

Article Solving Optimal Power Flow Problem via Improved Constrained Adaptive Differential Evolution

Wenchao Yi ^{1,2}, Zhilei Lin ², Youbin Lin ³, Shusheng Xiong ^{1,4}, Zitao Yu ^{1,*} and Yong Chen ²

- ¹ College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
- ² College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
- ³ Zhejiang Chuangxin Automative Air Conditioning Company, Lishui 323799, China
- ⁴ Longquan Industrial Innovation Research Institute, Longquan 323700, China
- * Correspondence: yuzitao@zju.edu.cn

Abstract: The optimal power flow problem is one of the most widely used problems in power system optimizations, which are multi-modal, non-linear, and constrained optimization problems. Effective constrained optimization methods can be considered in tackling the optimal power flow problems. In this paper, an ϵ -constrained method-based adaptive differential evolution is proposed to solve the optimal power flow problems. The ϵ -constrained method is improved to tackle the constraints, and a p-best selection method based on the constraint violation is implemented in the adaptive differential evolution. The single and multi-objective optimal power flow problems on the IEEE 30-bus test system are used to verify the effectiveness of the proposed and improved ϵ adaptive differential evolution algorithm. The comparison between state-of-the-art algorithms illustrate the effectiveness of the proposed and improved ϵ adaptive differential evolution algorithm. The proposed algorithm demonstrates improvements in nine out of ten cases.

Keywords: adaptive differential evolution; optimal power flow; constrained optimization problems

MSC: 68w50

1. Introduction

The optimal power flow (OPF) is a key problem in power system operation and control, which aims to minimize the objective function by optimizing the control variables in energy transportation and production. In the OPF, the operation cost is a fundamental basic goal, with an emphasis on sustainability and safety, the emissions and real power loss, as well as voltage stability, are also taken into account. In addition to the generator of active power, voltage magnitude, transformer tap and shunt capacitors, which can be directly controlled and need to be varied within a certain range, it is also necessary to ensure that the line loading and voltage of buses satisfy the safety constraints. Meanwhile, the presence of the equality constraints makes the OPF problem become a highly complex optimization problem. Hence, it is necessary to develop an effective algorithm to deal with OPF problems. The key objective of the OPF problem is to deal with the constraints, where the objective function should be optimized at the same time. Evolutionary algorithms have been employed to tackle the OPF variants [1-4]. Ida et al. [2] applies the multi-objective horse herd optimization to OPF. In the paper, a mechanism is proposed to update the constraint matrix in handling constraints. Bouchekara [3] improves electromagnetic field optimization (EFO) algorithm by using chaotic numbers instead of random numbers in calculation of the force of electromagnetic particles. Mugemanyi et al. [4] applied the bat algorithm in OPF. The proposed algorithm introduced the chaotic sequences to enhance its global search ability. Saha et al. [5] proposed the symbiotic organism search-based hybrid differential evolution and applied to OPF. Farhat et al. [6] proposed the neighborhood dimension learning search strategy-based slime mould algorithm and applied to OPF.

Citation: Yi, W.; Lin, Z.; Lin, Y.; Xiong, S.; Yu, Z.; Chen, Y. Solving Optimal Power Flow Problem via Improved Constrained Adaptive Differential Evolution. *Mathematics* 2023, *11*, 1250. https://doi.org/ 10.3390/math11051250

Academic Editors: Fajun Yang and Chunjiang Zhang

Received: 28 January 2023 Revised: 20 February 2023 Accepted: 28 February 2023 Published: 4 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Abdel-satter et al. [7] applied the improved salp swarm algorithm (ISSA) to OPF. Taher et al. applied an improved moth flame optimization to OPF. Akdag [8] improved the Archimedes optimization algorithm and applied it to OPF. Abbasi et al. [9] combined the harmony search (HS) algorithm with the differential evolution algorithm. This method divides decision variables into ordered spans and searches. Teeparthi and Binod Kumar [10] improved the artificial physics optimization (APO) by fuzzifying the gravitational constant (G). EI-Fergany and Hasanien [11] improved the slap swarm algorithm (SSA) to tackle OPF problems. Naderi et al. [12] integrated the particle swarm optimization (PSO) with a differential evolution, and applied it to multi-objective OPF problems. Fuzzy rules help to dynamically set the inertia factor in iterations. Four fitness functions and a voltage stability based on the model analysis are considered. Elatter et al. [13] applied the Manta Ray Foraging Optimizer in OPF, where a method of selecting an ideal solution is used in the proposed algorithm. Kahraman et al. [14] introduced the crowding distance into the manta ray foraging optimization. The proposed algorithm shows a competitive performance in complex multi-objective problems. In recent years, many improved algorithms have been proposed and applied to OPF. Gong et al. [1] proposed an adaptive differential evolution to deal with the OPF, which is quite effective. Attia [15] combined the Levy flight with the sine-cosine algorithm to enhance the global searching ability, aiming at improving the efficiency of power systems. Flexible AC Transmission Systems (FACTs) are proposed, which determines the optimal location and size of FACTS devices [16]. Taking the optimal location and size of some devices into consideration, Mohamed et al. [17] combined the moth-flame optimization algorithm and gradient-based optimizer to solve OPF. This paper presents a performance evaluation of the ϵ method of the constraint handling in OPF problems. The main contribution of this paper is as follows. A constrained adaptive differential evolution is employed to address the OPF problems. A constrained mutation operator is embedded in the algorithm, which enables us to consider the constraint violation and the objective at the same time. Then, the proposed algorithm is used to tackle the OPF problems, and the experimental results illustrate the effectiveness of the algorithm.

The rest of this paper is organized as follows. Section 2 presents the proposed constrained adaptive differential evolution. Section 3 gives the mathematical model of OPF. The experimental results are presented in Section 3.1.3. Section 4 concludes the paper.

2. Adaptive Differential Evolution Based on Improved pbest Selection

3

Similar to genetic algorithms, the DE consists of four operations: initialization, mutation, crossover and selection. The adaptive differential evolution (JADE) is an effective DE variant. Compared with the classical DE, both the mutation and crossover parameters in JADE are changed adaptively. A new selection strategy for the best individual is proposed to increase the population diversity. The framework of the classical JADE can be presented as follows.

2.1. Initialization

In DE, a target vector $x_{i,G}$ consisting of D dimensions is defined as an individual, where G denotes the current iteration number. $x_{i,G}$ represents a decision variable vector of the problem. During the initialization phase, NP individuals are randomly generated within the search range. Therefore, an individual represents a solution set of the constrained optimization problem. The formulation of initialization is as follows:

$$x_{i,1}^{j} = x_{min}^{j} + rand(0,1) \cdot (x_{max}^{j} - x_{min}^{j})$$
(1)

where $x_{i,1}$ represents the vector of the first generation of the *i*-th individual. x_{min}^{j} and x_{max}^{j} denotes to the lower and upper bound of the *j*-th dimension, respectively. i = 1, ..., NP, j = 1, ..., D. rand(0, 1) represents a random number between 0 and 1.

2.2. Mutation

DE has different mutation operations to choose from. "DE/rand/1" is the most commonly used mutation strategy, which can be formulated as:

$$v_{i,G+1} = x_{r1,G} + F \cdot (x_{r2,G} - x_{r3,G}), r1 \neq r2 \neq r3 \neq i$$
(2)

where $v_{i,G+1}$ denotes the mutation vector. $x_{r1,G}$, $x_{r2,G}$ and $x_{r3,G}$ are three individuals randomly chosen from the *G*-th generation of the population. *F* is a mutation control parameter.

In JADE, a new mutation strategy called "DE/current-to-pbest/1" has been proven to take into account the convergence speed and global search ability, which can be formulated as:

$$v_{i,G+1} = x_{i,G} + F \cdot (x_{best,G} - x_{i,G}) + F \cdot (x_{r_{1,G}} - x_{r_{2,G}}), r_{1} \neq r_{2} \neq i$$
(3)

where $x_{best,G}$ denotes the top 100p% individuals in the current population. *F* is a random number that follows the Cauchy distribution with a mean of u_F and a standard deviation of 0.1. Usually u_F is initialized to 0.5.

After the mutation and crossover, the collection of all successful mutation factors F_i at each generation is denoted by S_F . Then, u_F is updated as follows:

$$u_F = (1 - c) \cdot u_F + c \cdot mean_L(S_F) \tag{4}$$

where $mean_L(S_F)$ indicates that the Lehmer mean of the S_F , c is a constant between 0 and 1.

2.3. Crossover

Crossover(CR) operations create trial vectors $u_{i,G+1}$ by randomly selecting components from the target vector $x_{i,G}$ or its mutant vector $v_{i,G+1}$. The binomial crossover is typically described as

$$u_{i,G+1}^{j} = v_{i,G+1}^{j}, if \ rand < CR_{i} \ or \ j = n_{j}$$
 (5)

where n_j is an integer random from 1 to D, ensuring that at least one dimension originates from the Vi mutation vector. CR_i is the crossover rate of the *i*-th individual, which follows the normal distribution *y* distribution with a mean of u_{CR} and a standard deviation of 0.1.

Similar to S_F , S_{CR} records the CR_i of successful individuals in each generation. The u_{CR} is updated as follows:

$$u_F = (1 - c) \cdot u_{CR} + c \cdot mean_A(S_{CR}) \tag{6}$$

where *mean*_A indicates the arithmetic mean of S_{CR} .

In JADE, CR_i is randomly generated and assigned to each individual. Gong et al. [18] proposed a *CR* sorting mechanism, which relates the *CR* value to individual fitness. In this process, normally distribute *CR* values are first randomly generated, and then the *CR* values and individuals fitness are arranged in ascending order, and each *CR* value is then assigned to an individual in order. Therefore, individuals with better fitness will assign smaller *CR* values, which can help the information from better individuals to survive into the next generation.

2.4. Improved ε Method

In the differential evolution, greedy strategies are applied to select offspring from a target vector $x_{i,G}$ and a trial vector $u_{i,G+1}$. The one with the better fitness value will survive into the next generation. The selection formula is as follows:

$$x_{i,G+1} = \begin{cases} u_{i,G+1}, & \text{if } f(u_{i,G+1}) \le f(x_{i,G+1}) \\ X_{i,G}, & \text{otherwise} \end{cases}$$
(7)

where f denotes the fitness of the individual.

The selection operator in the proposed algorithm is based on the improved ϵ -constrained methods. The ϵ -constrained methods will exaggerate the feasible region at the beginning of the evolutionary process and then narrow it down until it meets the original feasible region. In the classical ϵ -constrained method proposed by Taka [19], the ϵ -level control strategy is as follows:

$$\begin{cases} \epsilon(0) = \phi(x_{\theta}) \\ \epsilon(t) = \begin{cases} \epsilon(0) \cdot (1 - G/T)^{cp}, 0 < G < T \\ 0, G \ge T \end{cases}$$
(8)

where the initial value of ϵ is based on the population constraint violation level. The initial value of $\epsilon(0)$ is set as the top θ th individual's constraint violation. The *G*-th generation ϵ value is proportion to the t and initial value of $\epsilon(0)$. When the generation *G* reaches a certain value *T*, the $\epsilon(t)$ will be set as zero. In this way, the infeasible solutions will be guided to the feasible region along the evolution process. The setting of the ϵ value is improved with the following adaptive method: However, this method ignores the information about the current population. The framework of the proposed algorithm can be presented as follows (Algorithm 1).

Algorithm 1 Improved ϵ -JADE

- 1: Initialization:NP = 50;
- 2: Generate *NP* individuals randomly;
- 3: Evaluate the objective function and constraint violation for each individual;
- 4: Set G = 0; FES = 0;
- 5: while FES < MaxFES do
- 6: $S_F = []; S_{CR} = [];$
- 7: G = G + 1;
- 8: **for** each individual *i* in the population *NP* **do**
- 9: $CR_i = randc_i(\mu_{CR}, 0.1); F_i = randn_i(\mu_F, 0.1);$
- 10: Use DE/current-to-*p*best/1 mutation operator to generate the mutation vector.
- 11: Use crossover ranking technique to assign the crossover control parameter.
- 12: Use exponential crossover to generate the trial vector.
- 13: Apply Formula (7) to compare the trial vector with the base vector and choose the better one to survive into the next generation.
- 14: **end for**
- 15: Update the *p*best individuals.
- 16: Apply the Formula (8) to update the ε value
- 17: Set FES = FES + NP
- 18: end while

3. Problem Formulation

This section will introduce the mathematical model of the OPF problems. The variables, constraints and objectives will be presented.

3.1. Problem Formulation

The OPF problems aim to optimize the objective function within the feasible region that satisfies the constraints. The general model of the constrained optimization problem could be formulated as follows:

$$MinimizeF(x)$$

$$Subject to$$

$$g_i(x) = 0, i = 1, 2, 3, ..., m$$

$$h_j(x) \le .0, j = 1, 2, 3, ..., n$$
(9)

where *F* is the objective function, *x* is the decision variable, g_i indicates the equality constraints, h_j is the inequality constraints. and *m* and *n* are the total number of equality and inequality.

3.1.1. Decision Variables

In OPF problems, the decision variables can be divided into dependent and independent variables. The independent variables can be presented as follows:

$$U = [P_{G}, V_{G}, Q_{C}, T_{t}ap]_{1 \times d}$$

$$P_{G} = [P_{G_{1}}, P_{G_{2}}, ..., P_{G_{(N_{G}-1)}}]_{1 \times N_{G}}i \neq slack$$

$$V_{G} = [V_{G_{1}}, V_{G_{2}}, ..., V_{G_{(N_{G})}}]_{1 \times N_{G}}$$

$$Q_{C} = [Q_{C_{1}}, Q_{C_{2}}, ..., Q_{C_{N_{C}}}]_{1 \times N_{C}}$$

$$T_{t}ap = [T_{tap_{1}}, T_{tap_{2}}, ..., T_{tap_{N_{T}}}]_{1 \times N_{T}}$$

$$d = (N_{G} - 1) + N_{G} + N_{C} + N_{T}$$
(10)

where P_G denotes the output active power of the generator. N_G is the number of generators. V_G represents the voltage of the generation bus. Q_C is the injected reactive power of the shunt compensator. N_C is the number of the shunt compensators. $T_t ap$ denotes the tap setting of the transformers. *NT* represents the number of the transformers. *d* is the dimension of the decision variables. The dependent variables include the generated power of the slack bus, voltage of the load bus, load bused number, the reactive power output generators, the apparent power flow in transmission line, and the number of transmission lines. The independent variables include the output active power of shunt compensators, the number of shunt compensator, the tap setting of transformers and the number of the transformers. The dependent variables can be given as follows:

$$X = [P_{G_0}, V_{L,1}, \dots, V_{L,NPQ}, Q_{G,1}, \dots, Q_{G,NPV}, S_{TL,1}, \dots, S_{TL,NTL}]$$
(11)

3.1.2. Objective Functions

Six single objective functions of OPF and four multi-objective functions were studied in this part. The multi-objective functions are transformed into single objectives with weighted factors. The multi-objective method can be used to tackle the objectives [20].

Case 1: Fuel cost minimization

The fuel cost (\$/h) is the most commonly used objective in OPF problems. The quadratic function is employed to model the generation cost.

The formulas can be given as follows:

$$F_1(X) = \sum_{i=1}^{NG} (a_i \cdot P_{G_i}^2 + b_i \cdot P_{G_i}^2 + c_i)$$
(12)

where the a_i , b_i and c_i are the cost coefficients of the *i*-th generator.

Case 2: Fuel cost with valve point-effect minimization

The fuel cost with valve point-effect and prohibited zones is used to describe the generation cost. It consists of two parts. One of them is the total fuel cost F_1 , and the other is a sinusoidal function. A sinusoidal function is used to simulate the valve effect.

$$F_{C} = \sum_{i=1}^{NG} (a_{i} \cdot P_{G_{i}}^{2} + b_{i} \cdot P_{G_{i}}^{2} + c_{i}) + \left| d_{i} \cdot sin(e_{i} \cdot (P_{G_{i}}^{min} - P_{G_{i}})) \right|$$
(13)

where the d_i and e_i are the fuel cost coefficients of the *i*-th generator with valve-point effects. The input flow of the steam is adjusted by the generation units to control the output flow by different valves.

Case 3: Voltage stability minimization

The voltage is an important index in power system stability, which should be varied within a suitable region. Hence, the load bus L-index is used, whose value should be within the range of 0 to 1. The formula can be given as follows:

$$L_{j} = \left| 1 - \sum_{i=1}^{NG} F_{ij} \cdot V_{i} / V_{j} \right|, j = 1, \dots NL.$$

$$F_{V-stability} = max(L_{j}), j = 1, \dots NL.$$
(14)

where V_i and represent the voltage of the *i*-th generator and *j*-th P-Q bus, respectively; F_{ij} is calculated from the X-matrix.

Case 4: Emission minimization

The emission in the power system is an important environmental index that is highly related to global warming and carbon emission issues. Hence, the emission in this case is formulated with the following formula:

$$F_E = \sum_{i=1}^{NG} \alpha_i + \beta_i \cdot P_{G_i} + \gamma_i \cdot P_{G_i}^2 + \delta_i \cdot e^{\phi_i P_{G_i}}$$
(15)

where α_i , β_i , γ_i , δ_i and ϕ_i represent the *i*-th generator emission coefficients, and their values are provided in Table 1.

Generator	Bus	a	b	с	d	e	alpha	beta	gamma	w	mu
G1	1	0	2	0.00375	18	0.037	4.091	-5.554	6.49	0.0002	2.857
G2	2	0	1.75	0.0175	16	0.038	2.543	-6.047	5.638	0.0005	3.333
G3	5	0	1	0.0625	14	0.04	4.258	-5.094	4.586	0.000001	8
G4	8	0	3.25	0.00834	12	0.045	5.326	-3.55	3.38	0.002	2
G5	11	0	3	0.025	13	0.042	4.258	-5.094	4.586	0.000001	8
G6	13	0	3	0.025	13.5	0.041	6.131	-5.555	5.151	0.00001	6.667

Table 1. Cost and emission coefficients of generators for the IEEE 30-bus system.

Case 5: Real power loss minimization

Power loss in transmission systems is inevitable due to the intrinsic resistance of the wires. Therefore, the active power loss is worth considering. The mathematical model of this case is given as follows:

$$F_{Loss} = \sum_{i=1}^{nl} \sum_{i \neq j}^{nl} G_{ij} \cdot [V_i^2 + V_j^2 - 2V_i \cdot V_j \cdot \cos(\delta_i - \delta_j)]$$
(16)

Case 6: emission and generation cost minimization

The emission cost and generation cost are both considered in this case. The emission and generation costs are formulated as follows:

$$F_{VD} = \sum_{i=1}^{NL} (V_{L_P} - 1.0) \tag{17}$$

Case 7: Fuel cost and real power loss minimization

This multi-objective case is converted to a single objective by multiplying a weight factor by one of the objectives. The problem can be formulated as follows:

$$F_1(X) = \sum_{i=1}^{NG} (a_i \cdot P_{G_i}^2 + b_i \cdot P_{G_i}^2 + c_i) + \lambda_P \cdot F_{Loss}$$
(18)

where F_{Loss} is calculated according to Case 5 and the factor of λ_P is set as 40.

Case 8: Fuel cost and voltage deviation minimization

Voltage deviation is a measure of voltage quality in the network. The index of deviation is also vital from a security aspect. The indicator is formulated as the cumulative deviation of the voltages of all load buses (PQ buses) in the network from the nominal value of unity. The formula is as follows

$$F_1(X) = \sum_{i=1}^{NG} (a_i \cdot P_{G_i}^2 + b_i \cdot P_{G_i}^2 + c_i) + \lambda_V D \cdot V D$$
(19)

where $\lambda_V D$ is a weighted factor set as 100.

Case 9: Fuel cost and enhancement of voltage stability minimization

The objective function is to minimize the weighted sum of the fuel cost and enhance the voltage stability of the system. The multiple objectives are converted to a single objective, as follows.

$$F_1(X) = \sum_{i=1}^{NG} (a_i \cdot P_{G_i}^2 + b_i \cdot P_{G_i}^2 + c_i) + \lambda_L \cdot L_{max}$$
(20)

where Λ_L is the weighted factor set as 100.

Case 10: Fuel cost, emission, voltage deviation and power losses minimization

Four objectives, which are fuel cost, emission, voltage deviation and power losses, are considered in this case.

$$F_1(X) = \sum_{i=1}^{NG} (a_i \cdot P_{G_i}^2 + b_i \cdot P_{G_i}^2 + c_i) + \lambda_E \cdot F_E + \lambda_V D \cdot F_{VD} + \lambda_P \cdot F_{Loss}$$
(21)

where three weighted factors are set as $\lambda_E = 19$, $\lambda_V D = 21$ and $\lambda_P = 22$, which can be referred to [21].

3.1.3. Constraints

There are various types of constraints in OPF problems. The active power should be equal to the reactive power, which are equality constraints.

$$P_{G_{i}} - P_{D_{i}} - V_{i} \cdot \sum_{j=1}^{NB} V_{j} \cdot [G_{ij}cos(\delta_{i} - \delta_{j}) + B_{ij}sin(\delta_{i} - \delta_{j})] = 0, i = 1, ..., NB$$

$$Q_{G_{i}} - Q_{D_{i}} - V_{i} \cdot \sum_{j=1}^{NB} V_{j} \cdot [G_{ij}cos(\delta_{i} - \delta_{j}) - B_{ij}sin(\delta_{i} - \delta_{j})] = 0, i = 1, ..., NB$$
(22)

where P_{D_i} represents the active load. Q_{D_i} is the reactive load and δ_i is the *i*-th bus voltage angle. *NB* is the number of the buses. G_{ij} and B_{ij} are the transfer conductance and the susceptance between buses *i* and *j*, respectively. There are four inequality constraints, which can be presented as follows:

(1) Generator constraints:

$$P_{G_{i}}^{min} \leq P_{G_{i}} \leq P_{G_{i}}^{max}, i = 1, ..., NG$$

$$Q_{G_{i}}^{min} \leq Q_{G_{i}} \leq Q_{G_{i}}^{max}, i = 1, ..., NG$$

$$V_{G_{i}}^{min} \leq V_{G_{i}} \leq V_{G_{i}}^{max}, i = 1, ..., NG$$
(23)

where the *i*-th bus generator active power P_{G_i} , reactive power output Q_{G_i} and voltage magnitude at the *i*-th generator bus V_{G_i} are generated within their lower and upper bounds.

(2) Shunt compensator constraints:

$$Q_{C_i}^{min} \le Q_{C_i} \le Q_{C_i}^{max}, j = 1, ..., NC$$
(24)

where the shunt compensator at the *j*-th bus Q_{C_j} should lie in its lower and upper limits. Transformer constraints:

$$T_k^{min} \le T_k \le T_k^{max}, k = 1, ..., NT$$
(25)

where the *k*-th branch transformer tap T_k is within its lower and upper limits. (4) Security constraints:

$$V_{L_m}^{min} \le V_{L_m} \le V_{L_m}^{max}, k = 1, ..., NL$$

$$S_{L_n} \le S_{L_m}^{max}, n = 1, ..., nl$$
(26)

where the voltage magnitude at the *m*-th load bus V_{L_m} and *n*-th line loading should follow its lower and upper bounds.

Experimental Results

(3)

The IEEE 30-bus test system is used to test the effectiveness of the algorithm. The system has 6 bus generators, and 24 load buses. The lower bounds of the voltage magnitude is 0.95 p.u. The upper bounds of the PV buses and PQ buses are 1.1 p.u. and 1.05 p.u., respectively. The lower and upper bound of transformer tappings are 0.9 and 1.1 p.u., respectively. The proposed I ϵ JADE algorithm is compared with state-of-the-art DEs, which are ECHT-DE [22], SF-DE [22], SP-DE [22] and ACDE [1].

3.2. Results of the OPF Problems

In this subsection, the proposed algorithm is compared with ECHT-DE. SF-DE, SP-DE and ACDE. The experimental results are shown in Table 2. It is worth mentioning that the control parameters of the proposed algorithm are the same as ACDE. The biggest difference between ACDE and I ϵ -JADE is the constraint handling technique. ACDE uses the SF method rather than the ϵ constraint method in I ϵ -JADE. The maximum, minimum and average values of thirty independent runs are shown in Table 2. The best results among all the algorithms are marked in boldface.

- For case 1, the simulation results show that ACDE has a better Min values, Max values and Std values than the improved *c*JADE. Improved *c*-JADE presents better mean values in this case, which indicates that the effectiveness of the proposed algorithm.
- For case 2, case 3, case 5, case 6 and case 10, the proposed improved *ε*-JADE algorithm
 exhibits a competitive performance on the Min, Max and Mean values when compared
 with the other four state-of-the-art DE algorithms;
- For case 4, all compared DE algorithms provide the same competitive results.
- For case 8, ACDE and SP-DE achieve the best Mean value, while the improved *c*JADE demonstrates a remarkable performance in terms of the Min value;

• With regard to case 7 and case 9, the proposed improved *c*JADE demonstrates better results in terms of the Mean and Min values.

In addition, the comparison results between the ACDE and improved ϵ JADE are shown in the box plot in Figure 1. In the first four cases, the improved ϵ JADE and ACDE are equally good. Meanwhile, in case 5 and case 6, the improved ϵ JADE demonstrates a better performance.

Case Algorithm Min Max Mean Std Case1 ECHT-DE 800.4148 800.4258 800.4206 0.0026 0.0015 SF-DE 800.4131 800.4192 800.4151 SP-DE 0.0100 800.4293 800.4684 800.4413 800.4113 800.4176 800.4133 0.0015 ACDE I*є*-JADE 800.4115 800.4229 800.4135 0.0021 0.0222 Case2 ECHT-DE 832.1356 832.2239 832.1811 0.0105 SF-DE 832.0882 832.1291 832.1056 SP-DE 832.4813 832.8760 832.6550 0.0963 ACDE 832.0722 832.3941 832.0957 0.0581 IeJADE 832.0698 832.1225 832.0809 0.0109 ECHT-DE Case3 0.1363 0.1372 0.1369 0.0002 SF-DE 0.1367 0.1370 0.1369 0.0001 SP-DE 0.1374 0.1386 0.1378 0.0002 ACDE 0.1364 0.1368 0.1366 0.0001 IEJADE 0.1364 0.1367 0.1365 0.0001 Case4 ECHT-DE 0.2048 0.2048 0.2048 0.0000 SF-DE 0.2048 0.2048 0.2048 0.0000 SP-DE 0.2048 0.2048 0.2048 0.0000 ACDE 0.2048 0.2048 0.2048 0.0000 IeJADE 0.2048 0.2048 0.2048 0.0000 ECHT-DE 0.0005 Case5 3.0850 3.0871 3.0858 3.0849 0.0003 SF-DE 3.0845 3.0857 3.0848 0.0003 SP-DE 3.0844 3.0854 3.0845 0.0005 ACDE 3.0840 3.0862 3.0840 3.0851 3.0844 0.0003 IEJADE Case6 ECHT-DE 0.0878 0.0916 0.0893 0.0009 SF-DE 0.0867 0.0890 0.0880 0.0007 SP-DE 0.0867 0.0892 0.0877 0.0007 ACDE 0.0856 0.0878 0.0865 0.0007 IeJADE 0.0856 0.0884 0.0863 0.0007 ECHT-DE Case7 1040.1510 1040.2330 1040.1810 0.0213 SF-DE 1040.1250 1040.1620 1040.1400 0.0096 SP-DE 1040.1340 1040.3370 1040.2390 0.0444 ACDE 1040.1133 1040.1891 1040.1268 0.0177 IEJADE 1040.1127 1040.1642 1040.1245 0.0115 Case8 ECHT-DE 813.1742 813.4095 814.2470 0.0490 SF-DE 813.1956 813.3376 813.2585 0.0444 SP-DE 813.1959 813.2643 813.2306 0.0181 ACDE 813.1100 813.5334 813.1379 0.0805 IEJADE 813.1099 813.5583 813.1462 0.0846 Case9 ECHT-DE 814.1708 814.2001 814.1843 0.0075 SF-DE 814.1649 814.1956 814.1767 0.0063 SP-DE 814.1841 814.2273 814.2017 0.0121 ACDE 0.0305 814.1588 814.2957 814.1897 IeJADE 814.1588 814.2162 814.1746 0.0118 Case10 ECHT-DE 0.0061 964.1331 964.1564 964.1437 SF-DE 964.1254 964.1418 964.1307 0.0038 0.0034 SP-DE 964.1234 964.1399 964.1276 0.0083 ACDE 964.1179 964.1493 964.1252 IeJADE 964.1176 964.1380 964.1227 0.0050

Table 2. Experimental results of the IcJADE and the state-of-the-art algorithms.

The convergence curves of ACDE and the improved ϵ JADE (ϵ JADE is used for short in the legend) are shown in Figure 2. The figure shows that the improved ϵ JADE has a competitive convergence rate with ACDE. As mentioned above, using the ϵ method will lead to a slow convergence speed towards the feasible region compared with SF. For constrained optimization problems with a relatively small feasible region, the ϵ method is more effective in guiding the population to move toward the feasible region. By considering both target values and constraints, the proposed method will not lead to a significant decrease in the convergence speed.

Based on the comparison results of five DE variants, it is found that the performance of the algorithm, especially the robustness, is significantly improved by the ϵ method.

Figure 2. Convergence curve of improved *c*JADE and ACDE.

11 of 13

From the Figure 3, the load bus voltages of different load buses in all the six cases are within bound, which means that the solutions are all feasible. We can observe that the load bus voltage of different load buses follows the same trend, which can help solve other problems in this series.

Figure 3. Security graph.

Comparison between Improved *c*JADE and ACDE

The convergence curves of the improved ϵ JADE and ACDE in the first six cases are given in Figure 2.

Compared with the ACDE, it can be observed that the proposed improved ϵ JADE has a competitive performance with ACDE. The convergence speed of the proposed algorithm is faster than that of ACDE in most cases.

From the boxplots in Figure 1, it can be observed that the proposed algorithm obtains more stable and robust results than ACDE, which illustrates the effectiveness of the improved algorithm.

4. Discussion

Compared with state-of-the-art algorithms in dealing with OPF problems, it can be concluded that the improved ϵ method with the adaptive differential evolution can achieve competitive results. In dealing with the constrained optimization problems, the algorithm is important in searching for the optimal and constraint handling method. The adaptive differential evolution can be applied in solving the constrained optimization problems without extra computations. It is still more efficient in finding the feasible solutions than the classical differential evolution. The proposed selection based on the constraint violation is simple yet effective in improving the algorithm. The ϵ method has shown a great performance in complex constrained optimization problems [23]; meanwhile, it is effective without losing the efficiency through the experimental results in OPF problems. Compared with the simple feasible rules methods, the improved ϵ method can be more suitable in dealing with the complex OPF problems.

5. Conclusions

In this paper, an improved ϵ method based on the adaptive differential evolution is utilized to solve the optimal flow problems. The improved ϵ method can help the algorithm move toward the feasible region, and the improved algorithm is efficient in searching for the feasible global optimum. The effectiveness of the proposed algorithm is tested on the IEEE-30 buses series benchmark functions. Compared with the state-of-the-art algorithms, the performance of the proposed algorithm is competitive in terms of the convergence speed and precision.

In the future, the proposed algorithms could be used to solve more complex optimal flow problems. More effective constraint handling techniques could be combined with the improved adaptive differential evolution algorithms in dealing with the complex constrained optimization problems. It is also promising to implement the machine-learningbased parameter-setting methods within the algorithm rather than fine tuning the control parameters by experiments.

Author Contributions: Conceptualization, W.Y. and Z.L.; methodology and software, W.Y.; validation, Z.L.; investigation, Y.L. and W.Y.; writing—original draft preparation, W.Y. and Z.L.; writing review and editing, Z.Y.; supervision, S.X.; project administration, Y.C.; funding acquisition, W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant Nos. 52005447, 72271222 and Zhejiang Provincial Natural Science Foundation of China under Grant Nos. LQ21E050014, LGG22G010002.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Li, S.; Gong, W.; Hu, C.; Yan, X.; Wang, L.; Gu, Q. Adaptive constraint differential evolution for optimal power flow. *Energy* **2021**, 235, 121362. [CrossRef]
- 2. Ida Evangeline, S.; Rathika, P. Wind farm incorporated optimal power flow solutions through multi-objective horse herd optimization with a novel constraint handling technique. *Expert Syst. Appl.* **2022**, *194*, 116544. [CrossRef]
- Bouchekara, H. Solution of the optimal power flow problem considering security constraints using an improved chaotic electromagnetic field optimization algorithm. *Neural Comput. Appl.* 2020, 32, 2683–2703. [CrossRef]
- Mugemanyi, S.; Qu, Z.; Rugema, F.X.; Dong, Y.; Bananeza, C.; Wang, L. Optimal Reactive Power Dispatch Using Chaotic Bat Algorithm. *IEEE Access* 2020, *8*, 65830–65867. [CrossRef]
- Saha, A.; Bhattacharya, A.; Das, P.; Chakraborty, A.K. HSOS: A novel hybrid algorithm for solving the transient-stabilityconstrained OPF problem. *Soft Comput.* 2020, 24, 7481–7510. [CrossRef]
- Farhat, M.; Kamel, S.; Atallah, A.M.; Hassan, M.H.; Agwa, A.M. ESMA-OPF: Enhanced Slime Mould Algorithm for Solving Optimal Power Flow Problem. *Sustainability* 2022, 14, 2305. [CrossRef]
- Abd el sattar, S.; Kamel, S.; Ebeed, M.; Jurado, F. An improved version of salp swarm algorithm for solving optimal power flow problem. *Soft Comput.* 2021, 25, 4027–4052. [CrossRef]
- 8. Akdag, O. A Improved Archimedes Optimization Algorithm for multi/single-objective Optimal Power Flow. *Electr. Power Syst. Res.* **2022**, 206, 107796. [CrossRef]
- 9. Abbasi, M.; Abbasi, E.; Mohammadi-Ivatloo, B. Single and multi-objective optimal power flow using a new differential-based harmony search algorithm. *J. Ambient Intell. Humaniz. Comput.* **2021**, *12*, 851–871. [CrossRef]
- 10. Teeparthi, K.; Vinod Kumar, D.M. Security-constrained optimal power flow with wind and thermal power generators using fuzzy adaptive artificial physics optimization algorithm. *Neural Comput. Appl.* **2018**, *29*, 855–871. [CrossRef]
- 11. El-Fergany, A.A.; Hasanien, H.M. Salp swarm optimizer to solve optimal power flow comprising voltage stability analysis. *Neural Comput. Appl.* **2020**, *32*, 5267–5283. [CrossRef]
- 12. Naderi, E.; Pourakbari-Kasmaei, M.; Cerna, F.V.; Lehtonen, M. A novel hybrid self-adaptive heuristic algorithm to handle singleand multi-objective optimal power flow problems. *Int. J. Electr. Power Energy Syst.* **2021**, *125*, 106492. [CrossRef]
- 13. Elattar, E.E.; Shaheen, A.M.; Elsayed, A.M.; El-Sehiemy, R.A. Optimal Power Flow With Emerged Technologies of Voltage Source Converter Stations in Meshed Power Systems. *IEEE Access* 2020, *8*, 166963–166979. [CrossRef]
- Kahraman, H.T.; Akbel, M.; Duman, S. Optimization of Optimal Power Flow Problem Using Multi-Objective Manta Ray Foraging Optimizer. *Appl. Soft Comput.* 2022, 116, 108334. [CrossRef]

- 15. Attia, A.F.; El Sehiemy, R.A.; Hasanien, H.M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. *Int. J. Electr. Power Energy Syst.* 2018, 99, 331–343. [CrossRef]
- 16. Nguyen, T.T.; Mohammadi, F. Optimal Placement of TCSC for Congestion Management and Power Loss Reduction Using Multi-Objective Genetic Algorithm. *Sustainability* **2020**, *12*, 2813. [CrossRef]
- Mohamed, A.A.; Kamel, S.; Hassan, M.H.; Mosaad, M.I.; Aljohani, M. Optimal Power Flow Analysis Based on Hybrid Gradient-Based Optimizer with Moth–Flame Optimization Algorithm Considering Optimal Placement and Sizing of FACTS/Wind Power. *Mathematics* 2022, 10, 361. [CrossRef]
- 18. Gong, W.; Cai, Z. Differential evolution with ranking-based mutation operators. *IEEE Trans. Cybern.* **2013**, 43, 2066–2081. [CrossRef]
- Takahama, T.; Sakai, S. Constrained optimization by the *ε* constrained differential evolution with gradient-based mutation and feasible elites. In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 1–8.
- 20. Zitzler, E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications; Ithaca: Shaker, OH, USA, 1999; Volume 63.
- Mohamed, A.A.A.; Mohamed, Y.S.; El-Gaafary, A.A.; Hemeida, A.M. Optimal power flow using moth swarm algorithm. *Electr. Power Syst. Res.* 2017, 142, 190–206. [CrossRef]
- 22. Biswas, P.P.; Suganthan, P.N.; Mallipeddi, R.; Amaratunga, G.A. Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques. *Eng. Appl. Artif. Intell.* **2018**, *68*, 81–100. [CrossRef]
- Yi, W.; Gao, L.; Pei, Z.; Lu, J.; Chen, Y. ε Constrained differential evolution using halfspace partition for optimization problems. J. Intell. Manuf. 2021, 32, 157–178. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.