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Abstract: The influence of the throughflow and gravity fluctuation on thermosolutal convection in
an anisotropic porous bed with the Darcy–Brinkman effect is considered numerically. The critical
Rayleigh numbers for the onset of stationary and oscillatory modes have been found via linear
instability analysis. The impact of various gravitational functions in the presence of throughflow
on stability is studied. The analysis has been carried out for decreasing and increasing gravity
fluctuations. The convective problem has been numerically analyzed using a single-term Galerkin
approach. The results show that the mechanical anisotropy parameter and Lewis number have a
destabilizing effect, while the thermal anisotropy parameter, Darcy number, solutal Rayleigh number,
throughflow parameter, and gravity parameter have a stabilizing effect on stationary and oscillatory
convection. It is clear that the system changes in a way that makes it more stable for case (iii) gravity
fluctuation and more unstable for case (iv) gravity fluctuation.

Keywords: double-diffusive convection; Brinkman model; anisotropy; throughflow; changeable gravity

MSC: 76Rxx; 74E10; 37L65

1. Introduction

Many fields, including the petroleum industry, binary mixture solidification, and
solute movement in water-saturated soils, significantly benefit from the investigation of
double-diffusive convection in porous media. The Earth′s oceans, crystallization processes,
electrochemistry, moisture movement via fibrous insulation, geophysical phenomena, and
magma chambers are further examples. Researchers have been interested in convective heat
transfer in porous media for many years. This interest was sparked by a variety of thermal
engineering applications in several fields, including the modeling of packed spherical beds,
thermal insulation engineering, geophysics, groundwater hydrology, coal combustors,
petroleum reservoirs, and others. Due to its applications in engineering, geophysics, and
bottom hydrodynamics, the throughflow effect on double-diffusive convection in a porous
media is a crucial concept. The mushy zone, which is thought of as a porous layer with a
double-diffusive origin, appears in concentrated alloys and is thought to play a significant
role in the directed solidification of those alloys. Layer height causes the fundamental state
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temperature profile of throughflow to shift from linear to nonlinear, which has a substantial
impact on the system′s stability.

Anisotropy in porous configuration, caused by a quasi-arrangement of porous beds
or fibers, is abundant in nature and has numerous practical uses. Anisotropic porous
media include rock, soil, and fiber-insulating materials. Castinel and Combarnous [1]
were the first to investigate thermal instability in a porous matrix layer with anisotropic
permeability. They determined the conditions for the onset of convection both empirically
and conceptually. Epherre [2] expanded the stability investigation on anisotropic porous
beds to thermal diffusivity effects. Kvernvold and Tyvand [3] investigated nonlinear
instability caused by a thermal expansion in a porous bed, and they theoretically found
the condition for convective stability. Later, Malashetty and Swamy [4], Govinder [5],
Shivakumara et al. [6], Degan et al. [7], Payne et al. [8], Rees and Postelnicu [9], and Yadav
and Kim [10] investigated the issue. Mahajan and Nandal [11] extended this problem to
thermosolutal convection with Coriolis and Brinkman effects.

The gravitational field has been shown to fluctuate in elevation from its planes in a
wide range of relevant situations. We generally overlook this gravity difference in labora-
tory studies and assume that gravity force is steady. To a considerable degree, however, it
is necessary to understand the changing quality of gravity. In this regard, the examination
of instability in a porous bed with fluctuating gravitational forces seems critical. However,
research into the effects of a changing gravity field in a porous media is quite restricted.
Alex and Patil [12] have investigated the effect of the linear type of gravity fluctuation
on the initiation of flow in a porous bed and discovered that decreasing the fluctuation
improved the arrangement′s stability. Rionero and Straughan [13] looked into the impact
of different types of gravity fluctuation at the start of penetrative convective flow in a
porous bed. A single-layer system with gravity variation and throughflow in a Brinkman-
type porous media was investigated by Gangadharaiah et al. [14]. Suma et al. [15] and
Gangadharaiah et al. [16] used the perturbation method to analyze the joint impact of the
Peclect number and gravity fluctuation on the commencement of instability in a porous
bed by considering the linear variation in gravity with height. Yadav [17] expanded this
problem for surjection and injection and showed that the upward throughflow parameter
enables the postponement of the commencement of the flow. Recently, Gangadharaiah
et al. [18] investigated the impact of gravity fluctuation on the stability of double-diffusive
problems in a fluid layer with throughflow. The researcher may refer to Mahabaleshwar
et al. [19], Mahajan and Tripathi [20], Yadav et al. [21], Yadav et al. [22], and Yadav [23]
for additional information. Double-diffusive convection in a porous media exposed to
temperature/gravity modulation was explored by Siddheshwar et al. [24]. In an anisotropic
porous layer with an internal heat source that is heated and salted from below, Bhadau-
ria [25] investigated double-diffusive convection. In the presence of a concentration-based
internal heat source, Deepika et al. [26] investigated the start of double-diffusive convec-
tion in a horizontal fluid-saturated porous layer. Using the Landau model, Gaikwad and
Preeti [27] investigated how throughflow and gravity modulation affected double-diffusive
convection in porous media saturated with a couple-stress fluid.

According to a review of the literature, throughflow impacts on the solutal convective
flow in a porous bed with Darcy–Brinkman effects and an unequal gravity variation have
not yet been explored. Such studies might be very helpful in the understanding of massive
movements, such as the processing of materials, pollutant passage in saturated soils, the
Earth′s crust, atmosphere, and ocean, as well as fuel penetration, and crystal formation, for
which both injection and suction can be crucial to controlling convective instability. The
present work′s major goal is to analyze how throughflow and a changing gravity field
interact to affect the onset of Darcy–Brinkman′s solutal convective motion in a porous
bed to understand the significance of such an issue. The plan of this research paper is as
follows: In Section 2, we describe the considered problem. In Section 3, the analysis of
linear instabilities is performed. The technique of the solution is described in Section 4.
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The numerical results and discussions are presented in Section 5. The research ends with
conclusions in Section 6.

2. Materials and Methods

The simplified physical model of double-diffusive convection, shown in Figure 1,
is an infinite anisotropic bed enclosed by surfaces z = 0 and z = d. A cartesian frame
of reference is chosen in such a way that the origin lies on the lower plane and the z-
axis is vertically upward. Let ∆T& ∆C represent differences of the temperature and
concentration, respectively, where T0 , C0 are the temperature and concentration of the
upper plates, respectively. The physical configuration of the model is reported in Figure 1,
with a vertical throughflow velocity w0 and gravity effect g(z) = (1 + δh(z))g. The Darcy–
Brinkman model for the motion of the binary fluid mixture, according to the Boussinesq
approximation, are
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Figure 1. Physical model.

The flow governing equations are

∇ ·
→
V = 0 (1)

ρ0

∂
→
V

∂t
+

(→
V · ∇

)→
V

 = −∇p− µ

K

→
V + µ∇2

→
V − ρ g(z) k̂ (2)

∂T
∂t

+

(→
V · ∇

)
T = κ∇2T (3)

∂C
∂t

+

(→
V · ∇

)
C = κS∇2C (4)

ρ = ρ0{1 + αC(C− C0)− αT(T − T0)} (5)

The boundary conditions are

C = C0 + ∆C, T = T0 + ∆T at z = 0 (6)

C = C0, T = T0 at z = d (7)

The basic state of the fluid is

(u, v, w, T, p, ρ, C) = [0, 0, w0, Tb(z), pb(z), ρb(z), Cb(z)] (8)
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Infinite disturbances of the form are added to test the stability of the basic solution

(u, v, w, T, p, ρ, C) = [0, 0, w0, Tb(z), pb(z), ρb(z), Cb(z)] +
[
u′, v′, w′, T′, p′, ρ′, C′

]
(9)

where the disturbed quantities are those over their equilibrium counterparts that are primed.
Substituting Equation (9) into Equations (1)–(5) and operating the curl twice on Equation
(2), eliminate the pressure term from it to obtain dimensionless equations as

1
Pr

∂

∂t
∇2w +

(
∇2

1 +
1
ξ

∂2

∂z2

)
w− Da∇4 w =

{
R ∇2

1T + Rs ∇2
1C
}

G(z) (10)

∂T
∂t

= ∇2
1T + w fT(z) (11)

∂C
∂t

= Le∇2
1C + w fC(z) (12)

where
a2 = l2 + m2,∇2

1 = ∂2

∂x2 +
∂2

∂y2 and ∇2 = ∇2
1 +

∂2

∂z2

R = αg ∆Td3

ν κ is the thermal Rayleigh number

Rs = ρsg ∆Cd3

ν κs
is the solutal Rayleigh number

Le = κs
κ is the Lewis number

Pr = v
κ is the Prandtl number

G(z) = 1 + δ h(z) is the gravity function
h(z) is the gravity fluctuation

fT(z) =
−QeQz

eQ−1 is the dimensionless function

fC(z) = −Le Q
(

eLe Q z

1−eLe Q

)
is the dimensionless function

Q is the throughflow parameter

3. Linear Stability Analysis

To study linear stability analysis according to the solution of the eigenvalue problem
defined by Equations (10)–(12) and subject to the boundary condition, use time-dependent
periodic disturbances in the horizontal plane:

(w, T , C) = {W(z), Θ(z), Φ(z)} exp[i(lx + my) + σt] (13)

On applying of Equation (13) into Equations (10)–(12), we can write:{
Da
(

D2 − a2
)
− σ

Pr

}(
D2 − a2

)
W −

(
1
ξ

D2 − a2
)

W =
{

R a2θ − Rs a2S
}

G(z) (14)

(
D2 − ηa2 −QD− σ

)
θ = W fT(z) (15)(

D2 − a2 − σLe
)

S = W fC(z) (16)

The linearized boundary conditions are:

W = DW = θ = S = 0 at z = 0 and z = 1 (17)

where D = d
dz .
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4. Technique of Solution

Using the Gelarkin method, the eigenvalue problem described by Equations (14)–(16)
is solved. To achieve a non-trivial solution to the eigenvalue problem with assumed
boundary conditions, assume the solution of the form

W = A1 sin(nπz), Θ = A2 sin(nπz), Φ = A3 sin(nπz) (18)

Substituting (18) into (14)–(16) and integrating between z = 0 and z = 1, the following
matrix equations are obtained:−(n2π2 + a2) R P1 Rs P1

P2 −
(
n2π2 + a2 + σ

)
−
(
n2π2 + a2)

Rs P3 Le −Le
(
n2π2 + a2) −

(
n2π2 + a2 + δLe σ

)
 A1

A2
A3

 =

0
0
0

 (19)

Rc =
−∆
{
(Da∆ + σ) (∆ + Da δLe σ)− Le ∆2}
P1P2 {(−Da∆− δLe σ) + Le ∆} +

Rs P3 {−∆Da + Le∆ + σ}
P2 {(−∆Da− δLe σ) + Le ∆} (20)

where ∆ = n2π2 + a2, P1 =
1∫

0
a2 G(z) sin(nπz) dz, P2 = 1

Le a2 Rs
1∫

0
fT(z) sin(nπz)G(z) dz,

and P3 =
1∫

0
fC(z) sin(nπz) dz.

4.1. Stationary State

The values of the thermal Rayleigh number and the corresponding wave number of
the system for a stationary mode are obtained by using the growth rate parameter σ = 0

(Rc)st =
1
a2

[{
n2π2

ξ
+ a2 + Da

(
n2π2 + a2

)2
}(

n2π2 + ηa2
)]

+ Le Rs
(
n2π2 + ηa2)

(Le + n2π2 + a2)
(21)

4.2. Limiting Case

For Da = 0 and G(z) = 1 , Equation (21) reduces to

(Rc)st =
1
a2

[{
n2π2

ξ
+ a2

}(
n2π2 + ηa2

)]
+ Le Rs

(
n2π2 + ηa2)

(Le + n2π2 + a2)

which is the result obtained by Malashetty and Biradar [28].

4.3. Oscillatory State

For the corresponding wave number of the system for the oscillatory mode of convec-
tion, we now set σ = i σi in Equation (20) and the oscillatory mode reduces it to

(Rc)os =

{
n2π2

ξ + a2
}(

n2π2 + ηa2){∆2 (1− Le Da)
}
+ Rs

{
∆2Da (1− Le )− Le δ σ2

i
}{

∆2 (1− Le)2 + Le2 δ2 σ2
i

} (22)

where the oscillatory frequency is σ2
i =

a2Rs(n2π2+Le a2)
(Le+δn2π2+a2)

+ δ∆2Da (1−Le)
1+Le2δ2 .

The critical Rayleigh number, Rc, values are generated from (Rc)st and (Rc)os for
corresponding values of wavenumber a.

5. Results and Discussion

In this section, we discuss the effects, numerically and graphically, of the parameters
in the governing equations on the onset of double-diffusive convection described by Darcy
and Brinkman in an anisotropic porous bed. The stationary and oscillatory expressions for
different values of the parameters, such as the gravity parameter, the mechanical anisotropic
parameter, the Lewis number, the Darcy number, the thermal anisotropic parameter, the
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throughflow parameter, and the solute Rayleigh number, with different gravity fluctuations,
are computed, and the results are depicted in the figures. The study focused on two specific
types of gravity fluctuations: 1. Decreasing gravity fluctuations: case (i) h(z) = −z, case
(ii) h(z) = −z2, and case (iii) h(z) = −(ez − 1). 2. Increasing gravity fluctuations: case (iv)
h(z) = ez case(v) h(z) = z, and case (vi) h(z) = log(1 + z). The critical values Rc and a2

with δ, when throughflow is (Q = 0) and solute concentration is ((Rs = 0), are computed,
and discovered to accord well with Rionero and Straughan [13] (see Table 1).

Table 1. Effect of Rc and a2 with δ with Q = Da = Rs = 0 for two types of gravity scenarios.

Present Work Rionero and Straughan [13]

h(z) δ Rc a2 Rc a2

−z
0 39.477 9.871 39.478 9.870
1 77.050 10.208 77.080 10.209

1.5
1.8
1.9

132.020
189.904
212.286

12.313
17.197
19.475

132.020
189.908
212.281

12.314
17.198
19.470

−z2
0 39.478 9.872 39.478 9.870

0.2 41.832 9.873 41.832 9.874

0.4
0.6

0.81

44.455
47.389
50.682
54.390

9.885
9.916
9.962

10.035

44.455
47.389
50.682
54.390

9.887
9.915
9.961

10.034

Figures 2 and 3 show, for various values of the throughflow parameter Q, the funda-
mental temperature gradient fT(z) and fundamental concentration gradient fC(z) against
the depth of the porous bed. It is noticed that the highest values of the temperature and
concentration gradients occur at the lower boundary (z = 0) for each quantity of downward
throughflow. The temperature and concentration gradients at the bottom, however, are the
lowest for each parameter, determining the amount of upward throughflow.
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Rs = 10, Da = 0.1, ξ = 0.5, η = 0.5 and δ = 0.5.

Figure 4 illustrates the effect of Rc in both stationary and oscillatory modes with
respect to the gravity parameter δ. The results indicate that lower values of Rc are needed
for convection motion, because as δ values rise, Rc decreases. This occurs because a rise
in the value of δ raises the gravity in the case of a growing gravitational field; hence,
convection starts more quickly. However, with decreasing types of gravitational field, Rc

rises as the values of δ increases. Furthermore, in case (iii), the gravitational field is more
stable when compared to the remaining types of gravity fluctuation.

Mathematics 2023, 11, 1287 8 of 16 
 

 

field; hence, convection starts more quickly. However, with decreasing types of gravita-
tional field, cR  rises as the values of δ  increases. Furthermore, in case (iii), the gravi-
tational field is more stable when compared to the remaining types of gravity fluctuation. 

 

Figure 4. Plot of cR  versus δ  for different scenarios of gravity with 0.5, 10,= =Le Rs 0.1,=Da
0.5, 0.5ξ η= =  and 0.5.δ =  

Figures 5 and 6 display the deviance of cR  with Q  for all categories of gravity 
function with 100=Da  (Rayleigh Bénard convection) and 0=Da  (Horton–Rogers–
Lapwood convection), respectively. The results in Figure 5 indicate that in the presence of 
δ , the throughflow term has a stabilizing impact and the plot of cR  is symmetric about 

0=Q . In both cases of upward and downward throughflow, the flow with 0δ = is more 
unstable than the flow with 0.5δ = (see Figure 7). In the case of the Horton–Rogers–
Lapwood convection with 0=Da , we note that cR decreases with Q  for all catego-

ries of gravity function. Hence, the configuration has destabilized with Q . Additional-
ly, it was discovered that the effect of the throughflow parameter is more consistent for 
( ) ( 1)zh z e= − −  in contrast to other cases. 

Figure 4. Plot of Rc versus δ for different scenarios of gravity with Le = 0.5, Rs = 10, Da = 0.1,
ξ = 0.5, η = 0.5 and δ = 0.5.



Mathematics 2023, 11, 1287 8 of 15

Figures 5 and 6 display the deviance of Rc with Q for all categories of gravity function
with Da = 100 (Rayleigh Bénard convection) and Da = 0 (Horton–Rogers–Lapwood
convection), respectively. The results in Figure 5 indicate that in the presence of δ, the
throughflow term has a stabilizing impact and the plot of Rc is symmetric about Q = 0. In
both cases of upward and downward throughflow, the flow with δ = 0 is more unstable
than the flow with δ = 0.5 (see Figure 7). In the case of the Horton –Rogers–Lapwood
convection with Da = 0, we note that |Rc| decreases with |Q| for all categories of gravity
function. Hence, the configuration has destabilized with |Q|. Additionally, it was discov-
ered that the effect of the throughflow parameter is more consistent for h(z) = −(ez − 1)
in contrast to other cases.
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Figure 7. Plot of Rc versus Q for two values of δ for case (i) of gravity variation with Le = 0.5,
Rs = 10, Da = 100, ξ = 0.5 and η = 0.5.

Figures 8 and 9 represents the neutral stability curves for all six types of gravity
function when Rs = 10 and Le = 5. For stationary modes, the marginal stability curves
will shift upwards; hence, stationary modes are more consistent than oscillatory modes. It
should also be emphasized that the configuration is far more consistent for h(z) = −(ez− 1)
and the most inconsistent for h(z) = −z2, the scenario of a decreasing type of gravity
variation, whereas, in the case of increasing types of gravitational field variation, the
configuration is far more consistent with the gravity scenario h(z) = log(1 + z) and the
most inconsistent for gravity scenario h(z) = ez.
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Figure 9. Plot of R verses a for different cases of gravity variation when Le = 0.5, Rs = 10, Da = 0.1,
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The impact of Rs with three values of the Lewis number for the two categories when
gravity fluctuation is h(z) = −(ez − 1) and h(z) = log(1 + z) is displayed in Figure 10.
It is remarkable that with the rise of Rs, the critical Rayleigh number increases in the
stationary mode. It illustrates the stabilizing effect of the gravitational fields of both types
on stationary convection. In addition, we see that the Lewis number destabilizes the system.
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Figure 10. Plot of Rc versus Rs for two types of variable gravity functions for various values of Le
with Rs = 10, Da = 0.1, ξ = 0.5, η = 0.5 and δ = 0.5.

Figures 11 and 12 illustrate the effect of the Darcy number and Rs on critical Rayleigh
numbers Rc for all six categories of the gravity field. Clearly, we notice from the figures
that with an increase in Rs, the Rc increases for the stationary mode. Additionally, we
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noted that the Darcy number has a stabilizing impact on the system. Furthermore, in case
(iii), the gravitational field is more stable when compared to the remaining types of gravity
variations.
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Figure 12. Plot of Rc versus Rs for three cases of negative gravity fluctuation for various values of Da
with Le = 0.5, Rs = 10, Da = 0.1, ξ = 0.5 and δ = 0.5.

In Figures 13 and 14, the fluctuation of the stationary mode of Rc with Rs for various
values of the mechanical anisotropy parameter ξ for all six categories of the gravity field is
demonstrated, with Rs = 10, Da = 0.1, ξ = 0.5, η = 0.5 and δ = 0.5. These graphs show
that for all scenarios of a gravity field, the critical Rayleigh number drops as the mechanical
anisotropy parameter ξ increases. Additionally, we observe that the Rs has stabilizing
effects on the system.
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Figure 15 shows how the critical Rayleigh number for the stationary mode for decreas-
ing types of gravity fields is affected by the thermal anisotropy parameter. As we can see,
as η grows, the critical Rayleigh number also rises, and an increase in the value of η has the
opposite effect, delaying the convective motion. Additionally, it was observed that in this
case, η has the opposite effect to ξ.
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6. Conclusions

The instability of a vertical constant throughflow in a horizontal anisotropic porous
bed embedded in a changeable gravity field and filled by an electrically conducting double
fluid mixture was performed. The single-term Galerkin weighted residuals method was
employed to determine the critical Rayleigh numbers for the onset of steady and oscillatory
instability. The six possible scenarios of the gravitational field were examined in the
analysis: case (i) h(z) = −z, case (ii) h(z) = −z2, case (iii) h(z) = −(ez − 1), case (iv)
h(z) = ez, case (v) h(z) = z, and case (vi) h(z) = log(1 + z). The convection of the system
configuration is advanced in the presence of the Lewis number Le, mechanical anisotropy
parameter ξ, and gravity parameter for increasing types of gravity functions. Meanwhile,
the effects of Darcy number Da, solutal Rayleigh number Rs, thermal anisotropy parameter
η, throughflow parameter Q, and gravity parameter δ for decreasing types of gravity
functions stabilized the onset of thermosolutal convection. The configuration was noticed
to be more unstable for case (ii) and more stable for case (vi) gravity variance. This
research will undoubtedly be useful in the understanding of massive movements, such
as the processing of materials, pollutant passage in saturated soils, the Earth’s crust,
atmosphere, and ocean, as well as fuel penetration, and crystal formation, for both injection
and surjection, and can be crucial in controlling convective instability.
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Nomenclature

a Horizontal wave number
C concentration
D = d

dz differential operator
Da Darcy number
g gravity
G(z) = 1 + δ h(z) variable gravity function
h(z) Gravity fluctuations
K Permeability
Le = κs

κ Lewis number
Pr = v

κ Prandtl number
Q throughflow parameter

R =
αg ∆Td3

ν κ thermal Rayleigh number

Rs = ρs g ∆Cd3

ν κs
solutal Rayleigh number

Rc Critical Rayleigh number
Sr Soret parameter
T temperature
→
V velocity vector
W amplitude of perturbed vertical velocity
w0 vertical throughflow velocity
ξ mechanical anisotropic parameter
η thermal anisotropic parameter
ρ density of the fluid
ρ0 reference density of the fluid
κs solutal diffusivity
µ Fluid viscosity
κ diffusivity
σ growth rate parameter
δ gravity parameter
∆C characteristic Concentration difference
∆T characteristic temperature difference
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