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Abstract: We address a hyperbolic model for prey-sensitive predators interacting with purely dif-
fusive prey. We adopt the Cattaneo formulation for describing the predators’ transport. Given the
hyperbolicity, the long-lived short-wave patterns occur for sufficiently weak prey diffusivities. The
main result is that the non-linear interplay of the short waves generically excites the slowly growing
amplitude modulation for wide ranges of the model parameters. We have observed such a feature in
the numerical experiments and support our conclusions with a short-wave asymptotic solution in the
limit of vanishing prey diffusivity. Our reasoning relies on the so-called homogenized system that
governs slow evolutions of the amplitudes of the short-wave parcels. It includes a term (called wind)
which is absent in the original model and only comes from averaging over the short waves. It is
the wind that (unlike any of the other terms!) is capable of exciting the instability and pumping the
growth of solutions. There is quite a definite relationship between the predators’ transport coefficients
to be held for getting rid of the wind. Interestingly, this relationship had been introduced in prior
studies of small-scale mosaics in the spatial distributions of some real-life populations.

Keywords: Patlak–Keller–Segel systems; Cattaneo model for a chemosensitive motion; hyperbolic
models; pattern formation; averaging; homogenization; stability; instability; bifurcation
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1. Introduction

We will be considering two species, one of which (say, predator) is sensitive to the
concentration gradient of the other one (say, prey). Prey spread in a purely diffusive way.
For the predators, we employ the Cattaneo model [1]. The resulting system of equations
belongs to the family of hyperbolic models [2]. The last reference alludes to a review that
delivers much helpful information on the subject.

The present article considers the slow evolution of short-wave packages for the out-
lined PDE system. In many respects, it continues article [3] that regards the effect of
small-scale fluctuations of the environment on the stability of the homogeneous equilibria
for one parabolic model of the Patlak–Keller–Segel family. Currently, we address a similar
problem for a hyperbolic model. There are at least two reasons for doing so. The first one
is the completeness of the study. Indeed, the hyperbolic and parabolic models, such as
the Cattaneo and the Patlak–Keller–Segel formulations, arise from the same kinetic model
under different hypotheses. Both models are natural but very different. For instance, the
parabolic model must perceive a short wavelength external signal constantly to produce
a short wave pattern in response [3]. In great contrast, the short waves can propagate
due to an instantaneous perturbation in the hyperbolic case. The second reason regards
the so-called aggregation that review [2] distinguishes as an important application of the
hyperbolic models. Since the aggregation means the spontaneous forming of large-scale
patterns from small-scale ones, there should be an intrinsic mechanism of destabilization
and destruction of the latter. At the same time, there should be some exclusions as real-life
populations sometimes display the small-scale mosaic patterns of spatial distributions [4].
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Of course, such topics as the relevance of the short-wavelength limit to a real life popu-
lation or the wave solutions of the hyperbolic models (which have got much less attentions
than their parabolic counterparts as yet) are worth continuing discussion. However, we
skip it for the sake of brevity and allude to freely accessible papers [3,5] for these matters
and for more references to the subject.

In contrast with the Patlak–Keller–Segel parabolic model, which we addressed in
article [3], the short-wave limit for the Cattaneo model, due to its hyperbolicity, leads to
the elementary wave equation, the solutions to which form a kind of short-wave ether.
We apply the homogenization over this ether to derive equations for the slow modulation
of the short-wave packages. To some extent, this procedure follows that proposed in
article [6]. The main result in the present article is the pumping of the slow amplitudes
by the non-linear interactions of the short waves. This feature manifests itself in the
excitement of wind, by which we mean some terms that enter the flux equation due to the
homogenization. It turns out that this wind is capable of destabilizing the equilibria of the
averaged amplitude equation and supporting the growth of their finite perturbations.

The article is organized as follows. In Section 2, we formulate the governing equa-
tion. In Section 3, we present several motivating examples. In Section 4, we derive the
system that governs the slow evolution of the amplitudes of the short-wave parcels by the
homogenization over the short waves. In Section 5, we consider the simplest model that
invokes identically constant transport coefficients of the predator and the Lotka–Volterra
kinetics. In Section 6, we unfold the destabilizing effect of wind through linear stability
analysis. In Section 7, we present numerical solutions of the homogenized system that sup-
port our outcomes regarding the crucial part of the wind in supporting the instability and
perturbation growth. In Section 8, we list several conclusions from the research presented.

2. The Governing Equations and Scaling

As we have mentioned above, we invoke the Cattaneo model [1] for the predators’
transport and the common reaction–diffusion equation for the prey. The former involves
the equations for the balance of the predators and the equation for their flux that, in con-
trast with the Patlak–Keller–Segel law, takes into account the inertia of their responding.
The dimensionless form of the governing equations reads as

pt + qx = F(p, s), (1)

qt + νq = κχ(p, s)psx − µ(p, s)px, (2)

st = G(p, s) + δsxx. (3)

In article [5], there are more details on scaling the dimensional governing equations
for bringing them into the above dimensionless form.

In system (1)–(3), the independent variables, x and t, stand for the spatial and tempo-
ral coordinates, correspondingly, x ∈ R, t > 0. The dependent variables are p = p(x, t),
q = q(x, t) and s = s(x, t). The first and the last ones play the parts of the densities of the
species. The first two equations constitute the Cattaneo model for the prey-sensitive move-
ment of the predators, where the remaining dependent variable, q, stands for predator’s
flux. Coefficient κ > 0 stands as the sensitivity factor. Moreover, Equation (2) involves term
νq with constant factor ν > 0, which resembles the resistance force in mechanics. We will
be calling the corresponding coefficient, ν, resistivity. The notation of δ stands for the prey
diffusivity factor that is constant by assumption.

By default, the predator diffusivity, µ, the sensitivity, χ, and the reactions terms, F and
G, are smooth functions in variables p > 0, s > 0; at that

µ(p, s) > 0 ∀p > 0, s > 0, pχ(p, s)→ 0, p→ +0, ∀ s ≥ 0. (4)
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3. Motivating Examples

Throughout this section, we will be discussing three numerical solutions to the Cauchy
problem for Equations (1)–(3) with small diffusivity of prey and identically constant coeffi-
cients µ and χ. The initial data and other settings are as follows

p|t=0 = pe

(
1 + εe−x2

+ a sinN(2πnx)
)

, q|t=0 =
√

µpea sinN(2πnx), s|t=0 = se, (5)

F = p(γs− β), G = s(α− p− s), se = β/γ, pe = α− se, β/(γα) = 0.4, α = 5/4, γ = 2/3, (6)

µ ≡ const = 4, ν = 1, δ = 0.01, χ ≡ const = µν/(pese), κ = 1. (7)

Quantities se and pe are the equilibrium species densities in the sense that

F(pe, se) = 0, G(pe, se) = 0,

i.e., the system (1)–(3) allows the homogeneous equilibrium in which p ≡ pe, s ≡ se and
q ≡ 0. The value assigned to the parameter χ is a threshold for the linear instability of such
an equilibrium in the case of δ = 0 (see Section 6).

Figure 1 illustrates the numerical solutions, which cover the spatial range of (−35, 35).
For more details of the implementation, see Section 7. Each row of snapshots shows the
instantaneous graphs of the deviation of the species densities from their equilibrium values
for one concrete set of initial data (5). The top row shows those patterns that arise from a
short-wave modulation of the homogeneous equilibrium. The middle row demonstrates an
interplay of the same modulation with a small smooth localized perturbation. The bottom
row corresponds to the same perturbation but with no underlying short wave. Table 1
states the correspondence between the rows and the versions of initial data (5).

Table 1. This table states the correspondence between patterns shown in Figure 1 and concrete
versions of the initial data (5).

Row Settings of the Initial Data

Top N = 5, n = 3, ε = 0, a = 1/2

Middle N = 5, n = 3, ε = 0.1, a = 1/2

Bottom N = 5, n = 3, ε = 0.1, a = 0

Overall, the top snapshots row displays a short-wave profile of the predator density
amid almost homogeneous prey distribution. The former resembles a linear travelling
wave subject to slow amplitude damping. It is not entirely unexpected since the short-wave
limit of the governing equations leads to the linear acoustic system with the sound speed
equal to

√
µ, namely,

pt + qx = 0, qt + µpx = 0.

The amplitude damping is due to the resistance term, νq, which is not entirely negligi-
ble for the wavelengths adopted for computing.

The middle row shows that the small smooth localized initial perturbation persists
and even gets amplified despite the existing resistance. Notice the asymmetry too. It cannot
be explained using the above acoustic approximation only. These features sharply contrast
with the bottom row, which displays a symmetrical picture of decaying perturbation.
This symmetry is due to the mirror invariance of Equations (1)–(3) and initial data (5)
(the latter takes place for a = 0 only).

The listed observations suggest that short waves are capable of pumping the per-
turbations. In the rest of the article, we will be addressing this conjecture with the use
of homogenization.



Mathematics 2023, 11, 1265 4 of 13

Figure 1. This figure shows the patterns produced by three versions of the initial data (5), see Table 1.
Each frame shows instantaneous graphs of the deviation of the species densities from their equilibrium
values. At that, blue (green) colour corresponds to the predator (prey) and the horizontal axis
corresponds to the spatial coordinate, x. The upper (middle) row demonstrates the short-wave
pattern produced by initial data (5) where ε = 0 (ε 6= 0). The bottom row displays the decaying
pattern produced by initial data (5) for a = 0. The snapshot timing, left to right, is t ≈ 0.0, 2.0, 3.9, 6.0
for the upper row, t ≈ 0.0, 2.0, 41, 5.38 for the middle row and t ≈ 0.0, 3.1, 6.9, 10.0 for the bottom row.

4. Homogenization and Wind

Let δ→ +0 in Equation (3). We seek the short wavelength solutions that read as

p = p(x, t, ξ, τ, δ), q = q(x, t, ξ, τ, δ), s = s(x, t, ξ, τ, δ), where τ = t/δ, ξ = x/δ.

For calculating such a solution we employ the formal power expansions as follows

(p, q, s)(x, t, ξ, τ, δ) = ∑
k=0

(p, q, s)k(x, t, ξ, τ)δk.

We assume that for every coefficient in these series there exists an averaged value
defined as follows

〈u〉(x, t)
de f
= lim

L→∞

1
4L2

∫
[−L,L]2

u(x, t, ξ, τ) dξdτ. (8)

Hence, for every k = 0, 1, . . . there is a decomposition

(p, q, s)k(x, t, ξ, τ) = ( p̄, q̄, s̄)k(x, t) + ( p̃, q̃, s̃)k(x, t, ξ, τ), where ( p̄, q̄, s̄)k = (〈p〉, 〈q〉, 〈s〉)k,



Mathematics 2023, 11, 1265 5 of 13

so that the tilde terms vanish on average. To simplify the notation, we will be omitting the
zero-valued indices here and there below—that is, the following agreement is valid from
here on:

p̄0 = p̄, p̃0 = p̃, q̄0 = q̄, q̃0 = q̃, s̄0 = s̄, s̃0 = s̃.

Finally, we assume that
s̃ = s̃0 = 0.

We write the governing equations with the use of the slow variables, x, t, and the fast
variables, ξ, τ. For this purpose, we substitute ∂t and ∂x with ∂t + δ−1∂τ and ∂x + δ−1∂ξ .
Then replacing the dependent variables, p, q, s, with the above expansions gives a chain of
equations for the approximations of successive orders. Specifically, collecting the terms of
order δ−1 yields equations:

p̃τ + q̃ξ = 0; q̃τ + µ( p̄ + p̃, s̄) p̃ξ = 0. (9)

This system is quasi-linear and hyperbolic with respect to unknowns p̃, q̃ since function
µ is positive by assumption. The value of s̄ stands as a constant parameter. Let

∂p M(p, s̄) = µ(p, s̄).

Given this, the second equation in system (9) takes the form of a conservation law that
reads as

q̃τ + ∂ξ M( p̄ + p̃, s̄) = 0,

Eliminating of variable q reduces system (9) to a single quasi-linear wave equation
that reads as

p̃ττ = (µ( p̄ + p̃, s̄) p̃ξ)ξ . (10)

The next step after resolving Equation (10) is recovering the other unknown, q̃, from
system (9). Some compatibility conditions can arise at that. One of them is Equation (10)
itself and it can seem that one more results from system (9) upon averaging. However, the
latter holds identically due to the aforementioned conservatism.

Collecting the terms of order 1 yields equations:

p̃1τ + q̃1ξ = F(p0, s̄)− p0t − q0x, (11)

q̃1τ + (µ(p0, s̄)p1)ξ + s1(Ms(p0, s̄))ξ =

κp0χ(p0, s̄)(s̄x + s̃1ξ)− µ(p0, s̄)p0x − q0t − νq0,
(12)

s̃1τ − s̃1ξξ = G(p0, s̄)− s̄t. (13)

Regarding Equation (12), it is worth noting that the collection of the terms of order 1
resulting from the term δ−1µ(p, s)pξ reads as (µs(p0, s̄)s1 + µp(p0, s̄)p1) p̃0ξ + µ(p0, s̄) p̃1ξ

and this, by definition of function M, is equal to (µ(p0, s̄)p1)ξ + s1(Ms(p0, s̄))ξ .
Again, there are several compatibility conditions to hold for isolating unknown q̃1

from Equations (11) and (12). These are

〈F(p0, s̄)− p0t − q0x〉 = 0, (14)

〈κp0χ(p0, s̄)s̄x + s̃1ξ(κp0χ(p0, s̄) + Ms(p0, s̄))− νq0 − µ(p0, s̄)p0x − q0t〉 = 0, (15)

p̃1ττ −
(
(µ(p0, s̄)( p̃1 + p̄1)ξ + (s̃1 + s̄1)(Ms(p0, s̄))ξ

)
ξ
=

(µ0(p0, s̄)p0x + q0t + νq0 − κp0χ(p0, s̄)(s̄x + s̃1ξ))ξ + (F(p0, s̄)− p0t − q0x)τ .
(16)

Equation (16) is a linear wave equation in fast variables with respect to function p̃1 provided
that we have determined p̄, p̃, s̃1 and s̄. More accurately, this is a two-parametric family of
the linear wave equations where the values of p̄1 and s̄1 stand as parameters.
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Assume there exists a two-parametric family of solutions p̃ = P( p̄, s̄), q̃ = Q( p̄, s̄) to
system (9). Equation (13) entails the following compatibility condition

s̄t = 〈G( p̄ + p̃, s̄)〉. (17)

This equation is nothing else than Equation (13) on average. Assume that it holds.
Then Equation (13) defines a two-parametric family of operators

S1 = S1( p̄, s̄) : p̃ 7→ s̃1, S1 = L(G( p̄ + ·, s̄)− 〈G( p̄ + ·, s̄)〉),

where L is the inverse to the heat operator on a suitable space of functions vanishing
on average.

Further, let us write conditions (14) and (15) as equations for p̄ and q̄:

p̄t + q̄x = 〈F( p̄ + p̃, s̄)〉, (18)

q̄t + νq̄ + µ̄( p̄, s̄) p̄x = κ p̄χ̄( p̄, s̄)s̄x + W( p̄, s̄), (19)

where p̃ = P( p̄, s̄) and s̃1 = S1( p̄, s̄) p̃, and

µ̄( p̄, s̄) = 〈µ̄( p̄ + p̃, s̄)〉, χ̄( p̄, s̄) = 〈χ̄( p̄ + p̃, s̄)〉, (20)

W( p̄, s̄) = 〈κ(( p̄ + p̃)χ( p̄ + p̃, s̄)− χ̄( p̄, s̄) p̄)s̄x+
s̃1ξ(κ( p̄ + p̃)χ( p̄ + p̃, s̄) + Ms( p̄ + p̃, s̄))− µ( p̄ + p̃, s̄)( p̄ + p̃)x + µ̄( p̄, s̄) p̄x〉.

(21)

Equations (17)–(19) constitute a closed system regarding the averaged unknowns,
p̄, q̄, s̄, which we will call a homogenized or averaged system.

The homogenized system is similar to the original governing equations but not the
same. In the generic case, the effect of the short waves is threefold. First, the averaged
reaction terms, 〈G( p̄ + p̃, s̄)〉 and 〈F( p̄ + p̃, s̄)〉, can differ from those specified originally.
Second, the same is true regarding the averaged diffusivity, µ̄, and sensitivity, χ̄. Third, last
but not least, the wind term, W, can enter the flux Equation (19). The usage of the name
“wind” relies on an analogy to some features in the dynamics of compressible fluid [6].

Now let the following conditions hold

∃ ϕ = ϕ(p, s) : dϕ = µ(p, s)dp− κpχ(p, s)ds. (22)

In analogy with fluid mechanics, we will call this function pressure (if any). Indeed,
given an existing pressure, Equation (2) represents a conservation law:

qt + νq = −∂x ϕ(p, s).

Note in passing that the occurrence of shock waves is natural in such a case, see [5].
When the pressure exists, Equation (12) is written as

q̃1τ = −∂ξ

(
dϕ|p=p0,s=s̄(p1, s1)

)
− ∂x ϕ(p0, s̄)− νq0 − q0t.

Averaging the last equation again leads to the conservation law as follows

q̄t + νq̄ = −∂x ϕ̄( p̄, s̄), ϕ̄( p̄, s̄) = 〈ϕ( p̄ + p̃, s̄)〉. (23)

Comparing Equation (23) to Equations (19)–(21) (where one can put M = ϕ now)
brings the wind into a simpler form

W = 〈µ( p̄ + p̃, s̄) p̃x − κs̄xχ( p̄ + p̃, s̄) p̃〉, (24)

and formulae (20) define the averaged transport coefficients, µ̄ and χ̄, again. Generally,
they satisfy condition (22) neither with pressure ϕ̄ nor with any others even if it has
held originally.
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The most tractable averaged system arises from the signal-dependent transport
coefficients—that is, for

µ = µ(s), χ = χ(s).

At the same time, there are examples of considering this assumption for some real-life
species in the biological literature. We allude to articles by Tytyunov et al. [4,7], and Meno-
lascina et al. [8] for examples and references. In such a case system (9) reduces to two
uncoupled linear wave equations where the sound speed is c = c(s̄(x, t)) =

√
µ(s̄(x, t))—

that is, it is a constant relative to the fast variables. Then the solution reads as

p̃ = p̄(x, t)(ψ̃+(ξ + cτ) + ψ̃−(ξ − cτ)), c = c(s̄(x, t)) =
√

µ(s̄(x, t)) (25)

for every pair of function ψ̃± (as the sound speed is a constant relative to the fast variables).
To make the solution positive, choose functions ψ± that are 2π−periodic and positive,
and set

1
2π

π∫
−π

ψ±(η)dη = ψ̄±, ψ̄+ + ψ̄− = 1, ψ̃± = ψ± − ψ̄±.

Then the solution defined by equality (25) vanishes on average, while the leading term,
p0 = p̄ + p̃, is positive for every positive function p̄. The corresponding flux, q̃, reads as

q̃ = cp̄(x, t)(ψ̃−(ξ − cτ)− ψ̃+(ξ + cτ)), (26)

The envelope of this shortwave parcel, p̄, the averaged flux, q̄, and the prey density, s̄, are a
solution to the homogenized system. The last gets simplified substantially, namely,

µ̄ = µ, χ̄ = χ, W = (µs(s̄) + κχ(s̄))〈s̃1ξ p̃〉. (27)

The wind vanishes when
µs(s) + κχ(s) = 0. (28)

This is the particular form of integrability condition (22) so that expression (24) has to
determine the wind too and it is equal to zero as well.

Let us proceed with simplifying the model. Assume the reaction terms to be linear in
the predator density (as in the Lotka–Volterra case)—that is, set

G(p, s) = G1(s)p + G0(s), F(p, s) = F1(s)p + F0(s). (29)

Then the reaction terms in Equations (17) and (18) remain the same as we have defined
by formulae (29). Equation (13) now reads as

s̃1τ − s̃1ξξ = G1(s̄) p̃.

Hence,

s̃1 = p̄G1(s̄) ∑
k 6=0

(
ψ+

k eik(ξ+cτ)

k2 + ick
+

ψ−k eik(ξ−cτ)

k2 − ick

)
.

where numbers ψ±k are the Fourier coefficients of functions ψ±. Finally,

W = θ(ψ±, c)G1(s̄)(µs(s̄) + κχ(s̄)) p̄2, c = c(s̄) =
√

µ(s̄), (30)

θ(ψ±, c) = 2c
∞
∑

k=1

|ψ+
k |

2−|ψ−k |
2

c2+k2 . (31)
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Thus, in the case under consideration, the homogenized system takes the form as follows

p̄t + q̄x = F1(s̄) p̄ + F0(s̄), (32)

q̄t + νq̄ + µ(s̄) p̄x = κχ(s̄) p̄s̄x + W, (33)

s̄t = G1(s̄) p̄ + G0(s̄), (34)

where the wind term, W, is determined by formula (30).
Let us consider the maximization of factor θ in the absolute value for a fixed c > 0.

There are restrictions for functions ψ± to obey; namely, they must be positive and their
sum (normalized by 2π) must be a probabilistic density on the unit circumference. Hence,
|ψ±k | < 1 ∀k ∈ N and the maximizing (minimizing) pair of sequences is |ψ+

k | = 1, ψ−k = 0
(|ψ−k | = 1, ψ+

k = 0). So, the supremum and infimum of factor θ read as

±2c
∞

∑
k=1

1
c2 + k2 = ±π coth(π c)c− 1

c
(35)

It is worth noting that functional (31) probably does not attain these extremal values
at some smooth densities ψ±. On the other hand, it tends to one of these values when
one concentrates density ψ+ or ψ− near some singular point on the unit circumference.
The similar limiting object on the whole real axis is known as the Dirac measure, or δ, or the
atomic measure. To build the same on the circumference, we construct the 2π-periodic grid
of the Dirac atoms while setting one atom on the period.

5. The Case of Constant Diffusivity and Sensitivity

For reducing the wind term (30) into its simplest form, let us set

µ = const, χ = const, κ = 1, G(p, s) = s(α− p− s), F = p(γs− β), (36)

where α, β and γ are positive constants. Then the homogenized system reads as

p̄t + q̄x = p̄(γs̄− β), (37)

q̄t + νq̄ + µ p̄x = χ p̄(s̄x − θ p̄s̄), (38)

s̄t = s̄(α− p̄− s̄), (39)

where µ = const > 0, χ = const > 0, while formula (31) determines the magnitude of
factor θ for every c =

√
µ = const. Since it depends on functions ψ± as well, we will

be considering this factor as an additional parameter, which varies within bounds (35).
Actually, we can restrict our considerations within positive values of parameter θ due to
the system invariance with respect to the following transform

(x, t, p̄, q̄, s̄, θ)→ (−x, t, p̄,−q̄, s̄,−θ).

For θ = 0, system (37)–(39) is nothing else than a version of the original system (1)–(3),
which possesses the mirror symmetry (x, t, p, q, s)→ (−x, t, p,−q, s). Note in passing that
solutions (25) and (26), over which we do the homogenization, cannot possess the above
invariance unless ψ+(−η) = ψ−(η) ∀ η. The last, however, entails |ψ+

k | = |ψ
−
k | ∀ k and,

hence, θ = 0 by (31), so that the homogenized system gets the mirror invariance.
Recall now that we aim at studying the slow evolution of the amplitudes of the short-

wavelength parcels. In this respect, understanding the effect of the wind seems to be the
keynote as the wind is the only difference between the homogenized system (37)–(39) and
the original system. Fortunately, it is particularly easy under hypotheses (36), as the wind
term, −θχs̄ p̄2, is proportional to only one scalar parameter, θ. Hence, estimating the effect
of wind reduces to estimating the effect of the magnitude of parameter θ, which is moreover
confined within the known finite interval. It is worth noting that the same is true when the
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transport coefficients depends on the prey density only, and the reaction terms are linear in
the predator density.

6. Linear Stability

The homogenized system (37)–(39) allows an equilibrium

pe = α− β/γ, se = β/γ, qe = −θse p2
e /ν. (40)

For θ = 0, this is the equilibrium of the original system. Here by the original system
we mean the formulation of system (1)–(3) arising from assumptions (36) in the case of
non-diffusive (sedentary) prey (i.e., for δ = 0).

In general, from formula (21), it follows that W( p̄, s̄) = const provided that p̄ = const,
s̄ = const and system (9) has a two-parametric family of solutions p̃ = P( p̄, s̄), q̃ = Q( p̄, s̄).
Hence, the equilibria of the general homogenized system (if any) are to read as

p̄ ≡ p̄e = const, s̄ ≡ s̄e = const q̄e = W( p̄e, s̄e)/ν,

where the equilibrium densities are to set to zero the averaged reaction terms—that is,
the following equations are to hold

〈F( p̄e + p̃, s̄e)〉 = 0, 〈G( p̄e + p̃, s̄e)〉 = 0, p̃ = P( p̄e, s̄e).

Every equilibrium of the homogenized system generates the unmodulated short-wave
pattern by formula p̃ = P( p̄e, s̄e), q̃ = Q( p̄e, s̄e). In a simpler situation, for µ = µ(s),
χ = χ(s), such a quasi-equilibrium pattern results from formulae (25) and (26) where
p̄ = p̄e, q̄ = q̄e.

Applying the rationales above to the case of the linear reactions in the predator density
leads to the conclusion that the equilibrium densities of species are the same for both the
homogenized and original systems, i.e.,

p̄e = pe, s̄e = se.

(where by original we mean the version of the governing system dealt with). This ob-
servation opens a relatively easy way towards unfolding the effect of the wind, at least
partly. It consists of comparing the stability of the equilibrium with the wind or without
it and deciding whether the wind exerts a stabilizing or destabilizing effect. Regarding
system (37)–(39), the problem simplifies to estimating the effect of the parameter θ on the
stability of the above equilibria.

Let us consider the linearization of system (37)–(39) near the equilibrium (40) and look
for a special solution that reads as

( p̂, q̂, ŝ) exp(ikx + λt), p̂, q̂, ŝ, λ ∈ C, k ∈ R, (41)

It is common to name solutions (41) as the normal modes (of the corresponding
equilibrium) and say that such a mode is stable (unstable, neutral) if the real part of
decrement λ is negative (positive, equal to zero). At that, the so-called spectral stability
problem arises for which λ is the eigenvalue and the corresponding normal mode is the
eigenmode. It is also common to say that an equilibrium (or more general steady regime)
is stable (unstable, neutral) provided its normal mode is stable (there exists an unstable
(neutral) mode). Note that genuine stability in the Lyapunov sense often needs a much
more accurate definition and does not always relate to this spectral test straightforwardly.
This notice concerns the instability too.

Typically, the regimes we examine for stability depend on several parameters as,
for example, equilibrium (40) does. Note that the wavelength of the eigenmode, k, stands as
a parameter too. In the parametric space, every point belongs to either the area of instability
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or the area of stability or the critical submanifold that separates them. In the former (latter)
area, there exist unstable normal modes (every normal mode is stable).

A smooth path in the parametric space that parameterizes a family of equilibria
parameterizes the corresponding family of stability problems. We call a submanifold in
the parametric space neutral if the transversal intersection of it by such a path generically
entails the transversal intersection of the imaginary axis by a branch of eigenvalues of the
corresponding stability problems. The unstable eigenmodes disappearing or arising upon
crossing the neutral submanifold is what we call an occurrence of instability. We say that
the instability is oscillatory (monotonic) if the corresponding branch of the eigenvalues is
not real (is real).

In the case dealt with here, the stability test for an individual normal mode reduces
to counting the eigenvalues of some complex matrix 3× 3 that belong to the right semi-
plane. We allude to widely recognized textbook [9] for more details, though the procedure
is routine. Nevertheless, it is worth noting that the characteristic polynomials of the
mentioned matrices depend not on the parameter θ itself but on θ2 only—that is, the
direction of the wind is nothing to do with the stability. This feature also agrees with the
invariance of the homogenized system.

Here is the summary of our outcomes concerning the linear stability of equilibrium (40)
for θ = 0—that is, for the original system.

• The neutral submanifold is the graph of function χ = χnt(γ, p, s, k2), where

χnt =
µ ν

pe se
+

γ pe se
2 + se ν2 + se

2ν

pe se k2 . (42)

For a specific equilibrium and a specific wave number k, the normal mode is stable for
χ < χnt and becomes unstable otherwise.

• The critical submanifold is the graph of function χ = χcr = µν/pese. A specific equilib-
rium is stable provided that χ < χcr and becomes unstable otherwise. This instability
is always oscillatory and occurs to shorter waves; namely, for every χ > χcr there
exists k∗ > 0 such that every eigenmode is unstable (stable) provided that |k| > k∗
(|k| < k∗).

• The above conclusions mainly withstand allowing the prey diffusion, except for the
shortwave instability; namely, the neutral submanifold is the graph of function

χ = χ̌nt = δ2k2 A + δB + χnt,

where χnt is function (42) while factors A, B do not depend on the parameters that
enter the right-hand side explicitly.

• At that, the critical submanifold is the graph of function

χ = χ̌cr = min
k

χ̌nt =
δ(ν2 + 2νse + γpese + νse

√
ν2 + νse + γpese) + µν

pese
> χcr.

Again, for every δ > 0 a specific equilibrium is stable provided that χ < χ̆cr and
becomes unstable otherwise. This instability is always oscillatory and there exist real
numbers k1 > k0 > 0 such that every eigenmode’s mode is unstable provided that its
wavenumber obeys the inequality k0 < |k| < k1. Interestingly, function χ̆cr is linear in µ
and in δ too.

Let us pass to the homogenized system (37)–(39) and test the linear stability for χ = χcr
and θ equal to its maximal absolute value (35). It turns out that the equilibrium (40) is
unstable while it is stable for θ = 0 in accordance with what we have been saying above.
Hence, the wind can make the equilibria unstable. In more detail, let χ and θ be set as above.
Then for every admissible setting of the other parameters there exist numbers k2 > k1 > 0
such that there are unstable normal modes for every wavelength k : |k| > k2 and all the
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normal modes are stable for every k : |k| < k1. Figure 2 (the right frame) is to illustrate this
conclusion. Note that generically there are three different eigenvalues λ for every k. Their
expressions in the problem parameters are commonly called the eigenvalues branches.
These branches remains smooth unless the eigenvalues collide, while their collisions lead
to singularities. The right frame in Figure 2 shows the real part of the eigenvalue branch
that turns positive when the squared wavenumber increases over some threshold. This
threshold tends to zero rapidly upon increasing the diffusivity coefficient. Two more branch
do not appear there since they always remain in the left complex semi-plane. It is worth
mentioning that the increment, Re λ, tends to a limit for |k| → ∞ (which depends on other
parameters), while Im λ = |k|√µ + O(|k|−1), |k| → ∞.

Figure 2. The typical neutral curves of µ versus squared wavenumber for five values of
α = 0.5, 0.87, 1.12, 1.43, 1.8, 2.0 (left panel) and graphs of the increments of the eigenmodes (Re λ)
vs. the squared wavenumbers for µ = 0.1, 0.18, 0.25, 1.25, 2.25, 3.0 and α = 3/4 (right). Each increase
in the diffusivity coefficient increases the increment so that its graph moves upward and crosses the
horizontal axis closer to zero. On the left panel, the area of stability is confined within the coordinate
axes and the neutral curves. Each increase in α widens the stability areas so that the neutral curves
moves right and upward. The values of other parameters are as follows: ν = 1, γ = 2/3, β = 0.4γα,
χ = χcr, and θ is equal to its maximum.

7. Numerical Results for the Homogenized System

Figure 3 shows typical patterns of the wind-induced pumping of a perturbation
(upper row) or decaying it without the wind (lower row), cf. Figure 1. They both result
from the numerical solutions of the Cauchy problems for system (37)–(39). Their settings
are the same, except for the value of parameter θ, which is equal either to zero (lower row)
or to its negative absolutely maximal value (upper row). It is the negative quantity given by
formula (35) where c =

√
µ. The initial conditions and the values of the other parameters

are as follows

p|t=0 = pe + 0.05e−
x2
4 , s|t=0 = se, q|t=0 = qe = −θχse p2

e /ν, se = β/γ < α, pe = α− se > 0, (43)

χ = χcr = µν/(pese), ν = 1, µ = 1/2, β = 0.4αγ, α = 3/4, γ = 2/3. (44)

From the numerical experiments, it follows that the behaviour of small finite pertur-
bation qualitatively agrees with the linear theory of Section 6. Namely, the linear theory
states the stability provided that θ = 0 while the other parameters take the values specified
in (44), and we have observed the decay of the small finite perturbations. At the same time,
we see amplifying them once the magnitude of θ has attained its maximal value with no
changes in the other parameters. This observation also agrees with the linear theory, which
predicts the onset of instability upon following such a path in the parametric space.

We emphasize the typicality of the outlined picture. We have tried not a few parameter
combinations with stronger or weaker resistance, faster growth of prey (α > 1), weaker
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prey diffusivity, a moderate overabundance of prey (α = 0.6βγ), a greater predation
efficiency (γ > 1) and smaller values of parameter θ (e.g., produced by a single harmonic).
Nevertheless, we have not observed any patterns of behaviour, linear or nonlinear, which
differ qualitatively from those discussed above.

For numerical solving of the Cauchy problems for system (37)–(39) with data (43)
and (44), we have eliminated the unknown q from Equations (37) and (38) and then have
arrived at a system that consists of the reaction–diffusion Equation (39) and a nonlinear
wave equation for the predator density, p. For completing the reduction, it is necessary to set
up an ad hoc initial condition of form pt = a when t = 0, where function a = a(x) is given.
By Equation (37), a = F(p, s)− qx, where F is the predators’ sources density, and functions
p, q, s are specified by the initial condition set up for the first-order system (37)–(39). Given
the initial data (43) and (44) and Equation (37), we set pt|t=0 = 0. This is not the case for the
Cauchy problem of Section 3, where we have addressed in fact Equations (37) and (38) for
θ = 0 and initial data (5). Given this, we arrive at pt + qx|t=0 = 0.

In fact, instead of the Cauchy problem, we had been solving an initial-boundary value
problem with Neumann boundary conditions on a sufficiently wide spatial interval with
the built-in solver of Maple. We set the interval of (−25, 25) for computing the results,
which we have been discussing in this section, and (−35, 35) for those of Section 3.

Figure 3. The typical pattern of the smooth localized perturbation with or without the wind,
see Section 7 for specific settings. Each frame shows instantaneous graphs of the deviation of the
species densities from their equilibrium values. At that, blue (green) colour corresponds to the preda-
tor (prey) and the horizontal axis corresponds to the spatial coordinate, x. The upper row displays
growth and sharpening of the perturbation due to the wind-induced pumping. Parameter θ < 0
is maximal in the absolute value. The snapshot timing, left to right, is t ≈ 0.0, 3.4, 9.3. The bottom
row displays a decaying pattern with no wind so that θ = 0. The snapshot timing, left to right,
is t ≈ 0.0, 5.2, 10.

8. Conclusions

We have studied a model for the predator–prey community that couples purely
diffusive prey with a prey-sensitive predator. For the latter, we employ the Cattaneo
model, which is a notable member of the hyperbolic models family. Motivated by the
preliminary numerical results presented in Section 3, we have been seeking a mechanism
for pumping the slow amplitude modulation of short-wave patterns. For this purpose,
we have addressed the high-frequency limit of the model for vanishing prey diffusivity. It
has turned out that there exists an asymptotic solution that represents a short-wave pattern
with slowly varying amplitude, for which there is an explicit closed system of equations to
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obey. This homogenized system resembles the original model in many respects, except for
the source-like term, which enters the flux equation. We have called it the acoustic wind.

The linear stability analysis has discovered that the wind always destabilizes the
equilibria of the homogenized system and, hence, the corresponding quasi-equilibria
short-wave patterns. In agreement with the linear theory, the numerical solutions to the
homogenized system presented in Section 7 reveal the growth of the finite perturbations
of the equilibria when the wind is on and their decay when it is off. Thus, we conclude
that the acoustic wind is solely responsible for the excitement and growth of the amplitude
modulation of the short-wave patterns.

Thus, we have found an intrinsic mechanism for destabilizing and ruining the short-
wave patterns in the Cattaneo model. It stops working only for quite a narrow class
of models that obey condition (28). It is worth emphasizing that Tytyunov et al. [4,7]
had earlier proposed this condition using probabilistic reasoning for modelling copepods
with special regard to their ability to form small-scale mosaics upon spreading. The
mentioned articles invoked Patlak–Keller–Segel modelling with transport coefficients
obeying condition (28). Given the results of the present article, the hyperbolic models
under condition (28) are not less suitable for studying the formation of small-scale patterns
in population dynamics, and it is a challenging topic for continuing investigations.
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