximate evaluation of the adjusted bending head value.
Therefore, there are several problems:

(1) The empirical results are only qualitative and indeterminate, with great instability
and uncertainty, and the trajectory control may appear unsmooth or even show drastic
changes, and precise adjustment and control cannot be realized;

(2) The effect of manual experience on trajectory control under different geological
conditions, construction equipment, construction parameters and operator conditions is
unstable and even destructive leading to the original design not being implemented, high
drilling resistance, overrunning in the direction of drilling, stringing holes, collapsing holes,
falling out of drilling, difficulty in starting and pulling and blind areas in drilling;

(3) In addition, manual individual experience and group experience are not directly
applicable and applied to qualitative drilling automation operations, and cannot be well
adapted to the construction and development of intelligent mines.

In order to solve several problems mentioned above, we extracted useful and effective
information from the data, reasoned computationally through the model to obtain the exact
direction of the drilling trajectory control or construction elbow proposal with confidence
level, completed a numerical over-prediction of the trajectory of the drilling, allowed the
data to provide scientific theory and feasible methods to eliminate the uncertainty and
instability of the artificial experience to a certain extent and summarized the artificial
experience. The computer language, which represents the manual participation process
to achieve no artificial individual differences in the computer processing of the target
application drilling trajectory, can lay the foundation for the automatic control of the
drilling trajectory, automatic directional drilling operations, and provides digital tools and
methods for the achievement of intelligent drilling.

Since the introduction of drilling trajectory prediction technology into the petroleum
field by the American scholar Lubinsk, drilling trajectory prediction technology has devel-
oped rapidly and entered a period of vigorous development, such as the introduction of
the three-bending moment equation into the static analysis of drilling tools based on the
longitudinal and transverse bending theory by Professor Bai Jiazhi and others in China [3].
Directional drilling technology in the coal-mine field was introduced from oil fields by
researchers in the United States and Germany in the 1960s. Since then, the combination of
single bending-screw drilling tools and the follow-on measurement system has become the
mainstream of directional drilling construction in coal mines by virtue of its excellent slope-
making rate and controllability [4], which provides equipment and a technical guarantee
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for the operational needs of underground coal mine gas-management, water exploration
and release, geological exploration, and hole replacement alley. The State Key Laboratory
of Gas Disaster Monitoring and Emergency Technology and its supporting units have made
certain achievements in related research, providing important support and guarantees for
gas management and utilization in China’s coal industry.

In recent years, with the continuous development in the fields of data mining, machine
learning and artificial intelligence, some relatively novel trajectory prediction methods have
appeared. Some scholars have studied the prediction model in combination with these
emerging fields and achieved many good results. Machine learning is becoming more and
more widespread in engineering forecasting, and its role is constantly being proven with the
development of the information age. There are many examples of machine learning applied
to forecasting. For example, Zhang Jinchuan’s machine learning algorithm for predicting
oil and gas production status [5]; the performance prediction of nuclear-power struc-
tural materials based on a machine learning algorithm studied by Wang Zhuo et al. [6];
Wang Zixuan studied the optimal scheduling of an electric heating comprehensive en-
ergy system based on a machine learning prediction algorithm [7]. At the same time,
there is a lot of research on trajectory prediction by machine learning. For example,
Song Lujie et al. studied the moving object position-prediction algorithm combined with a
Markov model and trajectory similarity [8]. Chen Weihua et al. studied a model based on a
deep learning algorithm to predict the cutting track of the shearer [9]. Meng Qinghua et al.
established a corresponding borehole trajectory prediction model by combining a wavelet
and neural network [10]. Liu Leijun et al. proposed a sparse trajectory-prediction method
combining iterative network partitioning and entropy estimation [11]. However, there
is little research on whether these machine learning trajectory-prediction methods are
applicable to the theory and application practice of directional drilling trajectory-prediction
in coal mine. The existing prediction methods of the directional drilling trajectory in un-
derground coal mines mainly form a set of theoretical methods by analyzing the complex
geological conditions of the near-horizontal directional drilling in coal seam construction,
summarizing the characteristics of the drilling trajectory and drilling accident experience.
For example, Sun Rongjun et al. proposed a near-horizontal directional drilling technol-
ogy for underground coal mine [12]. Research on prediction and updating the method
of logging while drilling was proposed by Guo Yongheng et al. [13]. Feng Dahui put
forward research on the directional pore-forming technology of the drainage holes in tun-
neling roadways with downhole precision [14]. Sun Tao et al. improved the traditional
three-point circle-fixing method [15]. However, there is little research [16–21] on model
prediction related to machine learning, so applying machine learning predictions to direc-
tional drilling trajectory-prediction in coal mining is a promising research direction. The
main contributions of this paper are as follows:

(1) The establishment of a scientific, effective and applicable trajectory prediction
model to determine the distance that the drilling tool may deviate from the target point, so
that timely manual or automatic adjustment can be made. Drill hole trajectory prediction
and control aims to reduce the numerical gap between the actual trajectory of the drilling
tool and the designed trajectory. Improving the accuracy of trajectory prediction can
provide a numerical basis for accurate control, and control and adjust according to the
predicted reference results so that the actual trajectory of the drilling tool will be constructed
according to the designed trajectory;

(2) The drilling trajectory is influenced by a variety of operational factors, and a variety
of factors need to be considered in the final segmentation study. As the drilling data of
the completed construction, the comprehensive influence of each factor has been formed,
i.e., the result of the comprehensive effect of each factor has been determined and will not
change, and these influences are fused into a final result without the influence of factor
variables, and the drilling trajectory prediction can be carried out with this influence result
as the research object;
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(3) The drilling trajectory control technology for near-horizontal directional drilling
in coal mines is mainly determined empirically by manual skew data, and the empirical
results are only qualitative and indeterminate, with great instability and uncertainty. We
used the machine learning method (the random forest algorithm has the advantages of few
parameters [22], a fast learning speed, applicable to high-dimensional samples, that can
effectively avoid overfitting, has high prediction accuracy and has been widely used in
classification and regression problems) to predict the next measurement point borehole-
trajectory trend based on the measured data, and the key lies in how to select effective
features and a suitable prediction model to fit the existing data to meet the project prediction
accuracy requirements (the absolute value of deviation between construction results and
prediction results for a single reference tool face of each 3 m is lower than 0.2 m).

Briefly, this paper proposes a random forest-based method for predicting borehole
trajectories, and Section 2 introduces the basic theory of random forest and directional
drilling model. In Section 3, the drilling trajectory data and preprocessing methods are
analyzed. In Section 4 , a random forest-based borehole-trajectory prediction method is
proposed. Section 5 of this paper presents the prediction results of our random forest
regression model. In Section 6 , the comparison with other prediction models shows that
our proposed model is more accurate in predicting the results. Section 8 concludes and
outlines future work.

2. Basic Theory
2.1. Calculation of the Predicted Values of the Attitude of the Measurement Points

The three-point circularization method is used to define the slope of the drilling tool
k = 2v

l1+l2
(where k is the size of the structural bend; l1 is the distance from the drill bit to

the lower stabilizer, and l2 is the distance from the lower stabilizer to the upper stabilizer).
The predicted values of the inclination, azimuth and three-axis coordinates (corresponding
to the 3D coordinate system of the wellhead are three directions: horizontal (x axis), left
and right (y axis) and up and down (z axis)) for the next measurement point are calculated
based on the measured data. Each piece of data for the next measurement point can be
calculated by the following equation.

When the slope of creation is determined, the predicted inclination and azimuth of the
next measurement point are calculated.

Inclination of the next measurement point:

θn+1 = θn + arcsin(sin(k∆L)cosΩn) (1)

Azimuth of next measurement point:

αn+1 = αn + arcsin(sin(k∆L)sinΩn) (2)

where θn+1, αn+1 are the inclination and azimuth of the next measurement point; θn, αn
are the inclination and azimuth of the current measurement point; k is the slope, ∆L is the
length of the drill pipe and Ωn is the tool face angle used for the next drill pipe.

In order to more intuitively represent the closeness of the predicted trajectory to
the actual trajectory, the predicted results need to be expressed in the form of trajectory
coordinates. Based on the equilibrium tangent method, the predicted coordinate value of
the next measurement point in the orifice coordinate system can be calculated from the
predicted attitude data and the drilled borehole trajectory data.

Predicted value of the triaxial coordinates of the next measurement point:

xn+1 =
1
2

∆L(cosθn+1cosαn+1 + cosθncosαn) + xn (3)

yn+1 =
1
2

∆L(cosθn+1sinαn+1 + cosθnsinαn) (4)
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zn+1 =
1
2

∆L(sinθn+1 + sinθn) (5)

where xn+1, yn+1, zn+1 are the triaxial coordinates of the next measurement point and
xn, yn, zn are the triaxial coordinates of the current measurement point. The trajectory
deviation of each borehole can be determined by comparing the predicted values with the
trajectory values of the actual construction.

2.2. A Study of the Generalizability of Trajectory Data Prediction Algorithms

In order to study the prediction accuracy and applicability of the theoretical model
during actual construction, an attempt was made to study a parametric model with uni-
versal applicability to multiple boreholes, and to improve the prediction accuracy and
applicability of the drilling trajectory of coal seam drilling tools by adjusting the parameters
under the condition of existing data.

The pre-existing data structure can be formulated as follows:

xn = {a1, a2, · · · , an} (6)

where xn represents the trajectory data at the time of n and {a1, a2, · · · , an} represents the
data of n variables such as horizontal depth, azimuth, inclination, etc., at the time of n.

2.3. Borehole Trajectory Prediction Based on Random Forest Regression

The random forest algorithm is an integrated learning algorithm built on the idea of
the Bagging algorithm for the classification and regression studies of data [23]. When it is
used to study regression problems with continuous variables, it is called the random forest
regression problem.

The main steps of random forest regression-based prediction of borehole trajectories
are as follows:

(1) A new training set of n samples with the same number of samples as the initial
training set is repeatedly selected at random with put-backs in the initial training set, and
the unselected data are called unselected data;

(2) Randomly select m features from the M input features affecting the borehole trajec-
tory as the set of alternative feature variables for the branching nodes of the decision tree,
and select the optimal features from the set for node splitting according to the branching
superiority criterion to construct the decision tree;

(3) n borehole-trajectory decision trees were constructed to form a random forest
regression model. The average of the output result values of the n decision trees is taken as
the prediction result of the borehole trajectory, and the unselected data are used to evaluate
the prediction performance of the regression model.

3. Analysis of Drilling Trajectory Data
3.1. Description of the Data Set

The data source used in this paper was mainly the on-site construction data of the
China Coal Science and Technology Group Chongqing Research Institute Company Limited,
which provided 14,694 pieces of borehole data collected from drilling wells across the
country from August 2014 to May 2022. The observed elements of the trajectory data file of
the drilling process included the coordinates of the drill bit position at each moment, the
geology of the location, the inclination angle of the tool facing angle and the branch where
the drilling point is located.

3.2. Data Cleaning

Since directional drilling has the characteristic of making the borehole achieve di-
rectional bending changes by changing the orientation of the elbow during drilling, in
each piece of drilling data, corresponding to one borehole branch, the data will show a
certain continuity and the hole depth will show the same magnitude increment (3 m). The
track of underground drilling is shown in Figure 1. During the construction process, the
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data of drilling depth, top Angle and azimuth Angle are measured by special measuring
instruments. After calculation and drawing, the spatial coordinates and track graphs of
each measuring point of drilling are obtained. The experiment requires a machine learning
algorithm where the input data from the previous moment can estimate the data from the
next moment. However, some of the hole depth data do not show a continuous increment
due to various uncertainties or characteristics of the data sampling time. In this paper, the
data cleaning is for this problem [24].
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If the data labeled as “Xmain” have a value of 0 in the horizontal, left and right
directions, or up and down directions, and are irregularly distributed in the overall data,
then these data should be deleted.

Each branch of the drilling trajectory corresponds to a path and the hole depth in-
creases by the same magnitude (3 m), then it is possible to determine whether it is the
same branch based on whether the hole depth difference is constant or not; if the difference
between the two adjacent data hole depths is constant, then it is kept, if it is not, then it
should be deleted.

3.3. Feature Selection

The purpose of feature selection work is to combine the knowledge related to direc-
tional drilling to select the feature set, and then analyze and evaluate the importance of each
feature among the known features to select a subset of features that can comprehensively
and effectively characterize the original data [25], and reduce the feature dimension of the
sample to fit a suitable machine learning model to achieve high prediction accuracy. The
subsequent prediction of the trajectory of the drilling application process can be carried out
accordingly.

According to the theoretical knowledge related to directional drilling, the azimuth and
inclination angle in the tool-facing angle at the same moment combined with the hole depth
can calculate the horizontal direction, left and right direction and up and down direction
coordinates at that moment; the elbow angle at the previous moment combined with the
horizontal direction, left and right direction, and up and down direction coordinates can
calculate the horizontal direction, left and right direction, and up and down direction
coordinates at the next moment; additionally, consider that when drilling, geological factors
can also affect the trajectory of the drill bit; therefore, the bend angle, azimuth angle,
inclination angle and geological material of the previous moment can be included in the
selection of the character variables, and the azimuth angle and inclination angle of the next
moment and the up and down direction, left and right direction and horizontal direction
of the next moment and their incremental values can be included in the selection of the
character root variables. However, since the machine learning method does not accept
character-type input, the geological features should be converted into numerical features
using unique thermal coding [26].

According to machine learning algorithms, the degree of correlation between variables
can be calculated qualitatively. For the borehole trajectory prediction task, this paper
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sets a threshold value for calculating the correlation degree between each feature in the
training set and the prediction variables, and excludes the features with a small correlation
degree. In the random forest regression prediction model, it automatically builds different
random forests according to the variables to be predicted, and assigns corresponding
correlation weights to the different feature variables. In this paper, using the random forest
regression algorithm, the correlation weight of geological factors on the predictor variables
is calculated to be less than 0.5%, so the geological materials are removed from the category
of feature variables.

4. A Random Forest-Based Method for Predicting Borehole Trajectories
4.1. Problem Definition

The coordinates of the drill bit in the three-dimensional space at each moment of the
drilling process constitute a trajectory sequence (as shown in Figure 1), and the drill bit
trajectory prediction task requires predicting the coordinates of the space where the drill
bit is located after a single drilling step (3 m) based on the azimuth and inclination of the
current drilling point as well as the curved head.

Assuming that the azimuth, inclination, bend and the three-dimensional coordinates
s = (x, y, z) of the current drilling point of a certain drilling, i.e., horizontal position, left and
right position and up and down position, the predicted increment of the drill bit in each
direction after three meters of drilling is ŝ = (x̂, ŷ, ẑ), the coordinates of the drill bit after
three meters of drilling are s + ŝ = (x + x̂, y + ŷ, z + ẑ).

4.2. Feature and Model Selection

A borehole-trajectory prediction model system was constructed using multiple regres-
sion analysis combined with a random forest model to predict borehole trajectories. The
prediction in this paper is based on the borehole data at the present moment to predict the
borehole data at the next measurement point. Before bringing in the model for solution,
the data are cleaned by removing invalid and anomalous data, then feature variables and
predictor variables are constructed and machine learning regression models are fitted using
the processed data.

The problem studied in this paper is a regression problem, and the key to solving
the problem lies in the selection of the feature and predictor variables and the regression
model. As shown in Figure 2, by replacing the feature and predictor variables and fitting
different machine learning models, the highest experimental accuracy was obtained by
using the chosen random forest regression model to predict the increments of up and
down, horizontal, left and right directions of the next measurement point using the bend,
orientation and inclination of the drill, from which the predictor and feature variables and
the machine learning method were determined.

4.3. Hyperparameter Determination

The random forest parameter tuning contains: decision trees of tree Estimators, the
minimum number of samples required for internal node repartitioning Min_samples_split,
decision tree depth Max_depth, leaf node minimum number of samples Min_samples_leaf,
the hyperparameters of the model can be selected by specific data to further improve the
model prediction accuracy [27]. (Since there are different hyperparameters for predicting
horizontal, up–down, and left–right directions increments, the horizontal direction is used
here as an example).

From Figure 3, the decision tree Estimators = 197.0; the minimum number of sam-
ples required for internal node repartitioning Min_samples_split = 2.0; the minimum
number of samples of leaf nodes Min_samples_leaf = 2.0; the maximum depth of the
tree Max_depth = 16.0, the random forest regression model in response to the horizontal
position of the borehole. The prediction parameters of the increment reached the optimum.
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4.4. Algorithmic Principles of the Random Forest Regression Model (Algorithm 1)

Three feature variables were chosen as input variables for the prediction of the drill
trajectory: inclination xi

(1), azimuth xi
(2), elbow xi

(3) and incremental values as output
variables: increments in the horizontal direction of the drill yi

(1), increments in the up–
down direction of the drill yi

(2), and increments in the left–right direction of the drill yi
(3).

We set the number of samples brought into training to m (random forest auto-division);
the number of feature variables selected for training to g (random forest auto-division);
the cut feature variable to j, j ∈

{
xi

(1), xi
(2), xi

(3)
}

; the cut point to s, s ∈ {s1, s2 . . . sn};
the left subtree mean to c1; the right subtree mean to c2; and the function satisfies
R1(j, s) =

{
x
∣∣∣x(j) ≤ s

}
, R2(j, s) =

{
x
∣∣∣x(j) > s

}
.
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Algorithm 1. Pseudocode for random forest prediction principles

1 : f ort← 1to n_estimatorsdo
2 : input : traing set D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, amongthemxi

=
(

xi
(1), xi

(2), . . . xi
(g)
)

, yi =
(

yi
(1), yi

(2), yi
(3)
)

3 : process : function TreeGenerate(D)
4 : generate node
5 : PredictTotal ← 0
6 : MinMse← 0
7 : f ork← 1tondo
8 : f or f ← 1togdo
9 : i f (min ∑

xi∈R1(sk+1, f+1)
(yi − c1)

2 + min ∑
xi∈R1(sk+1, f+1)

(yi − ci)
2)

> (min ∑
xi∈R1(sk , f )

(yi − ci)
2 + min ∑

xi∈R1(sk , f )
(yi − ci)

2)

10 : thenMinMse← min ∑
xi∈R1(sk , f )

(yi − ci)
2 + min ∑

xi∈R1(sk , f )
(yi − ci)

2

11 : s← k, j← f ; generate a branch node node1; through s, j turn DtoD1, D2

12 : endi f
13 : end f or
14 : endfor
15 : i f D1, D2 6= ∅then
16 : TreeGenerate

(
D1)

17 : TreeGenerate
(

D2)
18 : else
19 : marksasalea f nodeandassignavalueo f MinMse
20 : endi f
21 : //get single tree prediction PredictSingle
22 : PredictTotal ← PredictSingle + PredictTotal
23 : MeanPredictTotal ← PredictTotal/n
24 : output : MeanPredictTotal

5. Prediction Results of the Random Forest Regression Model
5.1. Evaluation Indicators

Let the difference between the actual coordinates of the horizontal, left and right,
and up and down directions after drilling three meters forward and before drilling be
y = (y1, y2, y3), and the random forest model obtains the predicted coordinate difference
based on the azimuth and inclination of the current drilling point and the prediction of
the bend as ŷ = (ŷ1, ŷ2, ŷ3), and this paper calculates the difference between y ŷ R2 score,
mean absolute error (MAE), mean square error (MSE) and root mean square error (RMSE)
between the models to evaluate the prediction performance of the model [28].

The R2 score can be popularly expressed using the mean in each direction as the error
reference to test whether the prediction error is greater than or less than the mean reference
error:

R2 = 1− ∑i(ŷi − yi)
2

∑(yi − yi)
2 (7)

The numerator represents the sum of the squared differences between the actual and
predicted coordinate differences, and the denominator represents the sum of the squared
differences between the actual and the mean values of the actual coordinate differences.
The goodness of the model is judged according to the value of R-Squared, which is in the
range of [0, 1]: if the calculated result is 0, the model cannot be correctly fitted to the data; if
the calculated result is 1, the model is fitted to the data without error.

In general, a larger R-Squared indicates a better model fit. R-Squared reflects how
approximately accurate it is. The R-Squared reflects how accurate the model is, and because
the R-Squared is bound to increase as the sample size increases, it is not possible to truly
quantify the degree of accuracy, but only approximately. Therefore, the MAE, MSE and
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RMSE need to be considered together, and each indicator is calculated as follows, where m
indicates the number of regression samples

MAE =
1
m

m

∑
i=1
|(yi − ŷi)| (8)

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (9)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (10)

5.2. Experimental Prediction Results

In the following experimental results, the random forest method is adopted to model
in three directions, and the mesh parameters of the model in three directions are optimized.
Because the prediction task in each direction is equivalent to an independent problem, the
construction of the three random forests is independent and has different parameters. All
three models used the same experimental environment and the same experimental data set
in the simulation process.

The prediction results in this paper are based on the 80 records generated during the
actual construction process from 9 August to 20 August 2018. Under the condition of the
elbow, inclination angle and azimuth of the current drilling position, the random forest
regression model trained according to the historical data was applied, and on the basis of
the optimal adjustment of the parameters, the horizontal position, left and right directions
and the upper and lower positions of the next moment after turning into 3 m were obtained,
and the specific results are shown in Figure 4 and Table 1.

Table 1. Data on machine learning evaluation indicators.

Horizontal Direction Up and Down Direction Left and Right

R2 score 0.90 0.99 0.42
MAE 0.02 0.01 0.12
MSE 0.01 0.01 0.09

RMSE 0.06 0.04 0.30

The comparison between predicted and actual values revealed that the random for-
est regression model showed good predictions in all three directions, with a distribution
of residuals similar to the standard normal distribution, concentrated between ±0.2 m.
The predicted residuals in both the upper and lower directions were concentrated be-
tween ±0.05 m, meeting the requirement of <0.2 m absolute value of deviation between
construction results and predicted results for a single reference tool surface of 3 m.

The evaluation metric calculation by machine learning was able to quantify the predic-
tion effectiveness of the random forest regression model in all three directions. According to
the calculated values of the R2 score, MAE, MSE and RMSE, it can be obtained that overall
the model has a good prediction effect, and the mean square error of the model in the
horizontal direction, up and down direction, and left and right direction is less than 10%.
The accuracy of the prediction in the horizontal direction and the up and down direction is
above 90%, and the prediction in both directions is better than the prediction in the left and
right directions.
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5.3. Predicting Feature Importance

Due to the characteristics of the random forest regression model, through the model
visualization, it can be intuitively concluded that the random forest regression model has
different independent variable importance in three directions, as shown in Figure 5 below:
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In the prediction process of the three directions, the random forest regression model
automatically builds different random forests according to the different dependent variables
that need to be predicted, and assigns corresponding weights to different independent
variables [29], so as to achieve better prediction results.

6. Comparison of Random Forest Model Prediction Results with Other Models
6.1. Comparative Model for Borehole Trajectory Prediction
6.1.1. Gradient Boosting Regression

Gradient boosting regression (GBR) is a technique that learns from its mistakes. It is
essentially integrating a bunch of poorer learning algorithms for learning, this algorithm
was first proposed by Friedman in 2001 [30], and has been evolving in recent years and has
been widely used in many fields.

6.1.2. K-Nearest Neighbor Regression

K-nearest neighbor regression is a common nonparametric regression method that
finds the k nearest neighbors of a sample by searching a historical database [31], and by
assigning the mean of some attribute(s) of these neighbors to the sample, the value of the
corresponding attribute(s) of the sample can be obtained.

6.1.3. SVR Regression

For the SVR regression model [32], which has been widely used in recent years for
regression prediction problems, this paper uses the kernel function of the SVR model as the
Rbf kernel, and the parameters are adjusted by the grid search method

6.2. Comparison of Predicted Results

Since this article studies a typical regression problem, the training of regression models
to achieve the purpose of prediction and the selection of models occupies its important
position among the factors affecting the accuracy of prediction results, after considering
the nature and principle of this research problem, four machine learning models with good
generalization learning ability were selected: random forest regression model, gradient
improvement model, k-nearest neighbor regression model and SVR regression model [33].
The models were trained using the existing data. In order to make a horizontal comparison
of the four models, this paper uses the same empirical data to train the four models, and
adjusts and optimizes the parameters of the above four models to ensure that the parameter
combination of each model is optimized and reasonable when performing the regression
task. The R2 scores of the prediction results of the training models and the residual mean
absolute error (MAE) were mainly used as evaluation indicators to evaluate the models,
and the results were as follows (Figure 6).
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According to the results of the evaluation index, the random forest model has a
higher R2 score and a lower mean absolute error of the residuals in the three directions of
prediction compared to the other three regression models, indicating that for this problem
under study, the random forest regression model has a better degree of explanation of



Mathematics 2023, 11, 1297 13 of 15

the dependent variable by the independent variables and a smaller residual between the
predicted data and the true value, making it one of the better regression models for the
research problem.

7. Limitations of the Approach in This Article
7.1. Algorithm Limitations

The random forest model involves many parameters, and the parameter value range
and its broad, parameter tuning process can only try different parameter combinations
and select the optimal parameter combination. This paper involves the grid parameter
optimization method which is based on experience of different parameters after delineating
the value range through the enumeration combination to find the optimal parameter
combination method; this strategy of adjusting parameters will consume a lot of time
which is one of the limitations of the random forest algorithm. In addition, although the
random forest algorithm is fast enough, when there are many decision trees in the random
forest, model training will consume a lot of time and space costs.

7.2. Practical Application Restrictions

From the perspective of the principle of the random forest algorithm, the random
forest algorithm is an algorithm that summarizes experience from a large amount of data
rather than a more essential principle analysis. In the actual drilling process, there may
be different experiences reflected in the corresponding drilling trajectory data due to the
different nature of rock formations at the construction site and the difference in geological
structure, and training the random forest model with these different data together will
lead to the weakening of important experience and reduce the accuracy of prediction.
Therefore, it is also necessary to train models for different characteristics of rock formations
according to different situations to improve accuracy. However, there are three main
reasons for the actual realization of this work and its difficulties: 1. Complex and diverse
rock formations and geological structures are difficult to classify and model; 2. Modeling
each rock formation and the geological structure data will consume a lot of time and
space; 3. The amount of data of some specific rock formations is too small to train an
effective model.

8. Conclusions

Compared with the theoretical prediction calculation method proposed by traditional
technicians, this paper proposes a trajectory prediction method based on random forest
regression combined with machine learning, and compares it with the prediction results
of other models such as gradient boosting regression, k-nearest neighbor regression and
SVR regression. The results show that the proposed model is effective and accurate. The
research of this paper is as follows:

(1) Study the method of predicting borehole trajectories based on random forest re-
gression, and quantitatively determine the accuracy of random forest regression prediction
by calculating evaluation indicators such as MAE, MSE, RMSE and R2 score;

(2) Based on the feature variable importance analysis method and the underlying
theory of directional drilling, three feature variables, azimuth, inclination and elbow, and
three key predictor variables, horizontal increment, left–right increment and up–down
increment, were preferentially selected from all feature variables;

(3) The random forest regression model has a good fitting and prediction effect on the
experimental data. After tuning the random forest parameters, the optimal parameters
for fitting the data were found, so that the absolute value of the deviation between the
construction results of the model’s single reference tool surface of 3 m and the predicted
results was <0.2 m. The random forest regression model based on the preferential selection
of the characteristic variables has a high prediction accuracy and is suitable for borehole
trajectory prediction.
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For future research and work, we first look forward to continuing to refine the accuracy
of the proposed model so that it can predict more accurate results. Secondly, we hope to be
able to apply our model to more complex environments, because in actual orbit operation,
geology is not only coal, but also possesses some other impurities, so we hope to propose a
model that can adapt to more complex environments as soon as possible, greatly improving
its practicality.
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