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Abstract: Vehicle trajectory prediction is an important decision-making and planning basis for
autonomous driving systems that enables them to drive safely and efficiently. To accurately predict
vehicle trajectories, the complex representations and dynamic interactions among the elements in a
traffic scene are abstracted and modelled. This paper presents vehicle–road relationships net, a deep
learning network that extracts features from vehicle–road relationships and models the effects of traffic
environments on vehicles. The introduction of geographic highway information and the calculation
of spatiotemporal distances with a reference not only unify heterogeneous vehicle–road relationship
representations into a time series vector but also reduce the requirement for sensing transient changes
in the surrounding area. A hierarchical long short-term memory network extracts environmental
features from two perspectives—social interactions and road constraints—and predicts the future
trajectories of vehicles by their manoeuvre categories. Accordingly, vehicle–road relationships net
fully exploits the contributions of historical trajectories and integrates the effects of road constraints
to achieve performance that is comparable to or better than that of state-of-the-art methods on the
next-generation simulation dataset.

Keywords: trajectory prediction; spatiotemporal awareness; spatiotemporal graph; vehicle–road
relationships

MSC: 68T07

1. Introduction

Vehicle trajectory prediction, an essential component of an automated driving sys-
tem (ADS), supports planning and decision-making for safe [1,2] and efficient resource
allocation [3], especially under highway conditions [4]. In traffic scenarios, vehicles are
the most dominant traffic participants and the dynamic obstacles with the greatest impact
on traffic safety. If the future trajectories of vehicles are accurately predicted, intelligent
systems will have the potential to build safer, more efficient and more comfortable trans-
portation paradigms [5,6].

The trajectories of vehicles in traffic scenes are inextricably linked to the changes in
their surroundings [7]. The dynamic interactions among traffic infrastructure elements
(e.g., roads and traffic lights) and traffic participants (e.g., vehicles and pedestrians) make
up complex and diverse traffic scenarios [8]. The traffic infrastructure constrains the move-
ments of participants who can move freely but are constrained by the infrastructure, and
accurate vehicle trajectory prediction in complex traffic environments requires considering
environmental constraints and social interactions [9–13]. Ju et al. propose a multilayer
architecture called interaction-aware Kalman neural networks (IaKNN), which involves
an interaction layer for resolving high-dimensional traffic environmental observations

Mathematics 2023, 11, 1293. https://doi.org/10.3390/math11061293 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061293
https://doi.org/10.3390/math11061293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6358-1840
https://orcid.org/0000-0002-3131-3275
https://doi.org/10.3390/math11061293
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061293?type=check_update&version=1


Mathematics 2023, 11, 1293 2 of 15

as interaction-aware accelerations, a motion layer for transforming the accelerations to
interaction-aware trajectories, and a filter layer for estimating future trajectories with a
Kalman filter network [9]. Deo and Trivedi propose an LSTM encoder–decoder model
that uses convolutional social pooling to learn inter-dependencies in vehicle motion and
outputs a multimodal predictive distribution over future trajectories based on maneuver
classes [10]. Guo et al. propose a dual-attention mechanism trajectory prediction method
based on long short-term memory encoding that is coupled with the motion trend of the
ego vehicle [11]. Chen et al. propose a new model structure, which uses a convolutional
social pool to extract general features and uses GAN to extract confidence features of the
generated trajectories, enabling the model to generate trajectories that are close to the real
trajectories [12]. Malviya and Kala present a multi-behavioural social force-based particle
filter to track a group of moving humans from a moving robot using a limited field-of-view
monocular camera [13]. Overall, these papers contribute to the development of more accu-
rate and robust trajectory prediction methods for various scenarios, such as complex traffic
systems and human–robot interactions. The proposed methods utilise different techniques
such as multilayer architecture, convolutional social pooling, dual-attention mechanism,
and social heuristics to enhance the accuracy and generalizability of the prediction models.

Two difficulties are currently faced with regard to vehicle trajectory prediction. On
the one hand, the combination of the elements in a traffic environment is complex, and
current methods are not yet able to reliably cover all elements that have impacts on
trajectories [14,15]. On the other hand, on the road, the motions of human-driven ve-
hicles are multimodal [16–19], which means that similar inputs should produce different
prediction results. In recent years, the problems concerning the social interactions be-
tween vehicles and the modelling of the relationships between vehicles and roads have
received attention from researchers, who have proposed many different models and meth-
ods aimed at constructing the interactions between the vehicles to be predicted and their
surroundings [20–22].

For highway scenarios, vehicle–road relationships (VRR)-Net, a network proposed for
predicting vehicle trajectories from a vehicle–road relationship perspective, includes a data
preprocessing strategy and an environment modelling framework. First, the input repre-
sentations of VRR-Net are unified by the idea of serialisation. The relationships between
vehicles and environments are mapped to the same representation space, thus extending
the feature-capturing advantage of the model for dynamic environments. Specifically,
a long short-term memory (LSTM) network with a similar structure separately extracts
the interactive features of vehicles with different kinds of environmental elements and
is hierarchically organised into a parallel structure. In addition, the social interactions
of vehicles are abstracted from the original inputs by a spatiotemporal graph structure,
which projects the social interactions into both the temporal and spatial dimensions. In the
proposed spatiotemporal graph structure, the movement changes exhibited by the vehicles
themselves are described by temporal edges, and the interactions between the vehicles are
described by spatial edges. The experimental results show that the temporalised spatiotem-
poral graph reinforces the social interactions and significantly improves the utilisation of
the information embedded in the historical trajectories by the social LSTM encoder.

The contributions of the proposed VRR-Net are summarised as follows.

• A serialised vehicle–road relationship model for highway scenarios is introduced,
which integrates the geometry of real highways and the relative positions of vehicles
and roads. The serialised model not only preserves the spatiotemporal dependencies
between vehicles and roads but also implicitly expresses the manoeuvring interaction
behaviours of vehicles that are parallel and perpendicular to the road direction,
making the interactions between vehicles and roads more closely related to the motion
features of the target vehicle.

• A novel intervehicle interaction model based on a spatiotemporal graph structure is
studied; this model abstracts social interaction information at the spatial level and
vehicle motion information at the temporal level. In cases where the instantaneous mo-
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tions of the observed vehicles are not accessible in real-time, both the local and overall
features of vehicle motions in dynamic traffic scenarios can be effectively extracted.

• A novel hierarchical environment encoder module with two LSTM layers is proposed
for simultaneously extracting the spatiotemporal features of the interactions of the
target vehicle with the road and with the surrounding vehicles. The network integrat-
ing vehicle–road and vehicle–vehicle relationships achieves better manoeuvre and
trajectory prediction accuracy in highway scenarios than competing approaches.

2. Related Work

The development of trajectory prediction methods has progressed from simple to
complex processes that can be outlined in three development stages.

The first-stage approaches try to deduce the future trajectory from only the historical
trajectory of the vehicle to be predicted. This approach is intuitive and consistent with vehi-
cle motion patterns. The kinematics-based approach [23–25] achieves superior short-term
prediction performance (within 1 s) by extracting physical quantities such as vehicle speeds,
constant yaw rates and acceleration values as vehicle motion characteristics [26]. It is worth
noting that vehicle manoeuvre categories are used as high-level information that reduces
the complexity of the motion model. Methods such as hidden Markov models [27], random
forest classifiers [28] and multilayer perceptrons [29] have considered the importance of
vehicle manoeuvre categories. However, regardless of this fact, their core ideas start from
the vehicle’s own motion characteristics only. When the prediction time exceeds 1 s, the
associations between future trajectories and physical laws are gradually weakened by the
driver’s intention, so they cannot produce reliable long-term trajectories [30] to support
the planning and decision-making of intelligent systems.

The second-stage approaches build on the previous stage by considering the influence
of the social interactions between the vehicles to be predicted and other traffic partici-
pants [31]. The methods in [32,33] demonstrated that considering the interactions among
surrounding vehicles helps to improve the accuracy of lane-changing behaviour prediction.
The effect of this influence on predicting the future trajectories of vehicles is considered
significant. Deo and Trivedi [10] proposed a social pooling mechanism to extract the fea-
tures of the interactions between vehicles based on recurrent neural networks and achieved
better long-term trajectory predictions. Guo et al. [11], Giuliari et al. [34] and Yan et al. [35]
proposed incorporating attention mechanisms into the field of trajectory prediction so that
their model could autonomously select the appropriate trajectory features for prediction
when training on massive historical data. Chen et al. [36] constructed a spatiotempo-
ral graph structure for intervehicle relationships and better extracted the spatiotemporal
interactions between vehicles.

In the third stage, researchers built on the second stage and started to study the
influence of the surrounding traffic infrastructure on the target vehicle [37]. In real traffic
scenarios, constraints and controls from traffic infrastructure, such as lane orientations, road
boundaries and traffic light scheduling, play important roles in determining the outcome
of trajectory prediction. However, it is still difficult to effectively model these complex
additions. Trajectron++ [15] and AgentFormer [38] process a high-definition (HD) map into
feature vectors via convolutional neural networks, thus giving the networks the ability to
perceive their environments. Although the aforementioned methods successfully model
the influence of roads on the future trajectories of vehicles using different structures, their
feature extraction abilities with respect to environmental influences are still inadequate.

Furthermore, the idea of VectorNet [39], LaneGCN [40] and prediction via graph-based
policy (PGP) [21] is to organise the roads contained in the input HD map into a graph
structure after segmentation and then use a graph convolutional network (GCN) to extract
road features, thereby effectively solving the multimodal trajectory prediction problem
in intersection scenes. Although the roads in highway scenarios are relatively simple,
with long sections and small turning angles, the constraining effect of roads on vehicle
behaviour still cannot be ignored. To comprehensively consider the environmental effects
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in this scenario and achieve better trajectory prediction accuracy, our study models both
the road constraints imposed on vehicles and the social interactions between vehicles. The
open next-generation simulation (NGSIM) dataset [41,42] is used to validate the method
proposed in this paper for a fair comparison with most existing methods.

3. Hierarchical Model with Spatiotemporal Awareness of Vehicle–Road Relationships

For an arbitrary vehicle at each time stamp on a highway, its future motion is influ-
enced by the environment, including both the road and the surrounding vehicles. The
serialised vehicle–road relationships are implemented by a vector transformation of the
vehicle trajectory points on the road geometry space, and the vehicle–vehicle relationships
are constructed using a spatiotemporal graph structure, including the target vehicle and its
surrounding vehicles. Furthermore, the proposed encoder extracts the temporalised fea-
tures of these two aspects simultaneously using LSTM networks. Therefore, the trajectories
output by the decoder are the result of a combination of the local and overall interactions
between the vehicle and its driving environment.

3.1. Problem Formulation

A figurative example is given in Figure 1. In this case, the traffic infrastructure is
characterised by a relatively fixed location, which acts as a constraint on the movements of
traffic participants; the traffic participants are characterised by the ability to move freely
but are constrained by the traffic infrastructure. In addition, dynamic social interaction
behaviours [9–13] occur among the traffic participants because of their willingness to avoid
collisions. Without considering the environmental constraints and social interactions, it
is impossible to accurately predict the future trajectories of vehicles in complex traffic
environments. Therefore, effectively modelling the constraints and interactions in traffic
scenarios is a problem that needs to be focused on for vehicle trajectory prediction.

Figure 1. An example of a traffic scenario depicting the relationships between the traffic infrastructure
and traffic participants.

At any time step in a freeway traffic scenario, there are two bases for predicting the
future trajectory of a target vehicle. The first is based on the spatial relationship between
the target vehicle and the road. Highway geometries and attributes (e.g., lane types, lane
widths, and lane orientations) limit the future trajectory of the target vehicle in the long
term. The second is based on the spatiotemporal interactions between the target vehicle
and its surrounding vehicles. Their historical trajectories implicitly influence the future
trajectory of the target vehicle as a result of their social interactions.

Both the vehicle trajectories and the geometry of the highway can be represented by
combinations of position points. Let p = (x, y) denote the position point in the scene,
where x, y ∈ R are the lateral and vertical coordinates, respectively.
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The road segments of highways are linearly distributed in the road network with
a wide road surface, a long distance, less curvature and directional characteristics. We
approximate the curved road segments by several straight segments; thus, the road network
can be partitioned and represented as a set of straight road segments:

RS = {rj | j = 1, . . . , m}, (1)

where m is the number of segments obtained from the partition, and each segment
rj =

(
p

rj
s , p

rj
e

)
can be labelled by a start position point p

rj
s =

(
x

rj
s , y

rj
s

)
and an end po-

sition point p
rj
e =

(
x

rj
e , y

rj
e

)
.

Without loss of generality, let v0 denote the target vehicle to be predicted, and let
v1, . . . , vn denote the n vehicles around v0. Then, the observed trajectory of each vehicle
vi(i = 0, 1, . . . , n) is denoted as

Tvi = {pvi
t | t = −H + 1,−H + 2, . . . , 0}, (2)

where H ∈ N+ is the number of observed historical time steps, and pvi
t = (xvi

t , yvi
t ) is the

position of vehicle vi at time step t. Correspondingly, the predicted trajectory of target
vehicle v0 in the future is

T̂ = { p̂t | t = 1, 2, . . . , F}, (3)

where F ∈ N+ is the number of predicted future time steps, and p̂t = (x̂t, x̂t) is the
position of the target vehicle v0 at time step t. Figure 2 illustrates the architecture of the
proposed vehicle trajectory prediction model for learning vehicle-road relationships and
vehicle-vehicle relationships in highway scenarios.

Figure 2. Architecture of the proposed vehicle trajectory prediction model for learning vehicle–road
relationships and vehicle–vehicle relationships in highway scenarios.

According to the classifications of manoeuvres mentioned in [10], when a vehicle is
driving along a highway, the lateral manoeuvres of the vehicle in the parallel road direction
are classified as braking and normal, and the longitudinal manoeuvres of the vehicle in the
perpendicular road direction are classified as left lane changes (LCLs), lane keeping (KL)
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and right lane changes (LCRs). There are six combinations of the results in both directions,
which are represented by one-hot codes.

3.2. Serialised Vehicle–Road Relationships

To represent the spatiotemporal relationships between vehicles and roads during
the driving procedure, a generalised vehicle trajectory point transformation method is
established based on the geometry of road segments.

As shown in Figure 3, given any trajectory point P in the xOy coordinate system, let a
vector r denote the segment in which P is located, where S = pr

s denotes the starting point
of r, and E = pr

e denotes the ending point of r. Then, the projection point P′ of P on
−→
SE can

be represented by the
−→
OP′ vector as follows:

−→
OP′ =

−→
OS +

−→
SP · −→SE∣∣∣−→SE

∣∣∣2 ·
−→
SE. (4)

According to Equation (4), the distance from point P to vector r can be expressed as:

d(P, r) =
∣∣∣−→P′P∣∣∣, (5)

and r denotes the element in road segment RS (as shown in Equation (1)) with the shortest
distance d(P, r).

Figure 3. Schematic diagram of the relationships between vehicles and road segments.

In this way, the vector combination with the projection point as the turn is equivalent
to the original trajectory points; i.e., they satisfy the following vector relation:

−−−−→
eq : OP =

−−→
Opvi

t
′
+
−−−→
pvi

t
′pvi

t , (6)

where the projection point
−−→
Opvi

t
′ reflects the position of the vehicle in the parallel road

direction and
−−−→
pvi

t
′pvi

t reflects the position of the vehicle in the perpendicular road direction.
Moreover, to eliminate the differences among the representations of points in different
coordinate systems, the shift alignment method, with the projection point pvi

0
′ at the

end of the trajectory as the coordinate origin, is applied for vehicle trajectory sequence
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alignment. Thus, the serialised vehicle–road relationships can be expressed in a form
similar to Equation (2) as follows:

Rvi =

{
(
−−−−→
pvi

t
′pvi

0
′,
−−−→
pvi

t
′pvi

t −
−−−→
pvi

0
′pvi

0 ) | t = −H + 1, . . . , 0
}

, (7)

where Rvi is the vehicle–road relationship sequence of vi, pvi
t and H have the same meanings

as in Equation (2), pvi
t
′ denotes the projection point of pvi

t on the road segment, and
−−−→
pvi

t
′pvi

t
denotes the vector from the projection point to the original trajectory point.

3.3. Spatiotemporal Graph Construction

The historical trajectories of the target vehicle and its surrounding vehicles are used
to construct a spatiotemporal graph structure centred on the spatiotemporal location of
the predicted object, which highlights the local vehicle motion information and the relative
spatiotemporal location relationships of the vehicle interactions while preserving the vehicle
motion trends.

As shown in Figure 4, given a set of vehicle history trajectories {Tv0 , Tv1 , . . . , Tvn}
composed of the elements shown in Equation (2), the spatiotemporal graph structure
G = {V, ET , ES} is constructed, where

V =
{

pvi
t | i ∈ {0, . . . , n}, t ∈ {−H + 1, . . . , 0}

}
(8)

denotes the set of vertices composed of the vehicle trajectory points.

ET =
{
(pvi

t , pvi
t−1) | i ∈ {0, . . . , n}, t ∈ {−H + 2, . . . , 0}

}
(9)

denotes the directed temporal edge from pvi
t to pvi

t−1, which implicitly expresses the local
motion information of the same vehicle with the physical meaning of the vehicle velocity.

ES = {(pv0
0 , pvi

t ) | i ∈ {0, . . . , n}, t ∈ {−H + 1, . . . , 0}} (10)

denotes the directed spatial edge from pv0
0 to pvi

t , which portrays the relationship between
the trajectory points at different spatiotemporal locations and the current position of the
target vehicle.

In the proposed spatiotemporal graph, the value of each vertex is a positional coor-
dinate such as p = (x, y), so the values of the edges can be represented by vectors such

as
−−−−→
pv0

0 , pvi
t . In addition, except for the vertex at time step t = 0, all the vertices have two

entry degrees from a time edge and a space edge. Since the time edges have the physical
meaning of velocity, the time edges from t = −1 to t = −2 are replicated between t = 0 and
t = −1 to unify the incidences of all vertices in the graph, and the new vehicle trajectory is
represented by the values of the incidence edges as follows:

ST =

{
(
−−−−−→
pvi

t , pvi
t−1,
−−−−−→
pv0

0 , pvi
t−1) | i ∈ {0, . . . , n}

}
,

t ∈ {−H + 2, . . . , 0} ∪
{
(
−−−−→
pvi

0 , pvi
−1,
−−−−→
pv0

0 , pvi
0 ) | i ∈ {0, . . . , n}

}
,

(11)

where STvi denotes the temporal representations of the relationships between the vehicles.
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Figure 4. Structure of the spatiotemporal graph constructed using vehicle trajectories.

3.4. Hierarchical Environmental Module

To synthetically model the road and social environment information around the target
vehicle, a two-layer LSTM-based architecture is used for separately extracting serialised
vehicle–vehicle and vehicle–road interaction features. In highway scenarios, these two
features are directly and closely related to the manoeuvring behaviour and future trajectory
of the target vehicle.

According to the relationship serialisation methods elaborated on in Sections 3.2 and 3.3,
the road LSTM encoder is used to encode a sequence of relationships Rv0 between the
target vehicle v0 and the roads, and the social LSTM encoder is used to encode the sequence
ST of the relationships between v0 and its surrounding vehicles v1, . . . , vn based on the
spatiotemporal graph. The two LSTM encoders are described in detail below.

• Road LSTM Encoder: For the target vehicle v0, at each time step t, the vector combina-
tion Rv0

t ∈ Rv0 with two-coordinate values, as shown in Equation (7), is embedded
into a fixed-length vector f r

t for the subsequent decoding step.

er
t = FC

(
Rv0

t , Wemb
r

)
, (12)

hr
t = LSTM

(
hr

t−1, er
t , W lstm

r

)
, (13)

f r
t = FC

(
hr

t , W linear
r

)
, (14)

where FC(·) is a fully connected layer employed as an input embedding function
and hr

t is the hidden state generated by this layer. The capital letter W in this paper
denotes the weights of the different network layers, the superscript of each weight
indicates its function, and the subscript indicates that it belongs to a specific part of
the network.

• Social LSTM Encoder: For the target vehicle v0 and its surrounding vehicles v1, . . . , vn,
at each time step t, their edge values STvi

t ∈ ST based on the spatiotemporal graph, as
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shown in Equation (11), are embedded in fixed-length vectors f v
t and f s

t , respectively,
for the subsequent decoding process.

evi
t = FC

(
STvi

t , Wemb
s

)
, (15)

hvi
t = LSTM

(
hvi

t−1, evi
t , W lstm

s

)
, (16)

f v
t = FC

(
hv0

t , W linear
s

)
, (17)

f s
t = CSP

(
{hv1

t , . . . , hvn
0 }, Wcsp

s

)
, (18)

where hvi
t is the hidden state generated by the social LSTM layer, and CSP(·) is the

convolutional social pooling layer proposed in [10].

After passing through the above hierarchical network, the vehicle–road relationship
feature f r

t , the motion feature f v
t of the target vehicle and the social interaction feature

f s
t are extracted separately from the serialised input data, and then the three features are

connected and used as the historical feature ft output by this module.

3.5. Multimodel Prediction Module

The context vector outputs from the hierarchical environment module are used to
decode the manoeuvres and future trajectories of vehicles. Vehicle manoeuvre estimation
helps to solve multimodal problems in highway traffic scenarios, leading to more accurate
trajectory prediction results.

According to the manoeuvre classification method mentioned in Section 3.1, the lateral
and longitudinal manoeuvres are decoded by two fully connected layers with different
output sizes and activated by the softmax function as a probability estimate of the target
vehicle manoeuvre m̂. Furthermore, the predicted manoeuvre loss is calculated by a binary
cross-entropy function.

The future trajectory prediction of the target vehicle combines the manoeuvre decoding
results and the context vectors output by the hierarchical environment module. A trajectory
decoder consisting of an LSTM layer and a fully connected layer is used to output the
sequence of predicted trajectories.

ĥt = LSTM
(

ĥt−1, ft, W lstm
dec

)
, (19)

(µt+1, σt+1, ρt+1) = FC
(

ĥt, W linear
dec

)
, (20)

p̂t ∼ N(µt, Σt), (21)

where p̂t =
(

x̂v0
t , ŷv0

t
)

is the predicted trajectory coordinate of the target vehicle at time step
t, and N(·) is a binary Gaussian distribution function. µt, Σt are the mean and covariance
matrix of the two variables, respectively. Therefore, the loss of predicted trajectories can be
calculated by the negative log-likelihood (NLL) error.

4. Experiments

The NGSIM dataset is used to validate the performance of the proposed model, which
outperforms the baseline approach and some state-of-the-art methods. Smaller root-mean-
square error (RMSE) and NLL error values are achieved for the vehicle trajectory prediction
task in freeway traffic scenarios due to the effective features extracted from the serialised
vehicle–road and vehicle–vehicle relationships by the hierarchical environment module. In
addition, the effectiveness of the vehicle–road geometry relationships and vehicle–vehicle
spatiotemporal relationships for manoeuvre and trajectory prediction is demonstrated by
ablation experiments.
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4.1. Datasets and Model Training

NGSIM is a large open highway vehicle driving dataset that contains real vehicle
travel data and corresponding geographic information system (GIS) files for the US-101
and I-80 freeways. On each of the two freeways, the NGSIM authors, the Federal Highway
Administration (FHWA) in the USA, selected data collection areas of 500 and 640 m and
collected vehicle driving data for 15 min each under light, moderate, and heavy traffic
conditions at different times, with a temporal sampling frequency of 10 Hz. As a result, the
dataset contains million-scale vehicle location information, and these data are organised
into a sequence of vehicle trajectories in temporal order.

The NGSIM dataset consists of samples and is partitioned to be consistent with
previous works [10,11,36]. First, the dataset is partitioned into training, validation and test
sets at a ratio of 7:1:2 by time period. Second, the length of each trajectory sample is set
to 8 s, where the first 3 s are used for observation and the last 5 s are used for supervised
labelling. Third, vehicles within 90 feet of the target vehicle in the adjacent lane are treated
as surrounding vehicles. If too many vehicles are located within the range (more than 39),
e.g., the vehicles are in a congested state, the vehicles that are farthest away are discarded.
Finally, for each trajectory point, the amount of data is reduced by using interval sampling,
that is, using a sampling rate of 5 Hz. Thus, the observed length of each trajectory is
15 frames, and the predicted length is 25 frames.

In addition, the GIS files in NGSIM provide geometric and attribute information for
the study area, where the geometric information is vectorised. As shown in Figure 5,
road maps are extracted from this geometric information so that the relationships between
vehicles and roads can be described in the same coordinate system. Figure 5a,b show
the visualization of the road area and corresponding road lines in two different scenarios,
which were used for training and testing our method.

(a) (b)

Figure 5. Highway maps of the study area based on the geometry and attributes contained in the
GIS files.

The construction of the VRR-Net model is based on the PyTorch framework. The
model is trained with a batch size of 128 and an initial learning rate of 0.001 using the Adam
optimiser. In the road encoder and the social encoder, the fully connected layers are acti-
vated by a leaky rectified linear unit (Leaky-ReLU) function with an output dimensionality
of 32, and the output of the social pooling layer has 80 dimensions. The output dimensions
of the LSTM in the encoder and in the trajectory decoder are 64 and 128, respectively.
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4.2. Evaluation Metric and Performance Comparison

In evaluations regarding highway vehicle trajectory prediction, the RMSE is widely
used, and it is used as evaluation metrics in this paper to conduct a fair comparison and
analysis. At each different prediction horizon t, the RMSE is calculated based on the relative
errors as follows:

RMSEt =

√
1
n

n

∑
i=1

(|pt − p̂t|)2, (22)

where n is the total number of samples in the test set, and pt and p̂t are the ground truth
and predicted values of each target vehicle, respectively. Based on the RMSE, the method
proposed in this paper outperforms the following baseline methods.

• CS-LSTM [10]: CS-LSTM is an LSTM encoder–decoder-based model, and the proposed
convolutional social pool improves the ability of the model to extract intervehicle
relationships and output a multimodal predictive distribution based on manoeuvre
categories.

• ST-LSTM [36]: ST-LSTM achieves improved prediction performance by using a stacked
LSTM encoder–decoder model to process the spatiotemporal graph structure con-
taining vehicle relationships, which directly describes the relationships between the
vehicle trajectory points.

• Scale-Net [43]: The Scale-Net utilises an edge-enhanced graph convolutional neural
network to solve the dynamic number input problem of the embedding layer, which is
decoded by the LSTM encoder; finally, the prediction result is output by a multilayer
perceptron.

• Ego-Trand [11]: Guo’s method separately uses an attention mechanism for both the
temporal and spatial dimensions and constructs an LSTM encoder–decoder structure
with a dual-attention mechanism.

• CF-LSTM [44]: CF-LSTM constructs a social force based on a physical approach
to learn contextual features using a teacher–student model, which has the effect of
reducing the collision rate of the trajectories generated by the LSTM encoder–decoder
network.

• MHA-LSTM [45]: MHA-LSTM also uses an attention mechanism to emphasise the
importance of the surrounding vehicles, which improves the trajectory prediction
performance of the LSTM encoder–decoder network.

In this paper, Table 1 is presented to showcase the accuracy comparison between our
proposed methods and recent studies, with the RMSE evaluation metric. The VRR-Net
model, which combines vehicle–road relationships and vehicle–vehicle relationships, sig-
nificantly outperforms other models, such as CS-LSTM, ST-LSTM, and Scale-Net, all of
which are similar in size but do not use attention mechanisms, for predicting the trajectories
of vehicles from 0 to 5 s in the future. Despite using a graph structure to represent the rela-
tionships between vehicles, the VRR-Net model has a 12% relative reduction in prediction
error in this timeframe. Compared with the LSTM encoder–decoder models, Ego-Trand
and CF-LSTM, which use attention mechanisms, the VRR-Net model achieves comparable
results from 0 to 3 s but has an advantage in long-term prediction errors after 3 s. Notably,
the advantage of the VRR-Net model over the teacher–student model (CF-LSTM) becomes
increasingly apparent in long-term prediction scenarios. The serialised representations
of the vehicle–road relationships, coupled with a feature extraction process, enable the
VRR-Net model to more comprehensively perceive its environmental context, thereby pro-
ducing more reliable long-term prediction results. Overall, these results demonstrate that
VRR-Net is a promising trajectory prediction model that can achieve superior performance,
particularly for long-term prediction tasks in dynamic traffic scenarios.
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Table 1. The RMSE performance of the proposed model and the existing advanced models are
compared on the NGSIM dataset. The best result is marked in black.

Prediction CS ST Scale Ego CF MHA VRR
Horizons -LSTM -LSTM -Net -Trend -LSTM -LSTM -Net
(Second) [10] [36] [43] [11] [44] [45] (Our)

1 0.61 0.51 0.46 0.50 0.55 0.41 0.47
2 1.27 1.21 1.16 1.11 1.10 1.01 1.08
3 2.09 2.01 1.97 1.78 1.78 1.74 1.79
4 3.10 3.01 2.91 2.69 2.73 2.67 2.65
5 4.37 4.31 - 3.93 3.82 3.83 3.71

4.3. Ablation Studies

The VRR-Net model is decomposed into multiple components, and comparative
experiments are conducted to verify the impacts of these different components on the final
prediction accuracy. To validate the effectiveness of the spatiotemporal graph-based social
encoder, the spatiotemporal graph is deconstructed into the case in which only spatial edges
and both spatiotemporal edges are used. The serialised vehicle–road relationships and
the road encoder are treated as independent components to verify the effect of the vehicle–
road relationships on the trajectory prediction results. Furthermore, the CS-LSTM and
ST-LSTM approaches are used as a baseline for comparison purposes, and the experiments
are performed on the same NGSIM dataset with the same parameters. Thus, the following
three ablation cases are validated:

• VRR-Net without the temporal edges and road encoders;
• VRR-Net without the road encoder;
• VRR-Net.

As shown in Figure 6, the social encoder of VRR-Net is able to capture the social
interaction features between vehicles more effectively from the spatiotemporal graph
structure, while the VRR-Net model without temporal edges and the road encoder is
inferior in performance to the model that encodes both temporal and spatial edges, as
well as to the two baseline approaches. The reason for this is that the historical trajectories
of the surrounding vehicles are not sufficiently exploited to obtain sufficiently effective
features. In contrast, the road encoder further improves the accuracy of trajectory prediction,
indicating that the vehicle–road relationships and the road encoder effectively enhance the
prediction network’s ability to acquire the features of vehicle surroundings.

Figure 6. Comparison among the predictions of the three ablated versions of the proposed model
under the RMSE loss function, where CS-LSTM and ST-LSTM are the baselines for comparison.
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5. Conclusions

The VRR-Net model proposed in this paper integrates the influences of traffic partici-
pants and traffic infrastructure to predict vehicles. In terms of input features, VRR-Net only
uses vehicle position data to build a spatiotemporal relationship graph, avoiding the use of
instantaneous velocities and instantaneous accelerations, which are difficult to obtain in
real-time from the surrounding vehicles. This spatiotemporal relationship structure is easy
to vectorise and serialise and can effectively extract the environmental features around
the vehicle to be predicted. In terms of model structure, VRR-Net adopts a hierarchical
design with high scalability. Two parallel LSTM networks are used to address vehicle–road
relationships and vehicle–vehicle relationships, and a manoeuvre decoder and a trajectory
decoder comprehensively consider both kinds of relationships, thereby further enhancing
the model’s feature extraction capability for traffic environments. Experimental results
obtained on the NGSIM dataset demonstrate that VRR-Net is able to effectively exploit the
observed vehicle–road relationships and achieve improved vehicle trajectory prediction
performance over that of models that also use LSTM to extract features. Thus, the model’s
success is attributed to its ability to integrate the spatiotemporal dependencies between
vehicles and roads, the intervehicle interaction information, and the social interaction be-
haviors of traffic participants, which are crucial to predicting vehicle trajectories in complex
traffic scenarios. We install four cameras around the vehicle for testing on a highway, and
the results show that the proposed method can effectively predict the trajectories around
the vehicle. Based on the results, it is evident that the proposed VRR-Net model achieves
superior trajectory prediction performance, especially in long-term prediction tasks in
dynamic traffic scenarios. However, it is essential to consider the cost of implementing
this solution in real-world applications. The VRR-Net model requires additional data
processing and feature extraction steps, which may increase the computational cost and
complexity of the system. Furthermore, the training process of the VRR-Net model may
also require more time and resources than simpler models that do not incorporate attention
mechanisms or vehicle–road relationships.

Indeed, other complicated influences are included in real traffic scenarios, in addition
to the influences of roads and surrounding vehicles. In future work, we will consider
the influences of other traffic infrastructures in high-speed traffic scenarios on vehicle
trajectories. Additionally, the generalisation capability and interpretability of the proposed
model will be considered in more traffic scenarios. With further research, our future
trajectory prediction approach will become more accurate and practically applicable.
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