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Abstract: The metaverse is an upcoming computing paradigm aiming towards blending reality
seamlessly with the artificially generated 3D worlds of deep cyberspace. This giant interactive mesh
of three-dimensional reconstructed realms has recently received tremendous attention from both an
academic and commercial point of view owing to the curiosity instilled by its vast possible use cases.
Every virtual world in the metaverse is controlled and maintained by a virtual service provider (VSP).
Interconnected clusters of LiDAR sensors act as a feeder network to these VSPs which then process
the data and reconstruct the best quality immersive environment possible. These data can then be
leveraged to provide users with highly targeted virtual services by building upon the concept of
digital twins (DTs) representing digital analogs of real-world items owned by parties that create and
establish the communication channels connecting the DTs to their real-world counterparts. Logically,
DTs represent data on servers where postprocessing can be shared easily across VSPs, giving rise to
new marketplaces and economic frontiers. This paper presents a dynamic and distributed framework
to enable high-quality reconstructions based on incoming data streams from sensors as well as to allow
for the optimal allocation of VSPs to users. The optimal synchronization intensity control problem
between the available VSPs and the feeder network is modeled using a simultaneous differential
game, while the allocation of VSPs to users is modeled using a preference-based game-theoretic
approach, where the users give strict preferences over the available VSPs.

Keywords: metaverse; LiDAR; game theory; digital twins; DSIC mechanism; virtual service provider

MSC: 91-10

1. Introduction

The word metaverse itself is a word formed by the conjunction of meta and verse
which means beyond the universe. The metaverse is a newly developed and partially
adopted concept of 3D cyberworlds or universes that we can create based upon the concept
of virtual reality (VR) [1] and augmented reality (AR) [2] to extend immersive experiences
to users; see Figure 1. With major commercial interest being vested in the space from
companies such as Meta and Roblox, it would not be wrong to say that the metaverse has
gained traction recently and shows no signs of slowing down. As this space is currently
being built, a lack of coherence can be seen in terms of the vision toward which these major
industry players are progressing. While companies such as Meta are more focused on
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building a VR-based social media platform, Roblox and Sandbox are focusing on enabling
the creation of user-generated games along with digital worlds and assets tradeable as
NFTs on global marketplaces. This lack of coherence or structure has been attributed to a
lack of definition, as the metaverse is still being built and no concrete vision exists. This
paper aims at presenting a hierarchical model that could act as a potential framework for
the implementation and development of the metaverse, by leveraging a multitude of virtual
service providers (VSPs) and connecting them to an interconnected network of LiDAR
clusters.

LiDAR stands for light detection and ranging and represents a remote-sensing method-
ology that leverages the properties of pulsed laser light to measure the distances and precise
spatial locations of points in the surrounding environment. The received light pulses are
combined with data collected across other LiDAR sensors and used to generate precise,
three-dimensional point clouds depicting the shape of the surrounding surfaces and objects.

The use of LiDAR in this context was primarily governed by its natural ability to scan
and work with real-time three-dimensional, point-cloud-oriented data and the simplicity of
applications that leverage multiple such clouds to form high-resolution three-dimensional
models that are quintessential to the formation of a metaverse.

A common strategy followed by new entrants aimed toward market capture is to
disseminate services for free, over a limited period of time for people to get comfortable
with the technology, after which, a basic or minimal charge can be levied to continue the
service. A similar strategy was used by Jio India by adopting a freemium model and
providing customers with free internet services for the initial three months after which
a minimal fee was charged to retain the customers. This led to rapid market capture
translating to roughly 50 million subscribers within 83 days of launch. In this text, we
assume that the VSPs being considered are following a similar model, wherein they provide
free services over an initial time span but later resort to the collection of a minimal fee for
the continuation of the service.

Figure 1. A quick and concise comparison of the various types of artificial reality paradigms currently
in existence.

The interaction between the interconnected network of LiDAR sensors (the ground
or base layer) with the VSPs (virtual service providers) is modeled as a double-sided
matching [3,4] problem wherein every LiDAR sensor chooses a VSP to send its data
for processing, based on its preference list. These data are mostly in the form of three-
dimensional point clouds or coordinates which can later be reconstructed to get a 3D
model. On the other hand, the VSPs also try to choose the best possible LiDAR sensor to
accept data from, based on their own preferences. The incoming data streams undergo
processing on the servers which try to reconstruct the best-resolution environments possible.
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Multiple VSPs together form a distributed service-providing network (something similar
to CDNs, content delivery networks). The users then choose or request VSPs based on their
preferences, which are modeled in this paper as a single-sided matching problem. Once all
the allocations have been completed, the user can enjoy the best possible immersive reality
experience possible at their location. The entire paper revolves around the implementation
and simulations related to the above-mentioned game-theoretic approach to get the most
stable/optimum mapping of all the entities involved in the system.

Another key application of the proposed framework can be found in the field of
computational bioinformatics [5–9] (Figure 2), where processes such as gene selection,
deep-learning-based gene association, etc., can be divided into smaller tasks and run
parallelly across servers in the cloud. The laborious and expensive task of screening a
potentially vast number of drug-target protein combinations with biological tests was
tackled in [10], whereas the use case of drug discovery and drug repurposing was explored
in [11,12]. Novel mechanisms were researched in [13] under which distributed systems
could collaborate based on a consensus mechanism for gene selection while [14] extended
the same research to DNA microarray data. Apart from drug discovery and gene selec-
tion, [15] brought to light the potential applications of efficient distributed computing in
gene-expression-based profile exploration. A more practical approach to this application
was taken by [16], which explored the implementation of such classification and profiling
algorithms for gene expression on public clouds. This, in turn, displayed the intersection
that the proposed system in this paper has with the computational and mathematical
modeling of biology and their implementation in a highly parallelized and distributed
environment.

Figure 2. Metaverse in healthcare applications.

2. Literature Review

The world has shifted towards establishing an online presence. With classrooms and
meetings being held online via platforms such as Google Meet and Zoom, everything
ranging from the ordering of food to watching movies has adopted an online outlook. The
interactivity and immersiveness of these platforms are what the metaverse aims to enhance
by building a virtual environment around the user and making them feel their presence
at the site of the action. A lot of texts exist on the topic and it is important to understand
the foundations laid by them before proposing new frameworks aimed toward improving
allocations within the ecosystem powering the metaverse [17–20].
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Neal Stephenson in the year 1992 published his science fiction book titled Snow
Crash, introducing the world to the metaverse [21]. The concept was elaborated as an
omnipresent virtual environment that coexisted with the physical world where the primary
communication agents were digital avatars controlled by their human analogs. Since its
initial appearance, a wide range of concepts have been used for the somewhat abstract
nature of the metaverse representing a computer-rendered and computer-maintained reality,
enabling features including but not limited to lifelogging [22], social and collective virtual
space [23], the introduction of spatial internet [24], translating the concept of a mirror world
to reality [25], and even the possibility of an omniverse, representing space for simulation
and collaboration [26]. Numerous online events have displaced in-person social gatherings,
such as the virtual commencement held by UC Berkeley in 2021 [27] and the virtual concert
hosted by Fortnite in 2019 that was reportedly watched by 10.7 million people [28]. The
idea behind the metaverse has emerged and undergone development by academia in
conjunction with industries vesting commercial interest since 2019 and can be used to
describe these virtual occurrences as the real-life implementation of computer-simulated
cyberspace interwoven with physical reality [29]. It represents a developing platform where
independent creators create digital environments and bridge the gap between the physical
world and cyberspace. Every virtual world is rendered by a virtual service provider (VSP)
that offers targeted virtual services to their users, such as virtual worlds (e.g., VR chat 1), as
well as enabling virtual safaris and sightseeing [30], in-person experience via virtual theme
parks [31], non-fungible token (NFT)-based gaming platforms, social networking, and
other computer-rendered reality applications. Metaverse adopters would be represented
by avatars (their digital twins) via which they could interact across multiple virtual spaces
with cross-platform user accounts [32]. This could open new fields for identity management
platforms, providing platform-independent identities for seamless access to services across
the metaverse. These services might appear to be comparable to the many computer-
mediated worlds that exist today [23]. However, the bulk of today’s virtual worlds is run
autonomously, limiting user access and the sharing of digital assets across platforms. Since
each platform uses a different engine, a user cannot move their virtual resources to different
platforms thereby introducing an element of discontinuity in the user experience.

Three-dimensional reconstruction technologies would form a key part in the de-
velopment of the metaverse [33] especially in order to provide real-time data via com-
munication channels between digital twins (DTs) and their real-world counterparts. Li-
DAR sensors are one such class of sensors that could enable accurate real-time 3D re-
constructions of surroundings [34]. A sample rendering of a 3D LiDAR scan (https:
//www.realserve.co.nz/reality-capture/3d-laser-scanning/, accessed on 15 January 2023)
inside a factory depicting one of its few industrial use cases. It is essentially a method for
determining distances by targeting objects and surfaces with lasers and then measuring
the time taken for the reflected light to be received at the receiver, based on which it forms
a point cloud that can be further refined to enable object or surface reconstruction. The
concept of real-time 3D LiDAR-based reconstruction was presented in [35] by combining
pre- and post-processing techniques and methodologies and applying them on batches of
scanned point-cloud data received from live LiDAR feeds that were variably processed.
The unorganized data obtained in the form of cloud datasets, and further used as transi-
tional data models in applications, usually contain considerable amounts of noise, due to
variations of local point density and incomplete, overlapping, or missing data, primarily
caused due to the scattering characteristics of the environment [36]. Methods for dealing
with these irregularities were presented in [37]. LiDAR sensors are sensors that could
essentially be placed anywhere. They could be fixed to the ground or be flown with aerial
vehicles [38,39] and underwater devices [40,41]. The reconstruction of man-made structures
such as buildings [42] and other landscape features [43] was also discussed in [44,45] and
novel algorithms involving the segmentation of triangles from a 3D mesh have been put
forth.

https://www.realserve.co.nz/reality-capture/3d-laser-scanning/
https://www.realserve.co.nz/reality-capture/3d-laser-scanning/
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This paper aims at establishing a model that can enable the interoperability of these
digital assets, including the digital avatars and associated identities belonging to users,
thereby imparting a far better and more seamless experience than would otherwise have
been possible.

3. System Model and Problem Formulation

The vastly complex problem of the proper allocation of resources in the metaverse
has two major constituents to it, the first one models the allocation of users to their most-
preferred VSPs based on their preference list in order to enable faster response times,
efficient dissemination of services and better immersive experiences.

The second component involves a double-sided matching of the interconnected net-
work of LiDAR clusters to corresponding virtual service providers (VSPs) in order to enable
the storage and sharing of digital twins while also resulting in an increase in net continuous
geospatial area covered and the quality of the rendered outputs by pooling the feeds from
multiple LiDAR sensors together, running appropriate reconstruction algorithms for clean-
ing irregularities in scanning and therefore obtaining the best-quality three-dimensional
rendered outputs of entire regions. These data obtained from across the feeder network
are used to extend services and immersive experiences to the users while also sustaining
online marketplaces involving transactions related to the lending of DTs across multiple
providers.

Figure 3 depicts the overall framework which we propose in this paper. The following
sections expand on this further and define in a detailed manner, the various entities and
actions involved in each of the above-mentioned environments.

Figure 3. An overview of the proposed framework.

3.1. LiDAR–VSP Matching

The first stage of our proposed framework involves the matching of a LiDAR sensor
(from a set of LiDAR sensors) to the best available VSP (from a set of VSPs) and vice versa
based on preference lists provided by each entity from both sets. It implies that this part of
the model can be defined using the foundational theories available to generate a matching
that is stable and exhibits a one-to-one allocation of resources (one LiDAR sensor is mapped
to one VSP). A double-sided matching algorithm is used in order to obtain the optimum
allocation of LiDAR sensors to VSPs. Each type of agent maintains a strict preference list
over the entities on the other side, which is taken into consideration while allocating the
resources.
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Two disjoint sets of LiDAR sensors and virtual service providers (VSPs), respectively,
constitute the model. We assume that all the VSPs are homogeneous, offer the same data-
processing facilities, and are equal in number to the count of LiDAR sensors present in the
network being considered. Moreover, every LiDAR sensor is assumed to be located in a
separate geospatial area, in a way that ensures the maximization of the net geographical
area covered.

Even though the specific case of m = n is being considered here, where m denotes the
count of LiDAR sensors contained in the disjoint set L and n denotes the count of VSPs
contained in the disjoint set V, cases where m 6= n can also be handled with ease by the
application of the proposed algorithm over a subset of the entities. The set containing
the minimum number of entities is taken as a whole and a subset of the other disjoint
set containing the same number of elements is selected, and both are then passed to the
proposed algorithm.

Formally, we define a set of size n as L = {l1, l2, . . . , ln} denoting the set of all LiDAR
sensors, where li represents the ith LiDAR sensor in the set. We similarly define a set
V = {v1, v2, . . . , vn} denoting the set of all VSPs, where vi represents the ith VSP in the set.
Both L and V are disjoint and finite. Let us consider an example where n = 4, i.e., we have
four sensors which are to be mapped to four VSPs and vice versa.

Example 1. Consider the finite sets of n = 4 elements L of sensors containing the elements
{l1, l2, l3, l4} and V of VSPs containing the elements {v1, v2, v3, v4}. Given below are the preference
matrices containing the strict preference ordering of both entities over one another.

In Table 1, a random sample preference matrix is given containing the preference lists
for the four available sensors. The order is further depicted below where vj �li vk implies
that the ith LiDAR sensor li prefers the jth VSP vj over the kth VSP vk, where j 6= k.

• v1 �l1 v3 �l1 v2 �l1 v4
• v2 �l2 v4 �l2 v1 �l2 v3
• v4 �l3 v1 �l3 v3 �l3 v2
• v2 �l4 v1 �l4 v4 �l4 v3

Similarly, in Table 2, a sample preference matrix is given containing the preference
lists for the four available VSPs over the set of LiDAR sensors. The order is depicted below
where lj �vi lk implies that the ith VSP vi prefers the jth LiDAR sensor lj over the kth
LiDAR lk, where j 6= k.

• l3 �v1 l4 �v1 l2 �v1 l1
• l2 �v2 l3 �v2 l4 �v2 l1
• l4 �v3 l1 �v3 l3 �v3 l2
• l4 �v4 l3 �v4 l1 �v4 l2

Table 1. LiDAR preferences over VSPs.

l1 l2 l3 l4

v1 v2 v4 v2

v3 v4 v1 v1

v2 v1 v3 v4

v4 v3 v2 v3

Table 1 represents the preferences of the set of LiDAR sensors, L = {l1, l2, l3, l4}, over
the set of available VSPs, V = {v1, v2, v3, v4}. The preferences are arranged in decreasing
order from top to bottom.
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Table 2. VSP preferences over LiDAR sensors.

v1 v2 v3 v4

l3 l2 l4 l4
l4 l3 l1 l3
l2 l4 l3 l1
l1 l1 l2 l2

Table 2 represents the preferences of the set of VSPs, V = {v1, v2, v3, v4}, over the set
of available LiDAR sensors, L = {l1, l2, l3, l4}. The preferences are arranged in decreasing
order from top to bottom.

Table 3 presents some of the terms commonly used in this subsection and what they
denote.

Table 3. Symbols and notations.

Symbol Description

L Set of all LiDAR sensors, {l1, l2, . . .}
li Denotes a single LiDAR sensor from the set L

V Set of all VSPs, {v1, v2, . . .}
vi Denotes a single VSP from the set V

�li
Strict preference ordering of the ith LiDAR li

�vi Strict preference ordering of the ith VSP vi

3.2. VSP–User Matching

The second stage of our framework closely represents an allocation model similar to
that of a client to a server in a content delivery network (CDN). A one-to-one, single-sided
matching is achieved based on the users’ preference list which can be generated based on
attributes such as the response time, net server up-time, etc.

Two disjoint sets containing the various virtual service providers (VSPs) and users
constitute the overall model depicted here. We assume once again, that all the VSPs are
homogeneous in nature and that the preference list provided by the users is strict and
complete.

Formally, we define a set of size n as V = {v1, v2, . . . , vn} denoting the set of all VSPs,
where vi represents the ith VSP in the set. We similarly define a set U = {u1, u2, . . . , un}
denoting the set of all users, where ui represents the ith user in the set. Both V and U are
guaranteed to be disjoint and finite. Building upon the assumptions of the previous stage,
we also assume that the services provided by each of the VSPs are homogeneous across
every provider and are equal to the count of users under consideration.

In a practical scenario, however, it is highly unlikely that the number of VSPs or service
providers would be equal to the number of users. In such as case, the proposed algorithm
can be applied to the set of available VSPs and a small subset of users such that the count
of VSPs is equal to the count of users in the subset under consideration.

Example 2. Consider the finite sets of n = 4 elements V of VSPs containing the elements
{v1, v2, v3, v4} and U of users containing the elements {u1, u2, u3, u4}. Given below is the prefer-
ence matrix containing the strict preferences of each and every user over the available VSPs. Since it
is a single-sided matching, only the users’ preferences matrix is considered during allocation.

In Table 4, a random sample preference matrix was considered, containing the strict
preference lists of each of the users over each of the four available VSPs. The order is
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depicted below where vj �ui vk implies that the ith user ui prefers the jth VSP vj over the
kth VSP vk, where j 6= k.

• v1 �l1 v3 �l1 v2 �l1 v4
• v2 �l2 v4 �l2 v1 �l2 v3
• v4 �l3 v1 �l3 v3 �l3 v2
• v2 �l4 v1 �l4 v4 �l4 v3

In Table 5, we define the various terms used in this subsection including their symbolic
representations and what they stand for in the context of this paper.

Table 4. User preferences over VSPs.

u1 u2 u3 u4

v4 v1 v3 v1

v2 v3 v2 v4

v3 v2 v1 v2

v1 v4 v4 v3

Table 4 represents the strict preferences of the set of users U = {u1, u2, u3, u4} over the
set of available VSPs V = {v1, v2, v3, v4}. The preferences are arranged in decreasing order
from top to bottom.

Table 5 presents some of the terms commonly used in this subsection and what they
denote.

Table 5. Symbols and notations.

Symbol Description

U Set of all users, {u1, u2, . . .}
ui Denotes a single user from the set U

V Set of all VSPs, {v1, v2, . . .}
vi Denotes a single VSP from the set V

�ui Strict preference ordering of the ith user ui

4. Proposed Model and Mechanism

After the unambiguous formulation of the system model, this section introduces
our proposed stable matching mechanisms for the allocation of resources in both the
LiDAR–VSP as well as the VSP–user game-theoretic environments. As discussed earlier,
the allocation of resources in the LiDAR–VSP environment is based on a double-sided
allocation scheme using the strict preferences provided by both entities over each other.
On the other hand, allocation in the VSP–user environment is based on a single-sided
matching mechanism using the strict preferences provided only by the set U of users
over the available set V of VSPs. Both these mechanisms are proposed separately in the
upcoming subsections and come together to form a single environment and achieve optimal
performance in our simulations. During the discussion of the proposed mechanisms, the
number of entities present in the disjoint sets is considered to be equal. Ways of handling
cases where the sets are not of the same size are discussed under the System Model section.

4.1. LiDAR–VSP Double-Allocation Mechanism (LiV-DAM)

The proposed mechanism for the LiDAR–VSP allocation problem as mentioned earlier
is a double-sided stable matching algorithm that aims to achieve an optimal allocation by
assigning a unique service provider to every distinct LiDAR sensor and vice versa in a
way that maximizes the performance of the network as well as the efficiency of the data
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transfer and processing among the entities involved in order to obtain the best possible
three-dimensional scans of the physical world and translate them to environments in the
metaverse.

We assume that a total of n virtual service providers (VSPs) belonging to the set
V share their respective preferences on the opposite set of entities (strict and complete),
i.e., over the set of n LiDAR sensors belonging to the set L and similarly every LiDAR
sensor provides its own strict preferences over all the available VSPs, thereby forming two
preference matrices which are then used to obtain an optimal matching of resources in the
system.

Initially, no allocations exist, i.e., no VSP is allocated a LiDAR sensor and no LiDAR
sensor is allocated a VSP at the very beginning. Following the initialization of all the entities
involved, the available set of LiDAR sensors L : |L| = n & L = {l1, l2, . . . , ln}, the available
set of VSPs V : |V| = n & V = {v1, v2, . . . , vn}, the preference matrix formed by the strict
preferences of each LiDAR sensor over the available set of VSPs �l= [�l1 ,�l2 , . . . ,�ln ],
and the preference matrix formed by the strict preferences of each VSP over the available set
of LiDAR sensors �v= [�v1 ,�v2 , . . . ,�vn ] are passed as input parameters to our proposed
LiV-DAM algorithm in Algorithm 1. This algorithm represents our proposed allocation
mechanism and outputs a list of allocated LiDAR–VSP pairs, OLiV−DAM = [(li, vj), . . . ],
where li ∈ L, vj ∈ V, 1 < i, j < n.

Algorithm 1 LiDAR-VSP Double Allocation Mechanism (LiV-DAM)

Input: L = {l1, l2, . . . , ln}; V = {v1, v2, . . . , vn}; �l= [�l1 ,�l2 , . . . ,�ln ]; �v= [�v1 ,�v2
, . . . ,�vn ]
Output: OLiV−DAM ← φ
begin
L′ = L
for each i ∈ L do

OLiV−DAM[i]← φ
end for
for each i ∈ V do

OLiV−DAM[i]← φ
end for
while L′ 6= φ do

l∗ ← rand_pick(L′)
v∗ ← extract(�u∗)
if OLiV−DAM[v∗] == φ then

OLiV−DAM[v∗]← l∗

L′ ← L′ \ {l∗}
else

l̊∗ ← OLiV−DAM[v∗]
if l∗ �v∗ l̊∗ then

OLiV−DAM[s∗]← l∗

L′ ← L′ \ {l∗}
L′ ← L′ ∪ {l̊∗}

end if
end if

end while
return OLiV−DAM
end

• Initialization: In the first stage of the algorithm, the initial allocations are set to NULL
or φ denoting that no allocations exist between the LiDAR sensors and VSPs at the
beginning. A copy of the set of LiDAR sensors is maintained in a new variable in order
to make sure that the original one is not modified or overwritten as the algorithm
progresses.
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• Random allocation: The allocation phase of the LiV-DAM algorithm stores data about
which services have been allocated to which LiDAR. The pseudocode makes it clear
that the termination of the while loop happens when there are no more LiDAR sensors
left to allocate services to. One of the LiDAR sensors is then selected randomly from
the temporary set of available LiDAR sensors L′ and stored in l∗. This initial random
allocation undergoes reallocations as the algorithm progresses.

• LiV-DAM allocation: After the completion of the random allocation phase, the
extract() function is then called in order to retrieve the most preferred service us-
ing the preference profile of each LiDAR l∗ ∈ L′ and is stored in v∗. If the check
inside the if statement present inside the while loop evaluates to false, this means that
a particular LiDAR sensor has multiple proposed VSPs available. This competitive
environment is resolved via a check made in the else section of the outermost if–else
block based on the preference ordering of the LiDAR sensors. Once this conflict is
resolved, the final allocation is held in the output data structure OLiV−DAM, which is
then returned after completion of the algorithm.

Example 3. The functioning of the LiV-DAM algorithm is explained in detail and depicted in
Figure 4, where the number of LiDAR sensors is assumed to be equal to the count of VSPs with
n = 5.

Figure 4. The detailed functioning of the LiV-DAM algorithm (Algorithm 1) where the number of
LiDAR sensors is equal to the number of VSPs (n = 5).

The profile consisting of strict preferences given by the set of LiDAR sensors L and the
set of available VSPs V is depicted in Figure 4. It is to be noted that, in our case, LiDAR
sensors requested available virtual service providers (VSPs). Following the pseudocode
for our algorithm, we randomly selected LiDAR l1 and temporarily allocated it to the VSP
v1. In a similar fashion, LiDAR l3 was randomly picked and allocated to VSP v5. The next
time, LiDAR l4 was chosen and then matched to VSP v4, and lastly LiDAR l5 was allocated
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the VSP v2. Thus, each of the LiDAR sensors l1, l2, l3, and l4 requested their most-preferred
VSPs from their profiles consisting of strict and complete preferences. After this, it was
checked whether any VSP among v1, v2, v3, v4, and v5 received multiple requests from the
set of LiDAR sensors L. Now, it can be seen that in the first iteration of LiV-DAM VSP, v5
received a request from LiDAR sensors l2 and l3. As each VSP could be assigned to only one
LiDAR sensor (one-to-one mapping), the competition between LiDAR l2 and l3 underwent
resolution by once again leveraging the strict and complete preference profile of the VSP
under consideration, i.e., v5. From the preference profile provided by the service provider
v5, it can be seen that LiDAR l3 was preferred when compared to LiDAR l2. Hence, the VSP
rejected LiDAR l2’s offer. Now, as the LiDAR l2 did not get its most preferred VSP, i.e., v5,
from its preference profile, LiDAR l2 requested the next most-preferred VSP, i.e., v3 based
on its preference profile ordering which was available and hence was matched. It can now
be seen that all the LiDAR-VSP pairs were allocated, and the allocation could be proven to
be stable as there did not exist any blocking pairs.

Time-complexity analysis: In LiV-DAM, we consider the presence of n entities of
either type in the form of two separate disjoint sets thereby resulting in a time-complexity
analysis in terms of n. The worst-case scenario causing the maximum time complexity for
the proposed algorithm occurs when the random allocation yields an initial mapping in
which all the LiDAR sensors are mapped to their least preferred choice of virtual service
provider (VSP). This would require the algorithm to make a total of n iterations for each
LiDAR sensor until they reach the most preferred optimal allocation. Therefore, the worst-
case time complexity of LiV-DAM is when we make a total of |L| ∗ |V| = n ∗ n = n2

iterations thereby resulting in a time complexity of O(n2).

4.2. VSP–User Single-Allocation Mechanism (VU-SAM)

The allocation mechanism used in the second part of our proposed framework was
termed VU-SAM (VSP-user single-allocation mechanism). It is a truthful mechanism that
assumes an initial random one-to-one allocation of VSPs to users. Once again, based on
our assumptions that the count of users is equal to the count of virtual service providers
(VSPs), it is guaranteed that a one-to-one allocation of distinct VSPs to correspondingly
distinct users is possible. The proposed algorithm then either lets some allocations stay as
is or reallocates particular VSPs to particular users based on the preference matrix formed
by listing out the preference list of every user over every available VSP.

The proposed allocation mechanism/algorithm in Algorithm 2 takes in the set of users
U = {u1, u2, . . . , un}, the set of available VSPs V = {v1, v2, . . . , vn}, and the preference
matrix formed by the strict preference lists of all the users over each of the available
VSPs �u= [�u1 ,�u2 , . . . ,�un ] and outputs an allocation list containing user–VSP pairs,
OVU−SAM = [(ui, vj), . . . ], where ui ∈ U, vj ∈ V, 1 < i, j < n.

The entire algorithm has been divided into 5 major components which are outlined
and elaborated following the pseudocode.
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Algorithm 2 VSP-User Single-Allocation Mechanism (VU-SAM)

Input:U = {u1, u2, . . . , un}; V = {v1, v2, . . . , vn}; �u= [�u1 ,�u2 , . . . ,�un ]
Output: OVU−SAM ← φ
begin
Initialize OVU−SAM[i] = 0 ∀ i ∈ {1, 2, . . . , n}
A← U
E← {u1, u2, . . . , un, v1, v2, . . . , vn}
for each ui ∈ U do

OVU−SAM[i]← rand(distinctj : vj ∈ V)
end for
repeat

Gd ← generate_digraph(�u, E, OVU−SAM)
Ac ← detect_cycle(Gd)
for all (ui, vj) ∈ Ac do

OVU−SAM[i]← j
A← A \ {ui}
V ← V \ {vj}
E← E \ {ui, vj}

end for
update_pro f ile(�u)

until (A 6= φ) return OVU−SAM
end

Explanation of various steps in VU-SAM:

• Initialization: The algorithm commences its execution with the setting of the entire
allocation list to NULL or φ. This denotes that at the very beginning, no allocations
exist between any user and VSP or vice versa. A copy of the set of users U is maintained
in a new variable A. The purpose of this redundant copy will become clear shortly.
All of the list positions in OVU−SAM are set to 0 in order to denote the same. In the
graph Gd, all the users as well as the VSPs are denoted by nodes or vertices connected
by a finite number of edges. All these nodes are stored in the entities list E during
the execution of the algorithm. After the initial setup of all the required variables, the
algorithm then randomly allocates a virtual service provider (VSP) vj ∈ V to each
available user ui ∈ U.

• DiGraph creation: After the random allocation of VSP vj to a user ui, inside the
do–while (repeat–until) loop, a call to the function generate_digraph() is initiated. The
preference matrix formed by the strict and complete preference ordering of the users
�u= [�u1 ,�u2 , . . . ,�un ], the set of all nodes belonging to the graph E ∈ Gd, and
the initially allocated random configuration of user–VSP pairs are passed during the
function call.
At the very beginning of the generate_digraph() function, the selection of edges is
carried out from the initial random allocation connecting a user ui ∈ U to a VSP
vj ∈ V, given in OVU−SAM and adding them to the graph Gd. The second stage of the
function then selects edges connecting user ui ∈ U to VSP vj ∈ V based on the users’
preference profile �ui . This digraph is then stored in Gd for further processing and
manipulation.

• Cycle detection: The DiGraph (directed graph) obtained in the previous step, Gd,
is then passed to the detect_cycle() function in order to detect cycles of finite length
representing cyclic dependencies which can be corrected via mutual exchange in order
to obtain an optimal allocation. A random vertex x ∈ Gd is first selected, and outgoing
edges are traced until the repetition of a vertex is encountered, thereby indicating the
presence a cycle Cd. Upon detection of such a cycle, the VSPs are reallocated to the
users by mutually exchanging their previous allocations.
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• Removing allocated entities: After the detection of the finite directed cycle Cd, all the
vertices x ∈ Cd are removed from A: A← A \ {ui}), V: V ← V \ {vj}) as well as the
complete vertex set E: E← E \ {ui, vj}).

• Profile update: The update_pro f ile() function is then passed the users’ strict pref-
erence matrix �u= [�u1 ,�u2 , . . . ,�un ]. The preference matrix �u, set of entities E,
temporary copy of the set of users A, and the set of available VSPs V are updated in
this phase, and new allocations are made based on preferences. This process repeats
itself until A 6= φ i.e., until all the users are allocated a distinct VSP according to their
preference profiles.

Example 4. The details of the VU-SAM algorithm and its functioning are elaborated and illustrated
in Figure 5, where once again, similar to the case considered in LiV-DAM, the numbers of VSPs
and users were assumed to be equal to n = 5.

The strict and complete preference profiles given by the set of users U is presented.
Following the execution of the algorithm from the provided pseudo code, a random
directed edge representing the initial allocation was created mapping the following pairs
to each other (VSP, User) pair: (v3, u1), (v5, u2), (v1, u3), (v2, u4), and (v4, u5). Now, upon
the execution of the create digraph() function, let us say that a user u1 was selected from
the list of non-allocated users and offered a connection request to its most preferred VSP.
For user u1, based on the preference profile, this would be denoted by an offer to VSP v4.
A directed edge between (v4, u1) was therefore placed. This process was repeated one by
one for all the users, choosing the next most-preferred and available VSP and resulted in
the creation of directed edges between all the user–VSP pairs. The detect_cycle() function
was then called and cycles {u2, v1, u3, v5} and {u1, v4, u5, v3} were detected, removed, and
underwent a mutual exchange in order to achieve optimal allocations. The final state of
allocations can be seen at the end of Figure 5.

Time-complexity analysis: In VU-SAM, we generalized the number of edges and
vertices to be equal, which therefore allowed us to analyze the time complexity based solely
on the count of vertices in the graph. During initialization, the for-loop used takes O(V2)
time, where V denotes the count of vertices in the graph. The outer for-loop loops over
the set of all users once and the rand() function takes O(V) time to generate a random
allocation. Similarly, the creation of the digraph requires the algorithm to go through all the
V vertices and the adjacency list against each vertex may have at most V vertices, thereby
bringing the time complexity to O(V2). The cycle detection section of the algorithm on the
other hand, takes a linear time O(V), as it is based on the concept of DFS and linearly visits
every vertex. The repeat–until section consists of a for loop that is executed a total of V
times (assuming the count of edges is same as the count of vertices). The update profile
function generally involves removing the allocated vertices from the users’ preference
matrix, which calls for the manipulation of a two-dimensional List and hence an O(V2)
time complexity. Every iteration would result in the removal of a user–VSP pair, thereby
effectively removing two vertices from the graph. Therefore, a total of O(V) iterations
are possible. This, along with the O(V2) time complexity of the update_pro f ile() section,
brings the algorithm’s total time complexity to O(V3). Therefore, the proposed VU-SAM
algorithm exhibits a time complexity of O(V3).
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Figure 5. The detailed functioning of the VU-SAM algorithm (Algorithm 2) where the number of
users is equal to the number of VSPs (n = 5).

5. Lemmas, Propositions and Proofs

Lemma 1. The maximum number of offers extended during runtime of the LiV-DAM algorithm is
always less than or equal to n2.

Proof. Every offer (possible allocation) from a LiDAR to a VSP and vice versa is represented
by a directed edge in the DiGraph formed during the execution of the algorithm. Since the
count of LiDAR sensors is n and similarly, the count of virtual service providers (VSPs)
is also n, the maximum number of possible offers can be depicted by a complete graph,
containing n2 edges and therefore n2 offers.

Proposition 1. The LiV-DAM algorithm is stable by design.

Proof. If the LiV-DAM algorithm were not stable, there would exist an arbitrary LiDAR
sensor li ∈ L that would be assigned to a VSP vj ∈ V where vi ∈ V would be its most
preferred option according to its preference profile over the set of all available VSPs, i.e.,
vi �li vj even though vi would still be available for allocation to li. During the execution
of the LiV-DAM algorithm, LiDAR li offers its data to VSPs in the order of decreasing
preferences in its preference profile. This implies that at any point in time, the offer extended
by the LiDAR will always be to its next most preferred VSP. If vi is more preferred than vj
according to the preference profile of LiDAR li and has not yet been rejected (allocated to
some other LiDAR sensor), it implies that vi occurs before vj in the preference list of LiDAR
li, thereby making it impossible for vj to be allocated, provided vi is still available. Hence,
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we can conclude that there exists no pair (li, vj) li ∈ L and vj ∈ V such that they prefer each
other but are still not allocated or assigned. Therefore, LiV-DAM is stable.

Proposition 2. A perfect matching is returned by the LiV-DAM algorithm between the set of all
LiDAR sensors L and the set of all available VSPs V.

Proof. Let us assume that the returned set of allocations A is not perfect. In such a case,
there must exist at least one unallocated LiDAR sensor li. According to the algorithm, this
LiDAR sensor would have expressed its interest to every available VSP due to its strict
preference profile over each and every service provider, before termination of the algorithm.
Moreover, every VSP receives at least one proposal (the first random allocation), which
implies that all of the VSPs are from the initialization stage, allocated to a distinct LiDAR.
Therefore, this further implies that all n VSPs are mapped, and hence by virtue of the one-
to-one mapping there should exist n allocated LiDAR sensors. This contradicts our initial
assumption that at least one of the LiDAR sensors remains unallocated, thereby proving by
the method of contradiction that the returned allocation A is a perfect matching.

Proposition 3. The allocations returned after the execution of the LiV-DAM algorithm are stable
in nature but do not represent the core allocation.

Proof. Let A denote the set of all allocations made during the runtime of the algorithm
which is not stable and is coalition-dominated, made up of pairs or standalone independent
entities. Therefore, no allocations exist in the game’s core that can be unstable. On the
other hand, we know that the set of all allocations that are non-dominated by coalitions of
arbitrary size is referred to as the core; therefore, the stable allocations or stable mappings
might result in a strict containment of the core. However, in the present scenario involving
a one-to-one matching, the case differs and hence does not represent the core.

Proposition 4. A dominant-strategy incentive-compatible (DSIC) characteristic is depicted by the
VU-SAM algorithm.

Proof. The VU-SAM algorithm’s incentive-compatible (IC) nature has its foundation in
the fact that all users ui ∈ U are matched to the most preferred virtual service provider
(VSP) based on the preference profiles reported by them over the available VSPs, vj ∈ V.
Suppose Aj is the agent or service provider mapped during the jth iteration, considering
that the involved entities do not misreport. Users in A1, i.e., the first iteration, get their
most-preferred VSP and hence have no incentive to misreport. A user ai ∈ A2 is not pointed
to by any agent aj ∈ A1 in the first iteration, otherwise ai would have been allocated during
A1 rather than A2. Since ai is allocated its most preferred choice apart from the virtual
service providers (VSPs) already allocated during A1, misreporting does not provide any
sort of benefit, i.e., there exists no incentive to do so. Speaking based on generalization,
an agent or VSP ai of Aj is never allocated during the first j− 1 cycles of VU-SAM to any
user in A1 ∪ A2 ∪ · · · ∪ Aj−1. Thus, ai ∈ Aj cannot be allocated to a service provider that
has already been allocated to a user in A1 ∪ A2 ∪ · · · ∪ Aj−1. Since, VU-SAM results in the
matching of the most preferred provider to i , there exists no incentive to misreport. Hence,
it is DSIC.

Proposition 5. A unique core allocation is returned upon the execution of the VU-SAM algorithm.

Proof. Consider a subset U∗ of users, in order to prove that the VU-SAM algorithm returns
a core allocation.

The user in the ith cycle is denoted by Π(Ui). Consider l to be the iteration in which
Π(Ul) ∩U∗ 6= φ, with users ul ∈ U∗ receiving its service provider for the first time. The
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algorithm allocates user ul to its most preferred virtual service provider (VSP) outside of
the VSPs allocated to other users in U1 ∪U2 ∪ · · · ∪Ul−1.

As no i ∈ U∗ /∈ U1 ∪U2 ∪ . . . Ul−1, there exists no configuration or mapping in which
a reallocation of the VSPs can make i strictly better off. In the VU-SAM algorithm, all users
receive their most-preferred choice. Any core allocation must hold true and abide by this
property.

Without abiding by this property, an allocation would implicitly denote that the users
of U1 who did not get their first preference would tend towards the formation of a coalition
following which a mutual reallocation could result in everyone being strictly better off.

In the same manner, all the users of U2 are allocated to their most preferred VSP
outside of U1. Since it is known that agreement is guaranteed in every core allocation with
respect to the allocations generated for the users of U1, such an agreement must also exist
for the users of U2, in the absence of which the users of U2 that were unable to get allocated
to their most-preferred choice outside of U1 can collectively reach a better state via a mutual
reallocation. Therefore, conclusively, we can say by induction that the proposed VU-SAM
algorithm returns a core allocation that is unique.

6. Experimental Results

This section summarizes the results of simulations that were carried out using sample
data points generated by random probability distributions, benchmarked against the
performance of the LiV-DAM as well as the VU-SAM algorithms. We compared both our
proposed algorithms to the performance of the random-distribution-based allocations,
hereafter referred to as random assignment. These simulations were coded and run on a
Ubuntu-based machine in Python 3.

6.1. Simulation Setup, Initialization, and Parameters

The simulations depicted below were carried out considering a set of n LiDAR sensors,
li ∈ L, 1 < i < n and n virtual service providers (VSPs), vi ∈ V, 1 < i < n for simulating the
LiV-DAM algorithm. For simulating the VU-SAM algorithm, we once again considered a
set of n virtual service providers (VSPs) and a set of n users, ui ∈ U, 1 < i < n. In the case of
the double-sided, LiV-DAM algorithm, all the n LiDAR sensors provided a strict and total
preference ordering over the set of VSPs and similarly each of the n VSPs provided their
own strict and total preference ordering over the set of all available LiDAR sensors. On the
other hand, in the case of the VU-SAM simulations, the preference ordering/preference
profile was only provided by the user over the set of available VSPs, by virtue of its single-
sided nature. During the course of these simulations, we plotted the preference indices
(how preferable the allocations were) obtained from the random assignment algorithm vs.
our proposed algorithms.

6.2. Benchmarking: LiV-DAM vs. Random Assignment

We compared the ranks (or preference indices) of the allocated service provider (based
on the preference matrix provided by the LiDAR sensors) for individual LiDAR sensors for
both algorithms, namely, LiV-DAM and random assignment on the same game instance
(i.e., while keeping the parameters constant) and set of entities. In the presented example,
the LiDAR sensors were numbered starting from 0 to n− 1, L = {l0, l1, . . . , ln−1} similar
to the VSPs that were also numbered from 0 to n − 1, V = {v0, v1, . . . , vn−1}. It can be
clearly seen in Figure 6 that the scatter plot of magenta-colored pentagons, representing
the allocations obtained via LiV-DAM, are much closer to the x-axis. This implies that the
resulting LiDAR allocations mapping them to VSPs were extremely close to their preference
ordering without a large margin of deviation from their reported preference profiles, i.e.,
the preference indices or ranks of the allocated VSPs were low indicating a high preference.
The yellow stars, which represent the allocations using random assignment, are much
more scattered and distributed throughout the x–y plane thereby denoting that the ranks
of the allocated VSPs were high, indicating a lower preference by the LiDAR sensors. This
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observation begs the conclusion that our proposed LiV-DAM Algorithm had a significantly
better performance when benchmarked against the random assignment mechanism on the
same set of entities and simulation instance.
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three-dimensional point cloud, we can see that a lot of allocations made by the LiV-DAM
algorithm have low indices. Whereas, on the other hand, the scattered nature of allocations
obtained by the Random Allocation Algorithm causes a distributed and non-frequently
occurring distribution of preference indices. In almost all cases the ranks of the allocated
VSPs are lower in LiV-DAM than that obtained in the allocations returned by Random
Assignment, which further verifies that LiV-DAM is a much better allocation algorithm
when compared to Random Assignment.

Figure 7. A three-dimensional plot between LiDARs, and preference index of allocated VSP while
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6.3. Benchmarking: VU-SAM vs Random Assignment

Similar to the benchmarking of the LiV-DAM algorithm against Random Assignment
/ Allocation, in this case also, we compare the ranks (or preference indices) of the allocated
Virtual Service Providers (VSPs) (based on the preference profile reported by the set of
Users over all the available VSPs) to individual Users, for both the algorithms namely:
VU-SAM and Random Assignment on the same game instance (i.e., while keeping the
parameters constant) and set of entities. In our example, the Users are denoted by integers
from 0 to n− 1, U = {u0, u1, . . . , un−1}. Similarly, once again, the VSPs are also numbered

Figure 6. Two-dimensional plot of LiDAR sensors vs. the preference index of the VSP that is allocated
to them.

We took this analysis one step further by plotting the three-dimensional scatter plot
(Figure 7) in order to factor in not just the preference indices, but also the number of
LiDAR sensors which were allocated such preference indices. Once again from the three-
dimensional point cloud, we can see that a lot of allocations made by the LiV-DAM algo-
rithm had low indices. On the other hand, the scattered nature of allocations obtained by
the random allocation algorithm caused a distributed and nonfrequently occurring distri-
bution of preference indices. In almost all cases, the ranks of the allocated VSPs were lower
in LiV-DAM than that obtained in the allocations returned by random assignment, which
further verified that LiV-DAM was a much better allocation algorithm when compared to
random assignment.

Figure 7. A three-dimensional plot between LiDAR sensors and the preference index of allocated
VSP while also factoring in and showing the frequency with which a particular preference index is
chosen.
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6.3. Benchmarking: VU-SAM vs. Random Assignment

Similar to the benchmarking of the LiV-DAM algorithm against random assign-
ment/allocation, in this case also, we compared the ranks (or preference indices) of the
allocated virtual service providers (VSPs) (based on the preference profile reported by the
set of users over all the available VSPs) to individual users, for both algorithms, namely,
VU-SAM and random assignment on the same game instance (i.e., while keeping the param-
eters constant) and set of entities. In our example, the users were denoted by integers from
0 to n− 1, U = {u0, u1, . . . , un−1}. Similarly, once again, the VSPs were also numbered in a
similar fashion from 0 to n− 1, V = {v0, v1, . . . , vn}. It can be seen from Figure 8 that once
again, the scatter plot of pink-colored squares, representing the allocations obtained after
the application of VU-SAM, are closer to the x-axis. This implies that the user allocations
to VSPs lay extremely close to their preference ordering and did not deviate much with
respect to their preference profiles, i.e., the preference indices of the allocated VSPs were
significantly lower indicating a high preference from the users. The green hexagons, on the
other hand, represent the allocations obtained via random assignment and are much more
scattered and distributed throughout the x–y plane, thereby denoting that the ranks of the
allocated VSPs were high, indicating a lower preference by the users. This observation once
again begs the conclusion that the performance of the VU-SAM Algorithm far surpassed
that of the random assignment mechanism for the same set of entities and simulation
instances.
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frequently occurring distribution of preference indices. In almost all cases the ranks of the
allocated VSPs are much lower in VU-SAM than that obtained in the allocations returned by
Random Assignment, further verifying that VU-SAM is a much better allocation algorithm
when compared to Random Assignment.

Figure 9. A three-dimensional plot between Users, and the preference index of allocated VSP while
also factoring in and showing the frequency with which a particular preference index is chosen.

Figure 8. Two-dimensional plot of users vs. the preference index of the VSP that is allocated to them.

We once again obtained a three-dimensional scatter plot (Figure 9) in order to factor
in the number of users who were allocated a particular preference index. From the three-
dimensional point cloud, it can be clearly seen that a lot of allocations made by the VU-SAM
algorithm had low indices. Whereas, on the other hand, the scattered nature of allocations
obtained by the random allocation algorithm caused a distributed and not frequently
occurring distribution of preference indices. In almost all cases, the ranks of the allocated
VSPs were much lower in VU-SAM than that those obtained in the allocations returned by
random assignment, further verifying that VU-SAM was a much better allocation algorithm
when compared to random assignment.
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Figure 9. A three-dimensional plot between users and the preference index of allocated VSP while
also factoring in and showing the frequency with which a particular preference index is chosen.

7. Conclusions and Future Work

In this paper, we aimed towards establishing and verifying a possible allocation
mechanism in a game-theoretic environment between LiDAR sensors (enabling the creation
of digital twins), virtual service providers or VSPs (allowing for the processing and proper
distribution of data across markets and users), and users (individuals and organizations in
the metaverse who leverage services provided by the VSPs) in a free market where VSPs are
incentivized by the long-term goal of market capture. We also benchmarked our proposed
algorithm against the random assignment of resources, thereby conclusively proving the
improvement that our mechanism introduced.

The proposed mechanism here can be extended to other use cases, some of which, such
as gene expression, association, signature detection, and drug discovery, was highlighted
in the literature review as well. The proposed system design for such a use case can be
obtained by simply replacing the LiDAR sensors with their analogous gene sequencer
counterparts. The allocation mechanisms even though they would now be applied in a
completely different context, would remain constant and enable the efficient allocation of
computing resources to the user-defined tasks divided across multiple service providers
enabling faster throughput rates and analysis of biological data.

The current model lacks an in-depth monetary analysis of the system, which would
play a major factor in a real-life implementation based on which, preferences across different
classes of entities will be calculated.

In our future work, we will dive deeper and chalk out the finer aspects and details
of enabling a distributed digital-twin-based ecosystem (DDTE) in the metaverse as well
as the introduction of economic activities with money as an incentive, further general-
izing the cyberspace markets. Our future case studies and simulations will also focus
on mapping real-world datasets to our proposed mechanisms and obtaining conclusive
real-life numbers as well as the possibility of commerce in a digital marketplace powered
by decentralized and distributed technologies, while also diving more into the healthcare or
bioinformatics use cases that this mechanism enables. The division of tasks across servers
and the efficient allocation of computing resources will be studied in greater depth in a
manner that encompasses a multiuse case ecosystem. Moreover, in the future, we will
apply our proposed metaverse-based approach in potential drug discovery and molecular
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docking as well as medical surgery, which would be mainly beneficial for pharmaceutic
and healthcare applications.
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