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Abstract: The famous McCulloch–Pitts neuron model has been criticized for being overly simplistic
in the long term. At the same time, the dendritic neuron model (DNM) has been shown to be effective
in prediction problems, and it accounts for the nonlinear information-processing capacity of synapses
and dendrites. Furthermore, since the classical error back-propagation (BP) algorithm typically
experiences problems caused by the overabundance of saddle points and local minima traps, an
efficient learning approach for DNMs remains desirable but difficult to implement. In addition to BP,
the mainstream DNM-optimization methods include meta-heuristic algorithms (MHAs). However,
over the decades, MHAs have developed a large number of different algorithms. How to screen
suitable MHAs for optimizing DNMs has become a hot and challenging area of research. In this
study, we classify MHAs into different clusters with different population interaction networks (PINs).
The performance of DNMs optimized by different clusters of MHAs is tested in the financial time-
series-forecasting task. According to the experimental results, the DNM optimized by MHAs with
power-law-distributed PINs outperforms the DNM trained based on the BP algorithm.

Keywords: dendritic neuron model; meta-heuristic algorithms; financial time-series forecasting;
population interaction networks

MSC: 37M10; 68W50; 68W40; 68T20

1. Introduction

Stock markets are frequently affected by micro-economic variables, such as capital
market expectations, personal trader choices, and commercial organization operating
policies, along with macro-economic variables, such as the economic environment and
political issues [1]. As a result, because the precise effects of these factors on the vibrant
monetary system are unidentified, forecasting stock market price changes is a significant
difficulty for investors, speculators, and businesses [2], implying that realistic factors place
higher demands on the accuracy of financial time-series forecasting (FTSF).

When attempting to predict the future, one expects that events will take place as
predicted based on information and data about the past and present. Nevertheless, fi-
nancial time series are among the most non-linear and challenging signals to forecast [3].
Traditional classical algorithms, such as the seasonal autoregressive integrated moving
average (ARIMA) [4] and Holt–Winters method [5,6] make up the majority of the popularly
used time-series-forecasting algorithms. In between, the ARIMA model is predicated on the
idea that the data series is smooth, meaning that the mean and variance should not change
over time and that the series can be made smooth using a logarithmic transformation or
difference.
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The Holt [5] and Winters [6] seasonal approach consists of a forecasting equation and
three smoothing equations: the level, the trend, and the seasonal component equation,
which are then superimposed on the elements in a cumulative or multiplicative manner
to form the forecast. However, both methods are mathematical models that, while robust,
have limited learning freedom and are less interpretable.

In the last decade, a diverse variety of machine-learning algorithms for driving solu-
tions to time-series-forecasting challenges have been proposed [7], and previous research
has demonstrated that machine learning is a cutting-edge learning technique that out-
performs traditional models in terms of accuracy of time-series prediction [8]. Machine-
learning techniques, typically artificial neural networks (ANN), play a significant role
in time-series-prediction studies [9]. With neural networks, it is unnecessary to make
precise assumptions about the model because data mining is used to identify all relevant
correlations [10].

The fact that neural networks use a data-driven approach is one of their greatest
advantages in confronting a variety of challenging real-world prediction difficulties. For
instance, a recurrent neural network (RNN) for predicting financial time series, which
uses ANNs to capture memory features via a feedback mechanism, can extricate temporal
dependencies in financial data [11]. This RNN has more competitiveness than the well-
known multi-layer perceptron (MLP) [3]. However, studies have demonstrated that it is
difficult for the RNN to learn knowledge that has been preserved for a long time [12].

To tackle this question, the RNN-deduced long short-term memory (LSTM), which can
recall both short-term and long-term values, was developed [13]. Nevertheless, LSTM, on
the other hand, requires more computational resources and suffers from overfitting issues
due to its deep structure [14]. Other ANN architectures, such as the spiking network [15]
as well as the adaptive network-based fuzzy inference system (ANFIS) [16] have been used
to address this problem and deliver positive outcomes.

McCulloch and Pitts proposed a mathematical model of neural activity occurring in
the brain in 1943, which inspired ANNs [17]. Although ANN-based models are prominent,
there are some drawbacks, such as the complexity of adjusting hyper-parameters, the need
for a significant number of labeled training data, more repetitive model sophistication than
required, and low comprehensibility due to their inherent black-box properties [18,19].
Admittedly, none of these works considered the fundamental concepts of deep neural
networks—namely, the useful and effective information processing of a single neuron.

On the contrary, they typically enhanced the performances of the models by incor-
porating theoretical statistical elements or even more complex learning mechanisms. Si-
multaneously, rather than building deeper neural networks, some researchers remodeled
neurons from scratch [20]. In addition, McCulloch–Pitts neurons, which only use a weight
to depict the strength of a connection between two neurons, have long been criticized for
being oversimplified [21].

Furthermore, a true biological neuron, which has both temporal and spatial properties,
is only so complex. Thus, with sigmoid functions for the synaptic processing and a
multiplication operation for the interaction within dendrites, a novel and biologically
plausible dendritic neuron model (DNM) was introduced [22]. The DNM is characterized
from almost all other ANNs by its distinct model architecture and excitation functions.
DNM*, which is an improvement on DNMs, was applied to the FTSF problem in 2021,
showing high application potential [23].

Despite the fact that DNMs have achieved considerable success in a variety of ap-
plications [24], they are largely trained by using the back-propagation (BP) learning al-
gorithm, which typically encounters saddle-point diffusion and local-minimum trapping
issues [25]. Due to these limits of BP, an increasing number of researchers have turned to
non-BP algorithms—those that do not involve derivative computation but instead use an
enhanced comparison-based solution—to train neuron models. The metaheuristic algo-
rithms (MHAs) are widely used in DNM training as a long-established and time-tested
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optimization method [26,27]. However, as MHA research continues, new algorithms and
improvements to existing algorithms are increasingly proposed [28].

The issue of how to filter the existing algorithms so that they can better train DNMs
has become a major challenge for research. In fact, there have been some attempts to train
DNMs using MHAs to predict financial time series [29,30]; however, these efforts compare
and modify existing algorithms based on a specific algorithm and do not propose a generic
mechanism for screening the algorithm. This leads to an alchemy dilemma [31] in the
research of the FTSF problem, where researchers continue improving their optimization
algorithms without being able to explain why specific changes are selected. This has further
led to selecting suitable algorithms for training the DNMs without a theoretical basis and
is highly dependent on researcher experience, which ultimately pushes up the time and
economic costs.

The purpose of this research is to present the theory of population interaction networks
(PINs) [32] to more accurately screen training algorithms for DNMs. PIN theory divides
the cumulative distribution functions of evolutionary algorithms in MHAs into two types:
power-law distribution and Poisson distribution. Inspired by the above theory, we propose
a screening process for MHAs to quickly find a suitable DNM-optimizing algorithm.
First, we chose the differential evolution (DE) [33] with a Poisson-distributed PIN and the
adaptive differential evolution with optional external archive (JADE) [34] with a power-
law-distributed PIN and compare the performance of a DNM trained by both algorithms
on the FTSF problem.

Through testing, we found that the JADE-trained DNM outperformed the DE-trained
DNM. This result suggests that MHAs with power-law-distributed PINs may be more
advantageous for DNM training. Subsequently, we selected the success-history-based
parameter adaptation for differential evolution (SHADE) [35] with a power-law-distributed
PIN and spherical evolution (SE) [36] with a Poisson-distributed PIN for testing. The results
demonstrate that the SHADE-trained DNM outperformed the SE-trained DNM for the
FTSF problem.

Furthermore, this result also further validates our speculation that DNMs trained by
MHAs with power-law-distributed PINs may be more advantageous in the FTSF prob-
lem. In addition, among the many MHAs, there are a large number of swarm-intelligence
algorithms in addition to those based on evolutionary mechanisms. Among the swarm-
intelligence algorithms, two typical algorithms, the genetic learning particle swarm opti-
mization (GLPSO) [37] and spatial information sampling (SIS) algorithms [38], are exam-
ined. The results of the tests reveal that DNMs trained by the swarm-intelligence algorithm
have no advantage over DNMs trained by MHAs with power-law-distributed PINs.

The main contributions of this study are summarized below:

(1) In this study, based on PIN theory, we build an efficient screening scheme for MHAs
for the first time. This process enables researchers to select training algorithms for
DNMs with a certain theoretical basis, thus, improving the screening efficiency of
training algorithms.

(2) We find that DNMs optimized by MHA with power-law-distributed PINs may have
higher accuracy in handling the FTSF problem.

(3) This research sheds new light on the design and improvement of DNM-training
algorithms. Since a PIN is a branch of complex networks, more network architectures
(e.g., small-world networks and scale-free networks) will be applied to the design and
improvement of MHAs in the future to more efficiently optimize DNMs.

The remainder of the paper is structured as follows: the DNMs and MHAs are formu-
lated in Section 2. The experimental results are analyzed in Section 3. Section 4 displays the
discussions and conclusion.

2. Materials and Methods

In the following, we discuss DNMs for financial time-series forecasting as well as
various types of MHAs for optimizing DNMs. The PIN-theory-based approach to classi-
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fying MHAs is the focus of this section, which concludes at the end of this section. After
classifying MHAs, we test MHAs with different PINs and find the most suitable MHA to
optimize DNMs to solve the FTSF problem.

2.1. Dendritic Neuron Model

A DNM is split into four different layers: the synaptic layer, the dendritic layer, the
membrane layer, and the soma layer, as shown in Figure 1, which demonstrates the entire
integration framework of a dendritic neuron model, which preferably resembles a biological
neuron’s features.

Figure 1. Dendritic neuron model.

2.1.1. Synaptic Layer

The synaptic layer processes signals from axon terminals to dendrites, and receptors
on postsynaptic cells begin taking up a particular ion whose potential differs depending
on the state of the synaptic connection (i.e., an inhibitory or excitatory synapse), where
the n external input to the presynaptic axon terminal can be mathematically symbolized
as {U1, ..., Ui, ..., Un} (i = 1, 2, ..., n). Furthermore, a sigmoid function is used to depict the
synaptic layer’s function [39], which is denoted as:

Zij =
1

1 + e−K(wijxi−pij)
(1)

In the equation, Zij indicates the ability of the jth (j = 1, 2, ..., M) post-dendritic cell
from the ith presynaptic axon terminal. K represents a distance parameter. In addition,
there are two synaptic parameters: a synaptic weight called wij, which represents excitatory
(wij > 0) or inhibitory (wij < 0) synaptic activity, and a threshold parameter called pij, both
of which are trainable DNM parameters that together control the morphology of DNM
dendrites and axons.

As demonstrated in Figure 2, learning algorithms, such as SHADE, GLPSO, and SIS,
can be employed to imitate the synaptic plasticity mechanism by optimizing both wij
and pij. Moreover, for the morphological conversion process, the four connection states
biologically indicate the neuron’s morphology by locally recognizing the position and
synapse kinds of each dendrite. The mechanism of synaptic plasticity can be implemented
after learning by dividing synaptic connections into four distinct states [24], as shown in
Figure 3, including:
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①Training Algorithms 
(SHADE, GLPSO, SIS etc.)

Initialized Synapses Thresholds/Weights

Trained Synapses Thresholds/Weights

−0.45 −0.00 0.50 0.92 0.68

0.36 0.92 −0.49 0.09 −0.49

0.31 −0.32 0.01 −0.72 0.63

−0.67 0.17 0.40 −0.70 −0.51

−0.76 −0.55 0.78 −0.48 −0.86

−0.30 −0.30 −0.43 −0.85 −0.74

−0.61 0.66 0.51 −0.89 0.14

−0.50 0.17 0.51 0.06 −0.06

0.23 0.10 −0.24 0.56 −0.98

−0.05 0.83 0.14 0.87 −0.33
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0.87 0.18 −0.34 −0.45 −1.00

0.05 0.12 −0.02 0.36 −0.55

−0.38 0.93 −0.27 −0.05 0.29

−0.84 −0.06 −0.16 −0.71 −0.14
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Figure 2. Learning process of a DNM.

(1) A constant-1 connection: when (1) pij < 0 < wij or (2) pij < wij < 0, indicates that,
despite the input varying from 0 to 1, the postsynaptic cell’s potential remains approxi-
mately 1.

(2) A constant-0 connection: when (1) wij < 0 < pij or (2) 0 < wij < pij, implying that,
irrespective of when the input is shifted from 0 to 1, the resulting potential is always close
to 0.

(3) An excitatory connection: when 0 < pij < wij, regardless of whether the input goes
from 0 to 1, the potential is proportional to the input signal.

(4) An inhibitory connection: when wij < pij < 0, regardless of whether the input goes
from 0 to 1, the potential is inversely proportional to the input signal.

2.1.2. Dendritic Layer

All synaptic layer signals are received by M dendrites in the dendrite layer. In this
layer, multiplication is employed. Multiplicative activity is the primary mechanism for
visuomotor responses to motor input in insects [40], and the multiplicative operations
performed by each dendrite are considered to be the simplest non-linear operations [41]
that are commonly detected in neurons, such as the auditory spatial sensory region. The
multiplication operator is equivalent to the logical AND operation once the dendrites’
inputs are 1 or 0 (i.e., constant 1 or 0 connections). The jth output function of the dendritic
branch can be printed as:

Sj =
n

∏
i=1

Zij, (2)

2.1.3. Membrane Layer

Following that, all signals from dendritic branches are captured in the membrane layer.
A summation operator, similar to a logic OR operation, is incorporated in the membrane
layer, and the summed signal is conveyed to the soma body to stimulate the neuron. Its
formula is as follows:

L =
M

∑
j=1

Sj, (3)
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Figure 3. Connection cases of the synaptic layer.

2.1.4. Soma Layer

Ultimately, a sigmoid function is used in the soma body to deal with the somatic
membrane potential L. Its purpose is to determine whether the neuron fires based on the
overall model’s output. This procedure is written as follows:

O =
1

1 + e−K(L−P)
(4)

where P is the firing parameter that varies from 0 to 1 and represents the threshold in the
soma body.

Particularly, Figure 2 also reveals that the DNM has a similar structure to some other
neuronal models, but it is a general model with distinct features for such a single neuron. As
shown in step 4 of the figure, the DNM initially has a complete connection structure after the
morphological transformation; however, some dendrites and synapses may be unnecessary
for the execution of a specific task, and thus the DNM can clear some dendrites that are
no longer required from the neuron by learning, which is called dendritic pruning. After
undergoing dendritic pruning, dendrites 1–4 have constant-0 connections, and because any
number multiplied by 0 equals 0, these dendrites can be ignored and removed from the
neuron, leaving only dendrite 5.

In addition, regarding step 6, since they are constant-1 connections and the multiplica-
tion operation is performed on each dendrite, meaning that the outcome of any number
multiplied by 1 does not shift, the three synaptic inputs (U1, U3, and U4) on dendrite 5 are
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excluded by the neuron after learning. This is known as synaptic pruning of the DNM.
Furthermore, synaptic pruning can be used to infer the status of neurons’ local synaptic
connectivity. Thus, given a neuron with organized dendrites, the DNM can, through its
ability to detect neuron morphology, potentially infer by dendritic pruning and synaptic
pruning the number of dendrites situated at the location where the presynaptic axon ter-
minal is connected to the dendrites and the way they are connected, i.e., an excitatory or
inhibitory connection.

2.2. Meta-Heuristic Algorithms

A typical MHA contains an initialization operation, a search operation, an evaluation
operation, and a selection operation. In this section, four algorithms—SE, DE, JADE, and
SHADE—are described in detail.

2.2.1. Initialization Operation

The initialization operation includes the assignment of teh initial parameters as well
as the process of producing initial individuals in the solution space. Furthermore, N indi-
viduals are randomly initialized. When the DNM is trained using MHAs, the individuals
of the algorithm are represented as:

Xi =
[
w1,1, w1,2, ..., wi,j, ..., wn,M, p1,1, p1,2, ..., pi,j, ..., pn,M

]
(5)

The evaluation operation function f (·) evaluates each individual of the population. In
addition, f (·) is the set of output equations as shown in Equations (1)–(4) and (10).

2.2.2. Search Operation

The search operation of SE can be represented as:

Vi,j = Xr1,j +


F · ‖Xr2,∗ − Xr3,∗‖2 ·∏

Dc−1
k=j sin

(
θj
)
, if j = 1

F · ‖Xr2,∗ − Xr3,∗‖2 · cos
(
θj−1

)
·∏Dc−1

k=j sin
(
θj
)
, if 1 < j ≤ Dc − 1

F · ‖Xr2,∗ − Xr3,∗‖2 · cos
(
θj−1

)
, if j = Dc

(6)

where Vi is a temporary offspring individual. The scale factor F stands for a variable
that can be used to adjust the search radius. (r1, r2, r3) are the indices of the individual,
and they are random integers between 1 and N. The sphere’s radius, calculated using
the Euclidean norm in high dimensions, is indicated by the symbol ‖Xr2,∗ − Xr3,∗‖2. A
uniformly distributed random number between [0, 2π] produces the value of θ. Dc is the
dimension of the original D after the dimensionality reduction operation. ∗ = {1, 2, ...Dc}
indicates the set of dimensions after dimensionality reduction.

The search operation of DE can be represented as:

Vi,j = Xr1,j +

{
F · (Xr2,j − Xr3,j), if b < CR or j = jr
0, if otherwise

(7)

F is the scaling factor. jr is a random integer between 1 and D. b is a random real number
between 0 and 1. The crossover probability, denoted by CR, determines the extent to which
the mutant individual displaces parts of the parent individual.

The search operation of JADE and SHADE can be represented as:

Vi,j = Xi,j +

{
F · (Xo,j − Xi,j + Xr1,j −Yr,j), if b < CR or j = jr
0, if otherwise

(8)

where F and CR are adaptive parameters. Xo,j is the top-ranked individual in the parent
population. Xr1 is a random individual of the parent population. Yr is a random individual
selected from the set of the current and previous generations of populations.



Mathematics 2023, 11, 1251 8 of 20

2.2.3. Evaluation Operation

Once the search operation is executed, the fitness values of the total individuals in V
are evaluated. With a greedy selection strategy, Vi is compared to the original population Xi,
with individuals who outperform remaining in the next generation. The selection operation
is formulated as follows:

X′i =

{
Vi, if f (Vi) < f (Xi)

Xi, if otherwise
(9)

This optimization case uses the minimum value approach. The algorithm moves on to the
subsequent iteration of the search operation after finishing the selection operation. Taking
DE as an example, we show the complete execution flow of MHAs using Algorithm 1.

Algorithm 1: Pseudocode of DE.

1 begin
2 /*Initialization */
3 Initialize parameter and randomly initialize N individuals
4 f (X) = evaluate(X)
5 while Terminal Condition do
6 /*Search Operation */
7 for i = 1 : N do

8 Vi,j = Xr1,j +

{
F · (Xr2,j − Xr3,j), if b < CR or j = jr
0, if otherwise

9 /*Selection Operation */
10 for i = 1 : N do

11 X′i =

{
Vi, if f (Vi) < f (Xi)

Xi, if otherwise

2.2.4. Analysis of MHAs Using Population Interaction Networks

Existing nodes and edges, which represent individuals and connections between indi-
viduals, respectively, are used to construct complex networks. Comparing and analyzing
network properties requires taking each network’s structure into account. In general, the
topology of the network depicts the final product of population evolution that is ongoing
and clearly affects the algorithm performance [42,43]. The knowledge that each individual
carries is conveyed by a particular evolutionary mechanism, and the interaction of individ-
uals is achieved. The network’s final graph demonstrates the results of certain laws and the
dissemination of knowledge to the entire population. The PIN describes how individuals
interact with one another in MHAs.

Our previous results showed that DE had a Poisson-distributed PIN, while JADE and
SHADE had power-law-distributed PINs [32]. In this study, the analysis of SE is added (as
shown in Appendix A), and the results showed that SE had a Poisson-distributed PIN. The
statistical and fitting methods for the degrees are consistent with [32]. Figure 4 shows the
PINs of MHAs. In Figure 4, (1), X′′i is an offspring of X′i . The yellow lines are the network
connections of X′i to its parents Xr1, Xr2, Xr3, and Xi during the update process. The blue
lines represent the network connections of X′′i to its parents X′r1, X′r2, X′r3, and X′i during
the update process.

At one iteration, the newly generated individuals X′i and X′r1, X′r2, X′r3, and Xi are
related. The node X′i and the four edges (degrees) associated with it are then recorded in
the PIN. In Figure 4 (2), Xr2 and Xr3 are replaced by Xo and Yr. Figure 4 (1) and Figure 4
(2) are the PINs of SE and DE, and two variants of DE, respectively. The search operations
Equations (6) and (7) of SE and DE are represented by the green ellipse, and the search
operation Equation (8) of two variants of DE is represented by the orange rhombus. The
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distinctions between SE, DE, JADE, and SHADE are discovered through the comparison of
three search operations.

(1) The population interaction network of SE and DE.

Xi

Xr2

Xr3

Xr1

Xi'

Xi''

Xr1'

Xr2'

Xr3'

DE:X
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Xr2

D
E

:X
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(2) The population interaction network of JADE and SHADE.
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Xr2

|

S
E

:|X
r2'X

r3'|
Figure 4. The population interaction networks of MHAs.

In Equation (8), Xo is the current best point involved in each X′i update process, which
interacts with every point in the population and, therefore, has a large number of links. This
is consistent with the characteristics of a power-law distribution. When Xo is not updated,
the nodes connected to Xo will grow with the numbers of iterations of the algorithm, and
this will make JADE and SHADE more biased towards a power-law distribution. Relatively,
there is no central node of Xo in the iterative process of SE and DE, which implies that
the inter-individual information interaction between SE and DE presents an ergodic and
random nature. This makes the PINs of DE and SE exhibit a Poisson distribution.

3. Results
3.1. Dataset Description

In order to evaluate the performance of the DNM trained by MHAs, we experimentally
selected five-year intercepts (the Nikkei Stock Average is a four-year intercept) of the daily
closing prices of five stock indexes from the world’s top two typical stock markets—the
United States and Japan—in terms of the share of total world stock market value. The
dataset can be obtained from the sources listed below Table 1. The five stock price index
datasets are described in detail in Table 1.

Table 1. Experimental datasets.

Dataset Data Period Amount of Data

Market Indices 1 Region Abbreviation D/M/Y Days

Dow Jones Industrial Average USA DJIA 11/02/2018–13/11/2022 1169
NASDAQ Composite Index USA COMP 12/02/2018–13/11/2022 1168

NASDAQ 100 Index USA NDX 25/01/2018–26/10/2022 1169
Nikkei Stock Average (Nikkei225) Japan N225 18/02/2019–14/11/2022 882

Standard & Poor’s 500 USA SPX 14/12/2017–13/09/2022 1169
1 Sources of market indices. Dow Jones Industrial Average: https://us.spindices.com (accessed on 14 Novem-
ber 2022). NASDAQ Composite Index: https://www.nasdaq.com (accessed on 14 November 2022). NAS-
DAQ 100 Index: https://www.nasdaq.com (accessed on 27 October 2022). Nikkei Stock Average(NIKKEI225):
https://indexes.nikkei.co.jp/en/nkave/index/profile?idx=nk225 (accessed on 15 November 2022). Standard &
Poor’s 500: https://www.spglobal.com/spdji/en/ (accessed on 14 September 2022).

3.2. Evaluation Criteria

In order to make a comprehensive analysis and comparison, three commonly utilized
metrics were employed to assess prediction model performances: the mean square error

https://us.spindices.com
https://www.nasdaq.com
https://www.nasdaq.com
https://indexes.nikkei.co.jp/en/nkave/index/profile?idx=nk225
https://www.spglobal.com/spdji/en/
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(MSE), mean absolute percentage error (MAPE), and mean absolute error (MAE), with
smaller values of MSE, MAPE, and MAE indicating better prediction model performances.
The calculations are represented by the equations below:

f (Xi) =


MSE(Xi) =

1
n ∑n

h=1(Th −Oh)
2

MAPE(Xi) =
1
n ∑n

h=1

∣∣∣ Th−Oh
Th

∣∣∣
MAE(Xi) =

1
n ∑n

h=1|Th −Oh|
(10)

The fitness function of an individual Xi between the outcome of the DNM and the
target output was computed using MSE, MAPE, and MAE. n refers to the total number of
samples. The hth target output and the actual outcome of the DNM are given by Th and
Oh, respectively. For the predicting phrases, the correlation coefficient R is determined as
follows:

R =
∑n

h=1(Th − Th)(Oh −Oh)√
∑n

h=1(Th − Th)2 ∑n
h=1(Oh −Oh)2

(11)

where the value of R increases with the accuracy of the forecast.
Moreover, to determine if the prediction models in this work differ significantly from

one another, the Wilcoxon rank-sum test and the Friedman test were used. The Wilcoxon
rank sum test is a non-parametric assessment of the null hypothesis versus the competing
hypothesis for two samples from the same group. In addition, in order to determine
the differences between SHADE and other algorithms, the Wilcoxon rank-sum test was
employed to compare the f (·) obtained after 30 repetitions of DNM training, and W/T/L
was used to represent these differences.

The number of functions for which SHADE was considerably superior to other al-
gorithms is represented by W, T denotes the number of functions for which SHADE
performed no better than other algorithms, and L denotes the number of functions for
which SHADE performed significantly inferior to other algorithms. The alternative hypoth-
esis in the Friedman test is that the median values of two or more algorithms vary, while
the null hypothesis is that the median values of the various algorithms are equal. In this
study, a lower value of Rank shows that the model performed better on the FTSF problem.

3.3. Experimental Setup

In the experiment part, we executed two different sets of experiments. The first set
of experiments is the performance comparison of DNMs trained by MHAs on the FTSF
problem. The MHAs compared in the first set of experiments are SHADE and JADE with
power-law-distributed PINs, DE and SE with Poisson-distributed PINs, and GLPSO and
SIS, which are swarm-intelligence algorithms.

The purpose of the first set of experiments is to demonstrate that DNMs trained by
MHAs with power-law-distributed PINs outperformed DNMs trained by other MHAs
on FTSF. The second set of experiments is a comparison of the performance of various
mainstream prediction models on the FTSF problem. In the second set of experiments,
DNM-SHADE, DNM*, DNM-BP, ANFIS, LSTM, the Elman network, and MLP are com-
pared. The purpose of the second set of experiments is to demonstrate that DNMs trained
with MHAs with power-law-distributed PINs perform competitively on FTSF compared to
mainstream prediction models.

Furthermore, each dataset was divided into two sets: a training set that includes
70% samples and a testing set that includes the remaining 30% samples. The experiments
for each prediction model were individually run 30 times on each dataset. The overall
performance of each model in terms of accuracy in prediction was evaluated using the
average and standard deviation of the evaluation metrics. Additionally, the raw data
needed to undergo a normalization step in order to lower the sophistication of the data
before applying the particular model. This step was first performed on the training samples,
then on the test samples with the same parameters, and finally on the prediction model
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output using an inverse normalization operation and in a range of values of [0, 1] by the
given equation:

x(n)i =
xi − xmin

xmax − xmin
(12)

where the maximum and minimum values of the data are denoted by xmax and xmin.

3.4. Parameter Settings

In order to obtain robust and dependable performance, it is essential to identify the
ideal parameter settings for each algorithm. Thus, the training of a DNM requires tuning
of K, P, and M using Genichi Taguchi’s orthogonal experiment approach [44] as given in
Table 2. Group 10 was found to be the optimal combination of parameters for a DNM on
the FTSF problem. The parameter settings for the prediction models on the five stock price
index datasets are shown in Table 3.

Table 2. Orthogonal experimental parameters.

Parameter K P M Parameter K P M

group 1 1 0.1 2 group 14 10 0.7 20
group 2 1 0.3 10 group 15 10 1 2
group 3 1 0.5 20 group 16 15 0.1 10
group 4 1 0.7 5 group 17 15 0.3 20
group 5 1 1 15 group 18 15 0.5 5
group 6 5 0.1 20 group 19 15 0.7 15
group 7 5 0.3 5 group 20 15 1 2
group 8 5 0.5 15 group 21 20 0.1 5
group 9 5 0.7 2 group 22 20 0.3 15

group 10 5 1 10 group 23 20 0.5 2
group 11 10 0.1 15 group 24 20 0.7 10
group 12 10 0.3 2 group 25 20 1 20
group 13 10 0.5 10

3.5. Performance Comparison of MHA-Trained DNMs

In this part, we compare the performance of DNMs trained by SHADE, JADE, SIS,
GLPSO, SE, and DE on the FTSF problem. Table 4 shows the prediction performance of
DNMs trained by each MHA on five stock indices. In addition, the DNM optimized by
BP is also compared in the table. As can be seen from the W/T/L in the table, except
for DNM-BP, the performance of DNM-SHADE was far better than its competitors. It
should be noted that the test results of the Wilcoxon rank-sum test show that there was no
distinction between DNM-SHADE and DNM-BP, and the values of W and L were both 6.

This is due to the fact that DNM-BP is extremely susceptible to fall into local optima;
thus, it is not very robust, and the average value of DNM-SHADE after multiple runs
has a great advantage compared to DNM-BP, which is also reflected in the Friedman test.
Furthermore, according to the rank obtained from the Friedman test, it can be found that
SHADE and JADE with power-law-distributed PINs outperform the swarm-intelligence
algorithms (SIS and GLPSO) and SE and DE with Poisson-distributed PINs. This result
demonstrates that MHAs with power-law-distributed PINs may be more advantageous in
optimizing the parameters of DNMs to predict financial time series.
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Table 3. Parameter settings of the prediction models on the five stock price index datasets.

Models Parameter Value

Iteration number 100
Initial step size 0.01
Step size decrease rate 0.9ANFIS

Step size increase rate 1.1

Iteration number 1000
Learning rate 0.01Elman
Hidden layer number 15

Iteration number 1000
Learning rate 0.1MLP
Hidden layer number 15

Iteration number 1000
Learning rate 0.1
Learning rate drop factor 0.1LSTM

Hidden units 15

Iteration number 1000
Learning rate 0.1DNM-BP
Dendrite number 10

Iteration number 1000
Dendrite number 10
Scale factor 0.5DNM-DE

Crossover rate 0.9

Iteration number 1000
Dendrite number 10
Scale factor Adaptive value
Crossover rate Adaptive value

DNM-JADE

Memory size 100

Iteration number 1000
Dendrite number 10
Scale factor Adaptive value
Crossover rate Adaptive value

DNM-SHADE

Memory size 100

Iteration number 1000
Dendrite number 10
Scale factor Adaptive valueDNM-SE

Number of variable dimensions [5, 10]

Iteration number 1000
Dendrite number 10
Mutation probabilty 0.01
Stopping gap 7
Inertia weight 0.7298

DNM-GLPSO

Accelerate coefficient 1.49618

Iteration number 1000
Dendrite number 10DNM-SIS
Scale factor Adaptive value

Iteration number 1000
Learning rate 0.05DNM*
Dendrite number 1
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Table 4. Performance of DNMs trained by MHAs on the FTSF problem.

DNM-SHADE DNM-JADE DNM-SIS DNM-GLPSO
metrics mean std. mean std. mean std. mean std.

DJIA MSE 9.652 × 104 6.545 × 104 2.444 × 105 2.054 × 105 + 1.555 × 106 2.062 × 106 + 2.241 × 105 4.183 × 105 =
MAPE 2.353 × 10−5 1.485 × 10−5 3.552 × 10−5 2.488 × 10−5 + 7.937 × 10−5 8.986 × 10−5 = 2.596 × 10−5 3.031 × 10−5 =
MAE 2.526 × 102 1.102 × 102 3.905 × 102 1.980 × 102 + 8.543 × 102 8.076 × 102 + 3.234 × 102 2.832 × 102 =

COMP MSE 5.607 × 104 2.917 × 104 1.100 × 105 1.256 × 105 + 1.511 × 105 1.836 × 105 + 1.989 × 105 4.130 × 105 =
MAPE 4.449 × 10−5 3.349 × 10−5 6.316 × 10−5 4.429 × 10−5 = 8.464 × 10−5 5.849 × 10−5 + 6.462 × 10−5 7.614 × 10−5 =
MAE 1.777 × 102 5.778 × 101 2.400 × 102 1.079 × 102 + 2.638 × 102 1.542 × 102 + 2.311 × 102 2.169 × 102 =

NDX MSE 2.397 × 105 1.523 × 105 3.762 × 105 3.657 × 105 = 2.129 × 105 7.895 × 104 = 8.117 × 105 1.179 × 106 +
MAPE 1.457 × 10−4 4.932 × 10−5 1.599 × 10−4 9.360 × 10−5 = 1.161 × 10−4 6.475 × 10−5 = 2.345 × 10−4 1.673 × 10−4 +
MAE 3.885 × 102 1.172 × 102 4.560 × 102 2.074 × 102 = 3.812 × 102 7.470 × 101 = 6.155 × 102 4.292 × 102 +

N225 MSE 4.005 × 105 3.454 × 105 1.169 × 106 1.227 × 106 + 1.061 × 106 9.946 × 105 + 7.384 × 105 8.487 × 105 +
MAPE 2.217 × 10−5 1.123 × 10−5 4.107 × 10−5 3.024 × 10−5 + 5.183 × 10−5 4.393 × 10−5 + 2.157 × 10−5 1.588 × 10−5 =
MAE 3.579 × 102 1.415 × 102 5.995 × 102 2.814 × 102 + 6.783 × 102 4.170 × 102 + 4.607 × 102 2.197 × 102 +

SPX MSE 1.237 × 105 8.399 × 103 1.327 × 105 3.560 × 104 = 1.245 × 105 7.521 × 103 = 1.734 × 105 1.841 × 105 -
MAPE 1.977 × 10−4 1.073 × 10−5 2.006 × 10−4 2.365 × 10−5 = 1.966 × 10−4 1.197 × 10−5 = 2.138 × 10−4 8.140 × 10−5 -
MAE 2.950 × 102 1.473 × 101 3.014 × 102 3.439 × 101 = 2.974 × 102 1.400 × 101 = 3.172 × 102 1.200 × 102 -

W/T/L -/-/- 8/7/0 8/7/0 5/7/3
Rank 1.5333 3.4667 3.6 3.7333

DNM-SHADE DNM-SE DNM-BP DNM-DE
metrics mean std. mean std. mean std. mean std.

DJIA MSE 9.652 × 104 6.545 × 104 2.988 × 105 2.575 × 105 + 4.430 × 106 2.378 × 107 - 1.660 × 106 1.340 × 106 +
MAPE 2.353 × 10−5 1.485 × 10−5 3.998 × 10−5 2.253 × 10−5 + 5.203 × 10−5 2.295 × 10−4 - 1.133 × 10−4 5.961 × 10−5 +
MAE 2.526 × 102 1.102 × 102 4.360 × 102 2.016 × 102 + 4.760 × 102 2.042 × 103 - 1.095 × 103 5.213 × 102 +

COMP MSE 5.607 × 104 2.917 × 104 1.930 × 105 3.022 × 105 + 9.697 × 106 2.457 × 107 + 2.446 × 105 1.696 × 105 +
MAPE 4.449 × 10−5 3.349 × 10−5 8.511 × 10−5 6.713 × 10−5 + 4.766 × 10−4 1.065 × 10−3 + 1.443 × 10−4 6.589 × 10−5 +
MAE 1.777 × 102 5.778 × 101 2.966 × 102 1.710 × 102 + 1.284 × 103 2.829 × 103 + 4.150 × 102 1.545 × 102 +

NDX MSE 2.397 × 105 1.523 × 105 9.291 × 105 1.250 × 106 + 1.211 × 107 3.032 × 107 + 6.194 × 105 1.716 × 106 -
MAPE 1.457 × 10−4 4.932 × 10−5 2.207 × 10−4 1.461 × 10−4 + 6.326 × 10−4 1.230 × 10−3 + 9.398 × 10−5 1.904 × 10−4 -
MAE 3.885 × 102 1.172 × 102 6.204 × 102 3.458 × 102 + 1.597 × 103 3.079 × 103 + 4.396 × 102 4.446 × 102 -

N225 MSE 4.005 × 105 3.454 × 105 7.702 × 105 6.366 × 105 + 2.944 × 106 1.469 × 107 - 1.997 × 106 1.631 × 106 +
MAPE 2.217 × 10−5 1.123 × 10−5 4.523 × 10−5 2.898 × 10−5 + 5.664 × 10−5 2.735 × 10−4 - 9.355 × 10−5 4.598 × 10−5 +
MAE 3.579 × 102 1.415 × 102 5.499 × 102 2.270 × 102 + 5.393 × 102 1.558 × 103 - 1.045 × 103 3.584 × 102 +

SPX MSE 1.237 × 105 8.399 × 103 1.563 × 105 8.022 × 104 = 1.235 × 105 4.593 × 103 = 1.529 × 105 8.842 × 104 =
MAPE 1.977 × 10−4 1.073 × 10−5 2.119 × 10−4 3.964 × 10−5 = 1.988 × 10−4 7.227 × 10−6 = 2.132 × 10−4 6.263 × 10−5 =
MAE 2.950 × 102 1.473 × 101 3.175 × 102 5.862 × 101 = 2.947 × 102 7.439 × 100 = 3.287 × 102 8.910 × 101 +

W/T/L -/-/- 12/3/0 6/3/6 10/2/3
Rank 1.5333 4.7333 5.3333 5.6

Figure 5 is the MAE box plots of six MHAs and BP-trained DNMs on DJIA, COMP,
NDX, N225, and SPX. From the figure, it can be seen that the SHADE-trained DNMs have
lower means and higher robustness in most cases compared to other MHAs. In addition,
the DNM trained by BP also possesses a low mean value. However, the red “+” symbol in
the figure illustrates that BP possesses the largest extreme values in most cases compared
to MHAs. This indicates that MHAs have a strong exploration ability to jump out of a local
optimum, and their trained DNMs have higher robustness compared to the BP-trained
DNMs.

Figure 6 shows the predicted outcomes of MHA-trained DNMs for the dataset DJIA.
The sequences predicted by the primary seven models are directly compared with the
actual values on the training and test sets in the top half of the figure. We also subtracted
the real values from the predicted results. As a result, the polylines in the lower half of the
figure, which represent the deviations fluctuating around the straight line, were generated.
From Figure 6, it can be seen that the output values predicted by DNM-SHADE are closer
to the actual values of the training and test sets of the dataset and have smaller deviation
values.
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Figure 5. MAE plots of six MHAs and BP-trained DNMs on DJIA, COMP, NDX, N225, and SPX.
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3.6. Performance Comparison of Mainstream Time-Series-Forecasting Models

In this section, we test the performance of DNM-SHADE, DNM*, DNM-BP, LSTM,
Elman, ANFIS, and MLP on the FTSF problem. Table 5 shows the performance and ranking
of the above models. As can be seen from the table, the performance of DNM-SHADE is
competitive among the mainstream models. It should be emphasized that the performance
of the DNM family of models is not the strongest, due to the fact that a DNM itself is a
single neuron and still has limitations compared to the ANN family of models.

Therefore, the focus of this study was to select suitable MHAs for DNM optimization.
Consequently, we used the simplest DNM in our study and did not attempt to compose
DNMs into neural networks or perform data-preprocessing operations. The experimental
results prove that the simplest DNM optimized by SHADE was able to beat MLP and is
competitive with mainstream models, such as ANFIS, LSTM, and Elman. This result fully
demonstrates the development potential of DNMs optimized by MHAs.

Figure 7 depicts the correlation coefficient curves for the first four models on the
dataset DJIA, from which we can see that DNM-SHADE has an advantage over LSTM.
Figure 8 shows the prediction and deviation plots of seven types of time-series-forecasting
models on DJIA.

Table 5. Performance of various types of time-series-forecasting models.

ANFIS LSTM Elman DNM-SHADE
metrics mean std. mean std. mean std. mean std.

DJIA MSE 5.594 × 104 0 1.684 × 105 1.191 × 105 8.463 × 104 1.001 × 105 9.652 × 104 6.545 × 104

MAPE 5.022 × 10−6 0 4.720 × 10−6 5.631 × 10−6 1.563 × 10−5 1.426 × 10−5 2.353 × 10−5 1.485 × 10−5

MAE 1.720 × 102 0 2.497 × 102 6.651 × 101 2.015 × 102 1.147 × 102 2.526 × 102 1.102 × 102

COMP MSE 8.674 × 103 0 5.045 × 104 8.317 × 104 5.737 × 104 6.404 × 104 5.607 × 104 2.917 × 104

MAPE 1.301 × 10−5 0 4.274 × 10−5 4.502 × 10−5 7.155 × 10−5 4.251 × 10−5 4.449 × 10−5 3.349 × 10−5

MAE 6.901 × 101 0 1.484 × 102 1.117 × 102 1.952 × 102 1.118 × 102 1.777 × 102 5.778 × 101

NDX MSE 8.178 × 103 0 5.759 × 104 1.562 × 105 8.285 × 104 1.132 × 105 2.397 × 105 1.523 × 105

MAPE 3.822 × 10−6 0 5.271 × 10−5 4.857 × 10−5 8.634 × 10−5 6.299 × 10−5 1.457 × 10−4 4.932 × 10−5

MAE 6.590 × 101 0 1.551 × 102 1.218 × 102 2.245 × 102 1.548 × 102 3.885 × 102 1.172 × 102

N225 MSE 8.091 × 104 0 2.463 × 105 7.608 × 104 1.288 × 105 1.369 × 105 4.005 × 105 3.454 × 105

MAPE 2.588 × 10−6 0 1.574 × 10−5 6.609 × 10−6 2.031 × 10−5 1.617 × 10−5 2.217 × 10−5 1.123 × 10−5

MAE 1.870 × 102 0 3.008 × 102 4.763 × 101 2.192 × 102 1.082 × 102 3.579 × 102 1.415 × 102

SPX MSE 2.520 × 103 0 2.249 × 104 1.143 × 104 3.566 × 104 4.237 × 104 1.237 × 105 8.399 × 103

MAPE 7.542 × 10−6 0 6.331 × 10−5 2.461 × 10−5 9.251 × 10−5 6.732 × 10−5 1.977 × 10−4 1.073 × 10−5

MAE 3.878 × 101 0 1.142 × 102 2.754 × 101 1.399 × 102 9.736 × 101 2.950 × 102 1.473 × 101

Rank 1.0667 2.4667 3.0667 4.2667

DNM* MLP DNM-BP
metrics mean std. mean std. mean std.

DJIA MSE 7.098 × 104 2.366 × 104 4.790 × 105 5.063 × 105 4.430 × 106 2.378 × 107

MAPE 1.915 × 10−5 4.776 × 10−6 3.465 × 10−5 2.669 × 10−5 5.203 × 10−5 2.295 × 10−4

MAE 2.221 × 102 2.829 × 101 5.199 × 102 2.568 × 102 4.760 × 102 2.042 × 103

COMP MSE 2.330 × 105 7.877 × 103 2.510 × 105 2.802 × 105 9.697 × 106 2.457 × 107

MAPE 1.569 × 10−4 3.693 × 10−6 7.617 × 10−5 6.197 × 10−5 4.766 × 10−4 1.065 × 10−3

MAE 4.284 × 102 9.715E+00 3.194 × 102 1.814 × 102 1.284 × 103 2.829 × 103

NDX MSE 5.203 × 105 9.770 × 103 8.762 × 105 1.329 × 106 1.211 × 107 3.032 × 107

MAPE 2.645 × 10−4 2.910 × 10−6 2.174 × 10−4 1.800 × 10−4 6.326 × 10−4 1.230 × 10−3

MAE 6.756 × 102 7.245E+00 5.950 × 102 4.597 × 102 1.597 × 103 3.079 × 103

N225 MSE 3.883 × 105 2.534 × 104 1.198 × 106 1.207 × 106 2.944 × 106 1.469 × 107

MAPE 1.439 × 10−5 3.392 × 10−6 5.951 × 10−5 4.202 × 10−5 5.664 × 10−5 2.735 × 10−4

MAE 3.509 × 102 2.108 × 101 7.471 × 102 3.087 × 102 5.393 × 102 1.558 × 103

SPX MSE 1.473 × 105 6.209 × 102 4.226 × 105 4.979 × 105 1.235 × 105 4.593 × 103

MAPE 2.284 × 10−4 7.889 × 10−7 3.252 × 10−4 2.028 × 10−4 1.988 × 10−4 7.227 × 10−6

MAE 3.376 × 102 1.199 × 100 4.941 × 102 2.924 × 102 2.947 × 102 7.439 × 100

Rank 4.7333 6.1333 6.2667
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Figure 7. Correlation coefficient graphs of the top four models on DJIA.
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Figure 8. Prediction and deviation plots of seven types of time-series-forecasting models on DJIA.

4. Discussions and Conclusions

In this study, we focused on the optimization of DNMs. The DNM optimized by MHAs
effectively avoided the problem of easily falling into local optima in predicting financial
time-series problems relative to the BP-based DNM. Based on this, we further standardized
the selection mechanism of MHAs to screen suitable MHAs for training DNMs based on
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PIN theory. On the FTSF problem, theoretical analysis and experimental results showed that
DNMs trained by MHAs with power-law-distributed PINs outperformed DNMs trained by
MHAs with Poisson-distributed PINs. In addition, DNMs trained by MHAs with power-
law-distributed PINs outperformed DNMs trained by swarm-intelligence algorithms on
the FTSF problem.

These results open a new research perspective for optimizing neuronal models using
MHAs. A large number of MHAs are divided into two categories: MHAs with power-
law-distributed PINs and MHAs with Poisson-distributed PINs. Among the above two
classes of MHAs, representative algorithms were selected, and their performance on the
neuron model optimization problem was compared to determine which class of MHAs
is more suitable for solving this problem. As a result, algorithms that are unsuitable for
this problem were excluded from the MHA-selection process. This PIN-based screening
method for MHAs greatly reduces the trial-and-error cost for researchers compared to
empirical or even randomized screening methods for MHAs.

However, there are still shortcomings in this study. One is that PIN theory is not yet
complete, and there are still many MHAs with network structures other than Poisson and
power-law distributions as well as a large number of MHAs that have not been analyzed
by PIN theory (e.g., group-intelligence algorithms). We will continue to refine our research
on PIN theory in the future. Second, DNMs, as single neuron models, still have limitations,
and the performance on the FTSF problem still falls short of mainstream neural network
models, such as LSTM and ANFIS.

However, it is worth emphasizing that DNMs, as single-neuron models, already
outperform certain neural network models, such as MLP, which indicates great potential
for development. Indeed, enhancements to biological neurons have been much discussed;
for example, the synaptic integration of dendritic branches can be conceptualized as pattern
matching from a set of spatiotemporal templates, providing a unified characterization of
the computational complexity of a single neuron and suggesting that a biological neuron
can be equivalent to a deep artificial neural network [45].

Based on the properties of dendritic spikes, the dendrites of a single neuron may be
able to generate active spikes to enhance its information-processing capabilities [46,47],
implying that DNMs have much room for future progress as well. In the future, we will
work on the further development of DNMs and eventually build more efficient neural
network models based on DNMs to handle classification and prediction tasks.
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DNM Dendritic neuron model
MHA Meta-heuristic algorithm
PIN Population interaction network
FTSF Financial time-series forecasting
ARIMA Autoregressive integrated moving average
ANN Artificial neural network
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MLP Multi-layer perceptron
LSTM Long short-term memory
ANFIS Adaptive-network-based fuzzy inference system
BP Backpropagation
DE Differential evolution
JADE Adaptive differential evolution with optional external archive
SHADE Success-history based parameter adaptation for Differential Evolution
GLPSO Genetic learning particle swarm optimization
SIS Spatial information sampling algorithm
MSE Mean square error
MAPE Mean absolute percentage error
MAE Mean absolute error

Appendix A

In SE, each individual can be thought of as a node, and the update between individuals
denotes the generation of degrees. The degree is the sum of the connected edges between
each individual and other individuals. It is also the number of edges. Utilizing the PIN, we
can acquire the intrinsic communication of knowledge as well as the characteristics of the
network formed by the populations. The cumulative distribution function of degrees of
nodes obtained from the PIN on thirty IEEE CEC2017 benchmark functions [48] was fitted
by the Poisson and power-law models, and each function was run 30 times.

We calculated the difference in fitting between the original data and two models using
SSE and R2 in order to determine which model fit the cumulative distribution function
more accurately. SSE is the sum of squared errors between the original data and the fitted
data. A lower SSE value indicates that the fitted data is more similar to the original data.
SSE works with the following formula:

SSE =
n

∑
i=1

(yi − ŷi)
2 (A1)

where n represents the maximum degrees of nodes. yi and ŷi are the original data and fitted
data, respectively. R2 determines whether the fitted data accurately represent the original
data. When the value of R2 is close to 1, the fitted data can better reflect the original data.
R2 can be shown as:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − ȳ)2 (A2)

where ȳ is the mean of the original data. With the help of these two statistical techniques,
we calculated the mean of the obtained results of SE and further list the data in Table A1.
Table A1 shows that the cumulative distribution function of the PIN in SE fits the Poisson
model best.

Table A1. Fitting results of SE.

Poisson Power Law

SSE R2 SSE R2

mean 7.09 × 10−2 9.84 × 10−1 8.32 × 10−2 8.39 × 10−1

std 1.86 × 10−2 3.43 × 10−3 3.64 × 10−2 9.82 × 10−2
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