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Abstract: Secure comparison is a fundamental problem in multiparty computation. There are
two different parties, each holding an l-bit integer, denoted by a and b, respectively. The goal
of secure comparison is to compute the order relationship between a and b, say (a > b) ∈ {0, 1},
without revealing their inputs to any others. Since previous solutions based on homomorphic
encryption need at least Ω(l) encryptions for each l-bit comparison, the total encryption time leads
to a computational bottleneck for these protocols. This work presents a fast, semi-honest, secure
comparison protocol based on the BFV encryption scheme. With its vector-like plaintext space, the
number of required encryptions can be significantly reduced; actually, only six encryptions are needed
for each comparison in our protocol. In other words, the proposed protocol can achieve the time
complexity Õ(λ + l) for a given security parameter λ. As a result, 4096-bit integers can be securely
compared within 12.08 ms, which is 280 times faster than the state-of-the-art homomorphic encryption-
based secure comparison protocol. Furthermore, we can compare k pairs of l · k−1-bit integers with
almost the same execution time as comparing l-bit integers and achieve higher throughput regardless
of the compared integer size.

Keywords: secure comparison; multi-party computation; fully homomorphic encryption; Secure
Auction; ring learning with error

MSC: 94A60

1. Introduction
1.1. Homomorphic Encryption-Based Secure Comparison

The goal of multi-party computation (MPC) is to create an algorithm that enables
different parties to compute a function jointly without revealing their inputs. In areas such
as secret voting or e-commerce, MPC provides a solution for protecting each party’s privacy
without the involvement of a trusted third party (TTP). However, the high computational
costs of MPC make these solutions practically infeasible. Secure comparison is one of the
fundamental problems in MPC, with the goal of computing (a > b) ∈ {0, 1} securely for
two different parties with private inputs a and b. Since special-purpose secure comparison
protocols (SP-SCPs) often outperform those protocols based on general-purpose MPC con-
structions, SP-SCPs can improve the performance of most privacy-preserved applications.
This fact motivates us to develop high-speed, secure comparison protocols.

Homomorphic Encryption (HE) and Garbled Circuits (GC) are two of the most famous
cryptographic techniques for constructing secure comparison protocols. Based on the study
presented in [1], HE-based protocols can achieve faster speed and lower round complexity,
whereas GC-based protocols provide a lower communication rate and higher flexibility.
In this work, we focus on the computational cost and compete for the speed of our pro-
tocol to state-of-the-art HE-based comparison protocols. In general, the performance of
an HE-based protocol is strongly related to which HE scheme is used. For example, the
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protocol proposed in [2] needs only two encryptions for each bit, but the final performance
is 60.4 milliseconds per bit (ms/bit) (Runs on i5-9400f@4.0 GHz, single core, and set security
parameter λ = 128.) since each Paillier encryption [3] needs 23 ms. The authors in [4] re-
placed Paillier with subgroup-RSA [5], which needs only 0.692 ms/bit for each encryption
and provides a much better performance of 1.74 ms/bit. Noticeably, the protocols proposed
in [6,7] compare 8 bits simultaneously by the threshold property in the plaintext space Z228 ,
which needs only two encryptions and one private-equality-test (Private-equality-test is to
compute (a == b) ∈ {0, 1} securely for two different parties. Notice. two encryptions are
needed in the protocol.) for every 8-bit. In their works, the performance reaches 0.8 ms/bit.
To the best of our knowledge, these two are the fastest 2-round secure comparison proto-
col [2,4,8–10] and the fastest secure comparison protocol [6,7]. We will refer to them as DGK
protocol and CEK protocol, respectively. The Paillier and the subgroup-RSA mentioned
above are HE schemes that can execute additions in the encryption domain. We refer to
them as additive homomorphic encryption (AHE) schemes.

Fully homomorphic encryption (FHE) specifically addresses those HE schemes that
can realize arbitrary arithmetic circuits in the encryption domain. The first construction of
FHE was proposed by Gentry [11,12] in 2009. In his construction, Gentry first proposed a
somewhat homomorphic encryption (SWE) scheme, which can implement a limited number
of additions and multiplications in the encryption domain, and then used bootstrapping
mechanism (Bootstrapping technique is to implement a decryption circuit in the encryption
domain to create a new ciphertext associated with the same message but with fewer
evaluations in the encryption domain.) “refresh” the ciphertexts. Inspired by Gentry’s
blueprint, different FHE schemes [13–19] have been proposed in the following years.

Our work was inspired by the HE scheme proposed by Fan and Vercauteren [17],
inherited from [14–16,20–26], and is one of the widely used FHE schemes up to now. To
avoid confusion, we always use the “BFV scheme” to represent SHE schemes proposed
in [17]. Since the BFV is one of the SHE schemes, the corresponding ciphertext size is
determined by the number of evaluations in the encryption domain. While the execution
speed of each operation in the BFV scheme would decrease as the ciphertext-size increase;
therefore, it is hard to realize complicated functions in a practical use case. On the other
hand, if the target function is simple enough, then the ciphertexts can be small, and the
performance of the BFV scheme can outperform subgroup-RSA. We observed this fact in
our experiments; that is, the encryption of the BFV scheme can be realized within 0.21 ms
in our protocol, whereas the encryption of subgroup-RSA needs 0.7 ms. The remarks about
and comparisons with recently published related work will be presented in Section 5.3.

1.2. Secure Decryption

Let p be the public key and s be the secret key. We say an encryption scheme can im-
plement an operation ?: P × P → P in the encryption domain if there exists a computable
function T such that

Dec (T (c1, c2, p), s) = Dec(c1, s) ? Dec(c2, s) (1)

for arbitrary ciphertexts c1, c2 ∈ C. Those encryption schemes that satisfy the property
mentioned in Equation (1) are the HE schemes. Since HE enables us to compute over the
ciphertexts, we may let the party that does not have a secret key compute the function in
the encryption domain; and the other party decrypts the ciphertext(s) associated with the
result. The problem is, if the latter party may learn other information while decrypting,
then the security of the former party could be compromised. On the other hand, if the
two parties can securely decrypt the result, we can achieve the security requirement of
two-party computation (2PC), as shown in Figure 1.
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Figure 1. The Information Flow of Realizing 2PC via the BFV Scheme and the Secure Decryption
Process. Party 1(say Alice) holds the secret key sk and public key pk; Party 2 (say Bob) holds the
ciphertext Cipher and the public key pk. The goal of secure decryption is to securely compute Dec
(Cipher, sk) for Party 1.

2. The BFV Encryption Scheme

BFV scheme is an attractive encryption scheme that is equipped with fast encryption
and decryption operations, vector-like plaintext space (optional), and robust computations
in the encryption domain. We review some functionalities of the BFV scheme in this
section. Other BFV-related operations, such as bootstrapping, can be found in [11,15,17,27].
Moreover, for self-completeness, the algebraic structure and commonly used notations of
the BFV scheme are presented in Appendix A.

This section addresses the assumptions and some characteristics related to the BFV
scheme. As anonymous reviewers suggest, all the corresponding proof will be presented in
Appendix B.

2.1. Security Assumption

Definition 1. (Ring Learning with Error Distribution) LetRq be the m-th cyclotomic ring with
coefficients in Zq. Let s ∈ Rq and χ be a small distribution with Prob{|χ| > B} = 0. Then, the
ring learning with error distribution RLWEq,m

s,χ is the distribution of (Y, Y · s + χn), where Y is a
uniform distribution inRq and n is the degree of Rq.

Assumption 1. (Infeasibility of decision-RLWE) The decision problem of Ring Learning with Error
(RLWE), denoted by decision-RLWEq,m

s,χ , is to distinguish uniform distribution and RLWEq,m
s,χ . The

decision-RLWE assumption is to assume decision-RLWEq,m
s,χ is infeasible.

The decision-RLWE assumption establishes the security assumption of the BFV encryp-
tion scheme. Moreover, we can reduce it to the well-known shortest vector problem (SVP) if
χ is a discrete Gaussian distribution with sufficient large standard error (e.g., σ = Ω

(√
n
)
)

and the secret key is sampled from χn [28]. However, we sometimes use small standard
error (e.g., σ = 3.2 in [29]) for better performance.

2.2. Ciphertext and Algebra

Given m = 2d, n = m/2, and let Φm(X) be the m-th cyclotomic polynomial. where
Φm(X) = (Xn + 1). LetR = Z[X]/(Φm(X)) be the cyclotomic ring with degree n. Plain-
texts are in Rp = R/pR, and ciphertexts are in R2

q = (R/qR)2, where q � p and the
ratio ρ = q/p can be treated as the “tolerance” of error.

Let χ be a small distribution, say Prob{|χ| > B} = 0.

2.3. Encryption and Decryption
2.3.1. Encryption and Decryption on Polynomial Algebra

Multiplication in Rq (denoted as PolyMuln, cf. Algorithm 1 for detailed definition)
can be implemented in Θ(n · log n) operations in Zq by Fast Fourier Transformation (FFT),
and the time complexity would be Θ(n · log n · log q). For convenience, we use a bolder
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case to denote a polynomial, which can be stored as n coefficients in [0, q− 1) in a computer,
and it would be the requirement of all of the following algorithms. Similarly, each plaintext
could be stored as n coefficients in [0, p− 1).

Algorithm 1 PolyMuln
Input: a, b, q, α

Output: c

Ensure:
1. c ≡ a · b mod (Φn(X), q)
2. 0 ≤ ci < q

1: A = (A0, A1, . . . , An−1)← FFTn,q,α(a)
2: B = (B0, B1, . . . , Bn−1)← FFTn,q,α(b)
3: for i = 0, 1, . . . , n− 1 do
4: Ci ← Ai · Bi mod q
5: end for
6: C← (C0, C1, . . . , Cn−1)
7: c = (c0, c1, . . . , cn−1)← InvFFTn,q,α(C)

Once again, we assume the secret key, s, is generated from a small distribution χ
(cf. Algorithm 2 for details).

Algorithm 2 KeyGen

Input: ⊥
Output: s

1: for i = 0, 1, . . . , n− 1 do
2: si ← χ

3: end for
4: s← (s0, s1, . . . , sn−1)

Algorithm 3 EncSym
Input: m, s

Output: (c0, c1)

Require:
1. 0 ≤ mi < p
2. Prob{χ > ρ} = 0

Ensure:

1. m =
∣∣∣ρ−1 ·

(
c0 + PolyMuln,q,α(c1, s)

)∣∣∣
2. Each element of (c0, c1) is in the range {0, 1, . . . , q− 1}

1: for i = 0, 1, . . . , n− 1 do
2: ci ← {0, 1, . . . , q− 1}
3: end for
4: c1 ← (c0, c1, . . . , cn−1)
5: for i = 0, 1, . . . , n− 1 do
6: ei ← χ

7: end for
8: e← (e0, e1, . . . , en−1)
9: c0 ← e− PolyMuln(c1, s) + m · ρ

10: c0 ← c0 mod q
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EncSym (Algorithm 3) is to encrypt a message m with secret key s. That is,

c0 + c1 · s = m · ρ + e. (2)

We may use Algorithm 4 to define the error with the corresponding message and
ciphertext. Moreover, the ciphertext can be correctly decrypted if and only if the error is
less than ρ/2 (see Algorithm 5). We can summarize this subsection’s discussions into the
following Lemma.

Lemma 1. (Sufficient Condition for Correct Decryption). Given ciphertext c = (c0, c1) ∈ R2
q, and

message m ∈ Rp, and e =
[
c0 + c1 · s− [m]p · ρ

]
q

is the corresponding error, then ‖e‖∞ < ρ · 2−1

implies [c0 + c1 · s]q · ρ−1 ≡ [m]p mod p. Thus, we can decrypt correctly if the error is small enough.

Proof. Please refer to Appendix B for detailed proof. �

Algorithm 4 CalculateError

Input: (c0, c1), m, s
Output: e

1: e← c0 + PolyMuln,q,α(c1, s)−m · ρ
2: e← e mod q

Algorithm 5 Dec

Input: (c0, c1), s
Output: m

Require:
1. Each element of CalculateError(c0, c1, m) is in the range

{0, 1, . . . , ρ/2− 1} ∪ {q− ρ/2, . . . , q− 1}

1: m = (m0, m1, . . . , mn−1)← c0 + PolyMuln,q,α(c1, s) mod q
2: for i = 0, 1, . . . , n− 1 do
3: mi ← b(mi + ρ/2) · ρ−1⌋ BDivide ρ and round
4: end for
5: m← (m0, . . . , mn−1)

2.3.2. The Correctness of Homomorphic Operations

In this subsection, we introduce the addition between two ciphertexts (denoted as
Add), the addition between a ciphertext and a plaintext (denoted as AddPlain,
cf. Algorithm 6), and the multiplication between a ciphertext and a plaintext (denoted
as MulPlain, cf. Algorithm 7).

Given c, c′ ∈ R2
q, suppose the corresponding messages are m, m′ ∈ Rp, and the

corresponding errors are e, e′ ∈ R. The above-mentioned operations can be defined
as follows:

Add (c, c′): Return (c0 + c′0, c1 + c′1)

AddPlain (c, m′): Return (c0 +[m′]p · ρ , c1)

MulPlain (c, m′): Return (c0 · [m′]p, c1 · [m′]p)

Claim 1. (Correctness of Addition). Suppose ‖e + e′‖∞, then

Dec
(
Add

(
c, c′

)
, s
)
= m + m′ . (3)
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We illustrate the definition and the operation process of the homomorphic addition
(denoted as Add, cf. Algorithm 8 for details).

Proof. Please refer to Appendix B.2.a for details. �

Claim 2. (Correctness of Addition between a Plaintext and a Ciphertext). Suppose ‖e‖∞ < 2−1 · ρ,
then

Dec (AddPlain (c, m’), s) = m + m’. (4)

Proof. Please refer to Appendix B.2.b for details. �

Claim 3. (Correctness of Multiplication between a Plaintext and a Ciphertext).
Suppose ‖e ·m′‖∞ < 2−1 · ρ, then

Dec (MulPlain (c, m’), s) = m ·m’. (5)

Proof. Please refer to Appendix B.2.c for details. �

Notice that all the correctness mentioned above is associated with the magnitude of
the norm of errors. Claims 1, 2, and 3 are essential for estimating how large q should be.

Algorithm 6 AddPlain

Input: (c0, c1), m′

Output:
(

c
′
0, c

′
1

)
Require: Dec(c0, c1, s) = m

Ensure: Dec
(

c
′
0, c

′
1, s
)
= m + m′

1: c
′
0 ← c0 + m′ · ρ mod q

2: c
′
1 ← c1

Algorithm 7 MulPlain

Input: (c0, c1), m′

Output:
(

c
′
0, c

′
1

)
Require: Let e = CalculateError(c0, c1, m, s)

e′ = PolyMuln(e, m′) mod q
Require ‖e′‖∞ < ρ/2

Ensure: Dec
(

c
′
0, c

′
1, s
)
≡ PolyMuln(m, m′) mod q

1: c
′
0 ← PolyMuln(c0, m′) mod q

2: c
′
1 ← PolyMuln(c1, m′) mod q

Algorithm 8 Add

Input: (c0, c1),
(

c
′
0, c

′
1

)
Output:

(
cadd

0 , cadd
1

)
Require: Let e = CalculateError(c0, c1, m, s), e′ = CalculateError

(
c
′
0, c

′
1, m′, s

)
Require ‖e + e′‖∞ < ρ/2

Ensure: Dec
(

c
′
0, c

′
1, s
)
= m + m′

1: cadd
0 ← c0 + c

′
0 mod q

2: cadd
1 ← c1 + c

′
1 mod q
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2.4. Public Key Generation and Encryption

The public key generation (denoted as PubKeyGen) involved in our protocol can be
illustrated in Algorithm 9. Moreover, the asymmetric encryption function (denoted as
EncAsym) concerning our protocol can be depicted in Algorithm 10.

Algorithm 9 PubKeyGen

Input: s
Output: (pk0, pk1)

1: pk0, pk1 ← EncSym(0, s)

Algorithm 10 EncAsym

Input: m, (pk0, pk1)
Output: (c0, c1)

1: for i = 0, 1, . . . , n− 1 do

2: ri ← χ

3: ei ← χ

4: e
′

i ← χ

5: end for
6: r← (r0, r1, . . . , rn−1), e← (e0, e1, . . . , en−1), e′ ←

(
e
′
0, e

′
1, . . . , e

′
n−1

)
7: c0 ← PolyMuln(pk0, r) + e + m · ρ mod q
8: c1 ← PolyMuln(pk1, r) + e′ mod q

To claim the correctness of EncAsym, we should evaluate the norm of the error:

CalculateError
(

EncAsympk(m), s
)
= r · (pk0 + pk1 · s) + e + e′ · s

Notice pk0 + pk1 · s, r, e, e’, and s are sampling from χn and bounded by B; thus,
we have

‖r · (pk0 + pk1 · s) + e + e′ · s‖∞ ≤ n · B2 + B + n · B2.

Recall Algorithm 5—the correctness of decryption is ensured if ρ bounds the error.
Therefore, we can choose q large enough, so the correctness follows. That is,

ρ = q · p−1 > 2 · n · B2 + B ≥ ‖CalculateError
(

EncAsympk(m), s
)
‖

∞
(6)

2.5. Time Complexity

Additions inRq needs n additions inZq, and the time complexity would be Θ(n · log q).
Multiplications can be implemented in Θ(n · log n · log q) by FFT implementation of the
polynomial ring. Let λ be the security parameter, suppose the m-bit pseudo-random num-
ber can be generated in Θ(m · λ), then the time complexity associated with each operation
can be listed in Table 1.

Since ρ = p−1 · q can be regarded as the affordability of error, q should be large enough
for the evaluations. However, the security level is inversely proportional to log q, so n
should increase proportional to preserve the same security level. Therefore, we should use
the number of evaluations to represent the time complexity.

As seen in Table 1, the performance is dominated by n, q. Recall that the error should
be less than ρ · 2−1. Each multiplication would increase the upper bound of the error by
a factor of n · p · 2−1, and the error of fresh ciphertext is less than B, so the error after

d multiplications is at most
(
n · p · 2−1)d · B , and we choose ρ, q large enough to keep

the correctness:
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log2 ρ− 1 > d · log
(

n · p · 2−1
)
+ log B (7a)

log2 q > d · (log2 p + log2 n− 1) + log2 B + 1. (7b)

Let λ = Θ(n/ log2 q ) be the security level, then n = Ω(λ · log2 q) = Ω(λ · d · log2 p).
We conclude that the computational cost has a quadratic growth with respect to d.

Table 1. Time Complexity of BFV Operations.

Operation Time Complexity

PolyMul n · log n · log q
KeyGen n · log q · λ
EncSym n · log n · log q + n · log q · λ

PubKeyGen n · log n · log q + n · log q · λ
EncAsym n · log n · log q + n · log q · λ

Dec n · log n · log q
AddPlain n · log q
MulPlain n · log n · log q

Add n · log q

2.6. Batching

Batching is a commonly used technique to speed up cryptographic operations; how-
ever, its relation to mathematical derivations has seldom been presented and discussed.
Since batching plays a crucial role in our proposed protocol, we detail its definition and
derivation in this subsection. Readers who are familiar with batching can jump to the next
section directly.

Suppose Φm(X) = f1(X)· f2(X) · · · · · fk(X) where f1, . . . , fk are co-prime, then we can
apply Chinese Remainder Theorem to derive the following isomorphic relation:

Zp[X]/(Φm(X)) ∼= Zp[X]/( f1(X))× · · · ×Zp[X]/( f1(X)) (8)

If we further assume fi(X) is irreducible, and deg( fi) = d for each i, then

Zp[X]/( fi(X)) ∼= GF
(

pd
)

(9a)

Rp ∼= GF
(

pd
)n/d

(9b)

Generally, the isomorphic relation given in (Equation (9)) always holds. In the follow-
ing paragraphs, we will introduce how to choose p for some given d and n.

For convenience, we always choose m = 2t+1, so n = ϕ(m) = 2t, and Φm(X) = Xn + 1.
We claim thatRp ∼= Zn

p if p is a prime with p = 2kn + 1:
We can find a generator g ∈ Z∗p, α = gk has order 2n, and αn = −1 is a root of Φm.

Similarly, let αi = α2i+1, then αi has order 2n and is also a root of Xn + 1. Since {αi}0≤i<n
are n different roots of Φm, we may write

Xn + 1 = (X− α0) · (X− α1) · ··· · (X− αn−1) (10)

and
Zp[X]/(Φm(X)) ∼= Zp[X]/(X− α0)× · · · ×Zp[X]/(X− αn−1) ∼= Zn

p (11)

Notice that f 7→ ( f mod ( f (X)− αi))0≤i<n is an isomorphism from Zp[X]/(Φm(X))
to Zn

p, and f mod ( f (X)− αi) can be determined by f (αi ). We may apply the Number
Theoretic Transform (NTT) to send f to ( f (αi))0≤i<n with O(n · log n) operations in Zp. We
may also let Y = Xd, so

Yn/d + 1 = (Y− β0)·(Y− β1)· ··· ·(Y− βn/d−1)
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Xn + 1 =
(

Xd − β0

)
·
(

Xd − β1

)
· ··· ·

(
Xd − βn/d−1

)
, (12)

where βi = β2i+1, and β = αd. We derive another isomorphic relation

Zp[X]/(Φm(X)) ∼= Zp[X]/
(

Xd − β0

)
× · · · ×Zp[X]/

(
Xd − βn/d−1

)
(13)

∼=
(
Zp[X]/

(
Xd + 1

))d
(14)

We may write f = ∑d−1
j=0 fj(Y) · Xj with Y = Xd, then the isomorphism (cf. Equation (13))

can be defined as

f 7→
d−1

∑
j=0

(
f j(Y) mod (Y− βi)

)
0≤i<n/d · X

j (15)

Similarly, f j mod (Y− αi) can be determined by f j(βi), and the values of
(

f j(βi)
)

0≤i<n/d
can be calculated by n/d-dimension NTT, which needs O ((nd−1) · log (nd−1)) operations
in Zp or the time complexity is O ((nd−1) · log (nd−1)) · O (log q). Consequently, the time
complexity of the whole map becomes the summation of d different NTTs plus the time
needed for combining them, which equals

O (d·(nd−1) ·log (nd−1) ·log q) + O (n · log q) = O (n · log q · (log n − log d)). (16)

As illustrated in Figure 2, the function that maps (Zp [X ]/(Φd (X)))n/d to Rm,p
can be regarded as an “encoder”, and its inverse is the “decoder”. Notice we always
suppose 2 · (n/d) divides (p—1), and n is a power of 2. In the following, we will use
Encoden/d,αd to denote the function from Zp[X]/

(
Xd − β0

)
× · · · ×Zp[X]/

(
Xd − βn/d−1

)
to Zp[X]/(Xn + 1), and Decoden/d,αd will be the inverse of Encode.
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3. Two-Party Computation and BFV Encryption

In the following contexts, we name the two players (or parties) Alice and Bob. With
the BFV scheme, Alice can delegate the computation to Bob without revealing her private
input. Let cresult denote the ciphertext computed by Bob. Suppose there is a protocol that
can derive the message in cresult without leaking any information which may infringe
the privacy of Bob. In that case, we say the protocol satisfies the security requirement of
two-party computation via the BFV scheme, or the protocol can derive the message securely
through “secure decryption”.
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3.1. The Secure Decryption Protocol

Suppose Bob holds some ciphertext cresult, Alice holds the secure key s, and the goal
of secure decryption is to compute Dec (cresult, s) securely, which can be formulated as in
Table 2 notice if the secure decryption exists, and Bob can compute the function f in the
encryption domain, then they can securely compute f by

Table 2. Formulas Associated with the Secure Decryption.

Party A B

Input s cresult, pk
Output Dec

(
cresult, s

)
⊥

(i) Alice encrypting her private input(s) and sending the results to Bob.
(ii) Bob computing the function f in the encryption domain and obtaining the ciphertext

cresult associated with the desired result, called mresult.
(iii) Performing the above “secure decryption” protocol; then, Alice learns the mresult

without knowing any other information.
Notice that the first term of the public key, say p1, is sampled from a uniform distribu-

tion. If Bob randomly sampled r← χn, e← χn , then the pair (pk1, pk1 · r + e) “looks like”
a pair of uniformly sampled samples in the view of Alice, by the RLWE assumption. Based
on this idea, we will construct our first secure decryption protocol in the remaining context
of this section.

Suppose the error of cresult is eresult, the error of czero is ezero. Let c′ = cresult + czero + (e, 0),
then the error in c′ is eresult + ezero + e. By Lemma 2, ‖eresult + ezero + e‖∞ implies Dec
(c′, s) = Dec (cresult, s). Before proving the security of Protocol 3.1, we first analyze the
distinguishability between eresult + ezero + e and a uniform sample from {−T, . . . , T}n.

Lemma 2. (Distinguishability of a uniform sample with little bias). For some e ∈ Z, distin-
guishing two samples, one is sampled uniformly from {−T,−T + 1, . . . , T}, the other is from
{−T + e,−T + 1, . . . , T + e}, the advantage of the adversary is no more than |e| · (2T)−1.

Proof. Please refer to Appendix C for details. �

Corollary 1. (Distinguishability of a uniform vector with little bias). For some e ∈ Zn, dis-
tinguishing two samples, one is sampled from {−T,−T + 1, . . . , T}n, the other is from
{−T,−T + 1, . . . , T}n + e, the advantage of the adversary is no more than Σi|ei| · (2T)−1 .

Proof. Since each entry of the vector is independent to each other, the adversary of i-th
entry is no more than |ei| by Lemma 2. Adversary of the whole vector is no more than
summing up the adversary of each entry, which is Σi|ei| · (2T)−1. �

Notice that her security of Alice is guaranteed based on the security of the BFV scheme,
so we need only to deal with the security of Bob. We will prove this by simulating the view
of Alice from Dec (cresult, s) and s.

Claim 4. (The Security of Bob in Protocol 3.1). Suppose ‖eresult + ezero‖1 < Esum, T > Esum · (2ε)−1,
and RLWE assumption holds, then the view of Alice, which is cresult ∈ (Rm,q)2, can be simulated
by Dec (cb, s) and s.

Proof. Please refer to Appendix C for details. �

Protocol 3.1. The Proposed Secure Decryption Protocol.
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Protocol 3.1: Decryption Protocol

Party: A B

Input: s cresult, pk

Output: Dec
(

cresult, s
)

⊥

Round 1 (B’s turn)
1: c0 ← EncAsympk(0)
2: e← {−T, . . . , T}n

3: c′ =
(

c
′
0, c

′
1

)
← cresult + c0

4: c
′
0 ← c

′
0 + e mod q

5: B sends
(

c
′
0, c

′
1

)
to A

Round 2 (A’s turn)
6: m← Dec(c′, s)
7: Establish m

In a real case, we do not know the exact value of Esum, but we can estimate an upper
bound of ‖eb + ezero‖∞, say E > ‖eb + ezero‖∞, by Claims 1, 2, 3. Therefore, Esum < n · E (we
sometimes estimate Esum as n1/2 · E since EV[Esum] ≈ n1/2 · E) (notice ε < n· E · q−1 can be
smaller than p(n)−1 for any polynomial p and sufficient large n since q is exponential to n for
some fixed security parameter and n · E = O (n2) for a fixed task in the encryption domain).
In the next section, we will introduce “separate decryption” to improve performance.

3.2. Separate Decryption

Let c = (c0, c1) ∈ R2
q; the result of decryption can be computed from c0 and (c1 · s).

The idea of separate decryption is: Bob holds c0, Alice holds (c1 · s), and they compute the
decryption result jointly.

Let m be the message, e be the correspond error. Further suppose

[c0]q = [m0]p · ρ + e0 and [c1 · s]q = [m1]p · ρ + e1

where the coefficients of e0, e1 are in
(
−ρ · 2−1, ρ · 2−1]. By the definition of error, we

also have [c0]q + [c1 · s]q ≡ [m]p · ρ + e mod q, so e0 + e1 ≡ e mod ρ. By discussing the
magnitude of e0, e1, e, there exists v s.t.

(e0)i + (e1)i = (e)i + ρ · (v)i (17)

where (v)i ∈ {0, 1}, and the message can be computed by[m]p ≡ [m0]p + [m1]p + v. mod p.
For convenience, we will write e0,i = (e0)i, e1,i = (e1)i, ei = (e)i, and vi = (v)i. Let

t ∈ {0,1}, we have
(i) If et,i ≥ 0, then e0,i + e1,i ≥ e1−t,i > −ρ · 2−1, so vi is either 0 or 1.
(ii) If et,i < 0, then e0,i + e1,i < e1−t,i ≤ ρ · 2−1, so vi is either 0 or− 1.
Suppose |ei| < E < ρ · 4−1, and define

ut,i =


1 if et,i ≥ E

−1 if et,i ≤ −E

0 else

(18)

st,i =


1 if et,i > 0

−1 if et,i < 0

0 else

(19)

So vi can be evaluated from ut,i, st,i:
(i) If et,i = 1, s1−t,i = 1, then vi = 1.
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(ii) If et,i = −1, s1−t,i = 1, then vi = −1.
(iii) Else, vi = 0
The procedures of separate decryption can now be listed as in Table 3. From Equation (17),

we have e0,i = ei − e1,i + ρ · vi. So, vi = 0 if −2−1 · ρ < ei − e1,i < 2−1 · ρ, further suppose
e1,i sampled uniformly from

(
−ρ · 2−1, ρ · 2−1]. Then, Prob{vi = 0} ≥ 1 − |1 + ei| · ρ−1.

Table 3. Procedures of the Separable Secure Decryption (also known as Protocol 3.2 in this write-up).

Protocol 3.2: Decryption Protocol

Party: A B

Input: s cresult, pk

Output: Dec
(
cresult, s

)
⊥

Round 1 (A’s turn)
1: c0 ← EncAsympk(0)

2: c′ =
(

c
′
0, c

′
1

)
← cresult + c0 mod q

3: B sends c
′
1 to A

Round 2 (A’s turn)
4: m← PolyMuln

(
c
′
1, s
)

5: for i = 0, 1, . . . , n− 1 do
6: t← mi + ρ · 2−1 mod q
7: e← t mod p
8: u0,i ← 0 BCompute ut,i in Equation (18)
9: if e ≥ E and e ≤ ρ/2 then

10: u0,i ← 1
11: end if
12: if e ≤ ρ− E and e > ρ/2 then
13: u0,i ← −1
14: end if
15: s0,i ← 0 BCompute st,i in Equation (19)
16: if e > ρ/2 then
17: s0,i ← 1
18: end if
19: if e < ρ/2 then
20: s0,i ← −1
21: end if
22: mi ← t · ρ−1

23: end for
24: m← (m0, m1, . . . , mn−1)
25: A send u0,i , s0,i to B.

Round 2 (B’s turn)
26:

(
c
′
0,0, c

′
0,1, . . . , c

′
0,n−1

)
← c

′
0

27: for i = 0, 1, . . . , n− 1 do
28: t← c

′
0,i + ρ · 2−1 mod q

29: e← t mod p
30: u1,i ← 0 BCompute ut,i in Equation (18)
31: if e ≥ E and e ≤ ρ/2 then
32: u1,i ← 1
33: end if
34: if e ≤ ρ− E and e > ρ/2 then
35: u1,i ← −1
36: end if
37: s1,i ← 0 BCompute st,i in Equation (19)
38: if e > ρ/2 then
39: s1,i ← 1
40: end if
41: if e < ρ/2 then
42: s1,i ← −1
43: end if
44: vi ← u0,i + u1,i
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Table 3. Cont.

45: if sign(vi) 6= sign(s0,i + s1,i) then
46: vi ← 0
47: end if
48: m

′
i ← t · ρ−1 + vi mod p

49: end for
50: m′ ←

(
m
′
0, m

′
1, . . . , m

′
n−1

)
52: B sends m′ to A

Round 3 (A’s turn)
53: m← m + m′mod p Bwhich is Dec

(
cresult, s

)
Suppose ∑i Prob{ui 6= 0} < ε for some sufficient small ε > 0, then m = m0 + m1 with

probability greater than 1 − ε. Therefore, the view of Alice, which is (c′, m0), is equal to
(c′, m −m1) with a probability Prob {u = 0} > 1− ε. Since m1 = F (c′, s) for some computable
function F, (c′, m − m1) = (c′, m − F (c′, s)) is not distinguishable from (r, m − F (r)) (to
Alice) by RLWE assumption.

An advantage of separate decryption is that we do not need to sample e from a large
uniform distribution. Its other advantage is the lower communication rate because the size
of m′ is smaller than that of c

′
0. However, we still need to choose a relatively large q for the

indistinguishability in Lemma 2.

3.3. Two Party Computation via BFV Scheme

Since BFV encryption can implement arbitrary computable function f in the encryption
domain, we can construct the two-party computation (2PC) protocol based on the BFV
encryption scheme. That is, a 2PC protocol can be constructed in the following steps (more
details are depicted in Table 4):

Table 4. The 2PC Computations via the BFV Scheme.

Protocol 3.3 2PC Protocol
Party: A B
Input: a0, a1, . . . , ana , s b0, b1, . . . , bnb , pk
Output: f

(
a0, a1, . . . , ana , b0, b1, . . . , bnb

)
⊥

Round 1 (A’s turn)
1: for i = 0, 1, . . . , na do
2: ci ← EncSym

(
ai, s

)
3: end for
4: A sends c0, . . . , cna to B
5: Round 2 (B’s turn)
6: cresult ← f

(
c0, . . . , cna , b0, b1, . . . , bnb

)
Round 3

7: A and B perform secure decryption to decrypt cresult, and A derived

Dec
(

cresult, s
)
= f

(
a0, a1, . . . , ana , b0, b1, . . . , bnb

)
Step 1. Alice encrypts her input and sends the encrypted result to Bob.
Step 2. Bob directly computes the ciphertext(s) corresponding to the result in the

encryption domain and performs the secure decryption protocol to send the message
to Alice.

4. A High Throughput, Semi-Honest, Secure Comparison Protocol
4.1. Improving DGK Secure Comparison Protocol via the BFV Scheme

As mentioned in Section I, the BFV scheme performs well if the target function has
shallow multiplication depth. Since the multiplication depth of the function in DGK
protocol is 1, we can accelerate DGK protocol via BFV encryption. We briefly describe the
DGK protocol in the following:



Mathematics 2023, 11, 1227 14 of 28

DGK Protocol (Setup, KeyGen, Enc (Round 1, Round2), Dec)
Setup. Suppose both a and b are l-bit integers; say 0 ≤ a, b < 2l , further assume

a = ∑l−1
i=0 ai·2i, b = ∑l−1

i=0 bi·2i with ai, bi ∈ {0, 1}. Our goal is to compute whether
(a ≥ b) ∈ {0, 1} , {False, Truth} securely. We use the plaintext space Zp, where
p > l + 1 is a prime number. Choose q large enough for evaluation and n large
enough for desired security level. Before the protocol starts, Alice generates the secret
key s← KeyGen( ) and the public key pk← PubKeyGen(s) , and sends the public key
to Bob.

Enc. (Encryption)
Round 1. Alice computes ca

i ← EncSyms(ai) , sends ca
i to Bob.

Round 2. Bob generates the samples ri ← Z∗p, and computes

di = ri ·
(

ai − bi + 1 + ∑j>i
(
aj − bj

)
· 2j+2

)
in the encryption domain and permutes

the ciphertexts randomly, so the corresponding message of cresult
i is dσ(i).

Let cresult ← ∑0 ≤ i<l cresult
i ·Xσ(i) .

Dec. (Decryption)
Alice and Bob perform secure decryption, so Alice derives dσ(i), and establishes “a < b”

if, and only if, dσ(i) = 0 for some i.
Correctness of DGK.
Notice that di = 0 if and only if ai = 0, bi = 1, and aj = bj for all j > i.
Security of DGK. Since ri is uniformly sampled from Z∗p, di = ri · (ai − bi + 1 +

∑j>i
(
aj − bj

)
· 2j+2) is uniform inZ∗p whenever di 6= 0. Therefore, the vector

(
dσ(i)

)
∼
(
Z∗p
)n

,
if a ≥ b. In the case b > a, there is exactly one i such that dσ(i) = 0. Since the permutation
is random, the distribution is uniform in{

(v0, . . . , vn−1) ∈ Zn
p

∣∣∣ Exactly one vi = 0
}

Each secure decryption protocol needs one encryption operation, so the Basic Secure
Comparison Protocol (we named it Protocol 4.1 in this write-up) presented in Table 5 needs
l + 1 encryptions for each l-bit comparison. We will present and analyze various proposed
high-speed comparison protocols in the following section.

4.2. High Throughput Comparison Protocol

To enhance the performance, we will use the batching technique presented in Section 2.6
to improve the utility of the plaintext space. Recall that

Rp ∼=
(
Zp[X]/

(
Xd + 1

))n/d
.

Given (X0, . . . , Xn/d−1), (Y0, . . . , Yn/d−1) ∈
(
Zp[X]/

(
Xd + 1

))n/d
, the arithmetic op-

erations of GF(pd)n/d can be defined as (cf. see the following Elementwise Mul-Add
Protocol for details):

(X0, . . . , Xn/d−1) + (Y0, . . . , Yn/d−1) = (X0 + Y0, . . . , Xn/d−1 + Yn/d−1) (20a)

(X0, . . . , Xn/d−1) · (Y0, . . . , Yn/d−1) = (X0 ·Y0, . . . , Xn/d−1 ·Yn/d−1) (20b)

That is, we can implement the vector-like operation in
(
Zp[X]/

(
Xd + 1

))n/d
.

Further, the function evaluated in the encryption domain should be as simple as
possible. So, the only function computed in the encryption domain would be

f
(
a, b, b′

)
= a · b + b′ (21)

Any other operation should be evaluated in the plaintext domain by the one who
holds the secret key.
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Table 5. The Basic Secure Comparison Protocol (or Protocol 4.1).

Protocol 4.1 Basic Secure Comparison Protocol
Party: A B
Input: a0, . . . , al−1, s b0, . . . , bl−1, pk
Output: (a ≥ b) ⊥

Round 1 (A’s turn)
1: for i = 0, 1, . . . , l − 1 do
2: ca

i ← EncSym
(
ai , s

)
3: end for
4: A sends ca

0, . . . , ca
l−1to B

Round 2 (B’s turn)
5: cresult ← (0, 0)
6: u← (0, 0)
7: s← {0, 1, . . . , l − 1}
8: for i = l − 1, . . . , 0 do
9: t← AddPlain

(
ca

i , 0− bi
)

10: c← Add(t, u)
11: c← AddPlain(c, 1)
12: r ← Z∗p
13: c← MulPlain(c, r) B r ·

(
ai − bi + 1 + Σj>i

(
aj − bj

)
· 2j+2)

14:
u← Add

(
u, MulPlain

(
t, 2i+2)) B Σj>i

(
aj − bj

)
· 2j+2

15: tmp← i + s mod l
16: cresult ← Add

(
cresult, MulPlain

(
c, Xtmp))

17: end for

Round 3 Secure Decrypt cresult to A, where the associated message would be
mresult = Σl−1

i=0di · Xi+s mod l

Round 4 (A’s Turn)
18:

(
mresult

0 , mresult
1 , . . . , mresult

l−1 , 0, . . . , 0
)
← mresult

19: result← 1
20: for i = 0, . . . , l − 1 do
21: if mresult

i = 0 then
22: result← 0
23: Establish result

4.2.1. The Single Pair Integer Comparison Protocol

Parameters. Choose a prime p such that p = 2k · (n/d) + 1 and n/d ≥ l for some
integers k and d. Notice the plaintext space Rp is isomorphic to

(
Zp
)n, and Encoden/d

and Decoden/d are the isomorphisms between them. The following protocol can compare
a pair of l-bit integers securely, and we named it Protocol 4.2 in this write-up for ease
of discussion.

Protocol 4.2. (The Single Pair Integer Comparison Protocol)
Setup. Alice generates the secret key s and the public key pk with the parameters

above. Bob generates the samples u← {0, 1,..., n/d − 1}, r1, r2 ←Rp and

r′ ←
(
Z∗p
)n

. We can describe the protocol as three simple 2PC sub-protocols.
2PC-1st. Alice computes xa1 = Encoden/d ((ai)0≤i<n/d). Bob computes xb1 = Encoden/d

((bi)0≤i<n/d) and xr1 = Encoden/d ((r1)i)0≤i<n/d).
They securely compute xmask =xa1 + xb1 − 2·xa1 ·xb1 + xr1 for Alice. (Notice that

ai = bi = 0 when i ≥ l).
2PC-2nd. Alice computes Decoden/d (xmask) and derives ((ai − bi)2 + (r1)i)0≤i<n/d. Let

xa2 = Encoden/d ((∑j>i
(
aj − bj

)2 + (r1)i)0≤i<n/d). Bobcomputesxb2 = Encoden/d ((∑j>i(r1)i)0≤i<n/d),
xr2 = Encoden/d ((r2)i)0≤i<n/d), and x′ = Encoden/d ((r′)i)0≤i<n/d). They securely compute
dmask = (xa1 + xa2 − xb1 − xb2 + Encoden/d ((1)0≤i<n/d)) · x′ + xr2 for Alice (notice that
(ai − bi)2 = ai ⊕ bi).

2PC-3rd. Similarly, Alice decodes dmask and derives (ai −bi + 1 + ∑j>i ai ⊕ bi)· (r′)i + (r2)i

for each 0≤ i < n/d. Let xa3 = ∑0≤i<n/d (
(

ai − bi + 1 + ∑j>i ai ⊕ bi

)
· (r′)i + (r2)i) · Xi·d.

They securely compute d′ = (xa3 − r2) · Xu·d for Alice.
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Finally, Alice outputs 1 if the number of i such that (d′)i is exactly n/d; Alice outputs
0 in other cases.

Correctness of Protocol 4.2. Notice that Decoden/d (dmask − r2) = ((ai − bi + 1 +
∑j>i ai ⊕ bi) · (r′)i)0≤i<n/d which shares the same value with the di in Table 5, so the
correctness holds for the same reason discussed in the last section.

Security of Protocol 4.2. We first notice that there are three 2PCs in our protocol; Alice
derives xmask, dmask, and d′ from them, respectively. Since xmask and dmask are masked
by r1 and r2, they behave like samples taken from a uniform distribution in the view of
Alice. d′ can be simulated by examining whether (a ≥ b) ∈ {0, 1} ,{False, Truth} and s by
the same arguments presented in Section 4.1, which proves the security of Bob. On the
other hand, Bob’s view consists of ciphertexts, so Alice would be secure as long as the BFV
scheme is secure. We depict the details of Protocol 4.2 in Table 6.

Table 6. Secure Comparison Protocol for a Pair of Integers (also known as Protocol 4.2).

Protocol 4.2: Secure Comparison Protocol

Party: A B
Input: a0, . . . , an/d−1, s b0, . . . , bn/d−1, pk
Output: (a ≥ b) ⊥

Round 1 (A’s turn)
1: a← Encoden/d,αd ((a0, a1, . . . , an/d−1))
2: ca ← EncSym(a, s)
3: Sends ca to B.

Round 2 (B’s turn, computes xor)
4: b← Encoden/d,αd ((b0, b1, . . . , bn/d−1))

5: cround2 ← MulPlain(ca,−2 · b) B(−2 · ai · bi)

6: cround2 ← Add
(

cround2, ca

)
B(ai − 2 · ai · bi)

7: cround2 ← AddPlain
(

cround2, b
)

B(ai − 2 · ai · bi + bi)

8: for i = 0, 1, . . . , l − 1 do
9: maski ← {0, 1, . . . , p− 1}

10: end for
11: mask← Encoden/d,αd ((mask0, . . . , maskn/d−1))

12: cround2 ← AddPlain
(

cround2, mask
)

13: Secure Decrypt cround2 for A

14: Round 3 (A’s turn, computes ∑j>i

(
aj − bj

)2
· jt+2

15: Derived ai − 2 · ai · bi + bi + maski from secure decryption
16: u← 0
17: for i = n/d− 1, . . . , 0 do
18: xi ← u + ai + 1
19: u← u + (ai − 2 · ai · bi + bi + maski) · 2i+2

20: end for
21: x← Encoden/d,αd ((x0, . . . , xn/d−1))
22: cx ← EncSym(x, s)
23: Sends cx to B.

Round 4 (B’s turn, compute ri ·
(

ai − bi + 1 + ∑j>i

(
aj − bj

)2
· 2j+2

)
24: u← 0
25: for i = n/d− 1, . . . , 0 do
26: ti ← u
27: u← u + maski · 2i+2

28: end for
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29: t← Encoden/d,αd ((t0, t1, . . . , tn/d−1))
30: cx ← AddPlain(cx,−t) B remove the mask
31: cround4 ← AddPlain(cx,−b)
32: for i = n/d− 1, . . . , 0 do
33: ri ← Z∗p
34: maski ← {0, 1, . . . , p− 1}
35: end for
36: r← Encoden/d,αd ((r0, . . . , rn/d−1))
37: mask← Encoden/d,αd ((mask0, . . . , maskn/d−1))

38: cround4 ← MulPlain
(

cround4, r
)

39: B di = ri ·
(

ai − bi + 1 + ∑j>i

(
aj − bj

)2
· 2j+2

)
40: cround4 ← AddPlain

(
cround4, mask

)
Secure Decrypt cround4 for A

41: Round 5. (A’s turn, convert message to polynomial mod for rotation)
42: Derived di from secure decryption
43: cd ← EncSym((d0, 0, .., 0, d1, 0, . . . , 0, dn/d−1, 0, ..0), s)
44: B non-batch format, 1 message followed by d-1 zeros

Sends cd to B.
45: Round 6 (B’s turn, randomly rotate)
46: mask← (mask0, 0, . . . , 0, maski, 0, . . . , 0, maskn/d−1, 0, . . . , 0)
47: B put maski as the i · d-th coefficient
48: cd ← AddPlain(cd,−mask) B remove the mask
49: r ← {0, . . . , n/d− 1}

r ← r · d
50: cround6 ← MulPlain(cd, Xr)
51: Secure Decrypt cround6 for A
52: Round Final. (A’s turn, establish result), suppose mround6 = Dec

(
cround6, s

)
53:

(
mround6

0 , . . . , mround6
n

)
← mround6

54: δ← 1
55: for i = n/d− 1, . . . , 0 do
56: if mround6

i·d = 0 then
57: δ← 0
58: end if
59: end for
60: Establish δ

4.2.2. The Protocol for Comparing Pairs of Integers Simultaneously

The plaintext space has the best utilization when n = l, while n ≥ 1024 in most
practical use cases; however, we rarely need to compare such a large integer. We now
modify Protocol 4.2 to compare k pairs of n/k-bit integers simultaneously. For making a
differentiation, we called this modified version Protocol 4.3 in this write-up.

Assume Alice’s inputs are ai,j ∈ {0, 1} and Bob’s inputs are bi,j ∈ {0, 1} where
0 ≤ i < k, 0 ≤ j < n/k—our goal is to find the order relationships between ai = ∑j ai,j · 2j

and bi = ∑j bi,j · 2j, denoted by δi = (ai ≥ bi) ∈ {0, 1}. We can complete this task by
following almost the same steps in Table 6.

Protocol 4.3. (The Protocol for Comparing Pairs of Integers Simultaneously)
Setup. The same as Protocol 4.2.
2PC-1st. Alice computes xa1 = Encoden ((aij)0≤i<k, 0≤j<n/k). Bob computes

xb1 = Encoden((bij)0≤i<k,0≤j<n/k) and xr1 = Encoden(r1). They securely compute
xmask =xa1 +xb1 − 2·xa1 ·xb1 +xr1 for Alice.
2PC-2nd. Alice computes Decoden(xmask) to derive ((aij − bij)2 + (r1)ij)0≤i<k,0≤j<n/k.
Let xa2 = Encoden ((∑t>j(ait − bit)

2 + (r1)it)0≤i<k,0≤j<n/k). Bob computes
xb2 = Encoden ((∑t>j(r1)it)0≤i<k,0≤j<n/k), xr2 = Encoden(r2), and
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x′ = Encoden(r′). They securely compute
dmask = (xa1 + xa2 − xb1 − xb2 + Encoden((1)0≤i<k,0≤j<n/k)) · x′ + xr2 for Alice.
(Notice that (ai − bi)2 = ai ⊕ bi)
2PC-3rd. Similarly, Alice decodes dmask and derives (aij −bij + 1 + ∑t>j(ait ⊕ bit))·

(r′)ij + (r2)ij, for each 0 ≤ i < n/d. Let xa3 = Encodek ((∑0 ≤ j< n/k(dmask)ij· Xj)0≤i<k).
Bob computes xb3 = Encodek ((∑0≤j<n/k(r2)j· Xj)0≤i<k), xu = Encodek ((Xui)0≤i<k) They

securely compute d′ = (xa3 − xb3) · xu for Alice.
Finally, Alice derives d′ij from the 2PC-3rd. Let δi = 0 if there is some j, such that

d′ij = 0, and δi = 1 in other cases. Output (δi)0≤i<k.
Notice that the major difference between Protocols 4.2 and 4.3 is in the 2PC-3rd step.

We need to rotate (dij)0≤j<n/k by ui for each 0 ≤ i < k simultaneously, so we compute
the encoded version of (∑0≤j<n/k(d)ij·Xj)0≤i<k, and rotate it by multiplying the encoded
version of (Xui)0≤i<k. We summarize the detailed processing steps of Protocol 4.3 in Table 7.

Table 7. The Information Flow and Processing Steps of Protocol 4.3.

Protocol 4.3: Secure Comparison Protocol for k-pairs

Party: A B
Input:

(
aij

)
0≤i<k,0≤j<n/k

, s
(

bij

)
0≤i<k,0≤j<n/k

, pk

Output: (ai ≥ bi) ⊥
Round 1 (A’s turn)

1: a← Encoden,α
((

a0,0, a0,1, . . . , ak−1,n/k−1
))

2: ca ← EncSym(a, s)
3: Sends ca to B.

Round 2 (B’s turn, computes XoR)
4: b← Encoden,α

((
b0,0, b0,1, . . . , bk−1,n/k−1

))
5: cround2 ← MulPlain(ca,−2 · b) B

(
−2 · aij · bij

)
6: cround2 ← Add

(
cround2, ca

)
B
(

aij − 2 · aij · bij

)
7: cround2 ← AddPlain

(
cround2, b

)
B
(

aij − 2 · aij · bij + bij

)
8: for i = 0, 1, . . . , k− 1 do
9: for j = 0, 1, . . . , n/k− 1 do

10: maskij ← {0, 1, . . . , p− 1}
11: end for
12: end for
13: mask← Encoden,α

((
mask0,0, . . . , maskk−1,n/k−1

))
14: cround2 ← AddPlain

(
cround2, mask

)
15: Secure Decrypt cround2 for A

Round 3 (A’s turn, computes ∑t>j(ait − bit)
2 · 2t+2

16: Derived aij − 2 · aij · bij + bij + maskij from secure decryption
17: for i = 0, 1, . . . , k− 1 do
18: u← 0
19: for t = n/k− 1, . . . , 0 do
20: xit ← u + ait + 1
21: u← u + (ait − 2 · ait · bit + bit + maskit) · 2t+2

22: end for
23: end for
24: x← Encoden,α

((
x0,0, . . . , xk−1,n/k−1

))
25: cx ← EncSym(x, s)
26: Sends cx to B.
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27: Round 4 (B’s turn, compute rij ·
(

aij − bij + 1 + ∑t>j(ait − bit)
2 · 2t+2

)
28: u← 0
29: for i = 0, 1, . . . , k− 1 do
30: u← 0

31: for j = 0, 1, . . . , n/k− 1 do
32: tij ← u
33: u← u + maskij · 2j+2

34: end for
35: end for
36: t← Encoden/d,αd

((
t0,0, . . . , tk−1,n/k−1

))
37: cx ← AddPlain(cx,−t) B remove the mask
38: cround4 ← AddPlain(cx,−b)
39: for i = 0, 1, . . . , k− 1 do
40: for j = 0, 1, . . . , n/k− 1 do
41: maskij ← {0, 1, . . . , p− 1}
42: rij ← Z∗p
43: end for
44: end for
45: r← Encoden,α

((
r0,0, . . . , rk−1,n/k−1

))
46: mask← Encoden,α

((
mask0,0, . . . , maskk−1,n/k−1

))
47: cround4 ← MulPlain

(
cround4, r

)
48: B dij = rij ·

(
aij − bij + 1 + ∑t>j(ait − bit)

2 · 2t+2
)

49: cround4 ← AddPlain
(

cround4, mask
)

50: Secure Decrypt cround4 for A
51: Round 5. (A’s turn, convert message to polynomial mod for rotation)
52: Derived di from secure decryption
53: d← Encodek,αn/k

((
d0,0, . . . , dk−1,n/k−1

))
54: B k-batch of degree n/k− 1 polynomials
55: cd ← EncSym(d, s)

Sends cd to B.

Round 6 (B’s turn, randomly rotate)
57: mask← Encodek,αn/k

((
mask0,0, . . . , maskk−1,n/k−1

))
58: cd ← AddPlain(cd,−mask) B remove the mask
59: for i = 0, 1, . . . , k− 1 do
60: ri ← {0, 1, . . . , n/k− 1}
61: ei ← (0, . . . , 0, 1, 0, . . . , 0)
62: B length is n/k, only ri-th entry is 1
63: end for
64: e← Encodek,αn/k ((e0, e1 . . . , ek−1))

65: cround6 ← MulPlain(cd, e)
66: Secure Decrypt cround6 for A

Round Final. (A’s turn, establish result), suppose mround6 = Dec
(

cround6, s
)

67:
(

mround6
0,0 , . . . , mround6

k−1,n/k−1

)
← mround6

68: for i = 0, 1, . . . , k− 1 do
69: δi ← 1
70: for j = 0, 1, . . . , n/k− 1 do
71: if mround6

ij = 0 then
72: δi ← 0
73: end if
74: end for
75: end for
76: Establish δi
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5. Experiment Results
5.1. Encryption Schemes

Since the performance of an HE-based secure comparison protocol is strongly related
to which homomorphic encryption scheme it used, we examine the performances of Paillier,
standard-RSA, subgroup-RSA in [5], and subgroup-RSA in [7] in Table 8. Notice that Paillier
is used in the earlier version of DGK protocol [2], subgroup-RSA is used in the DGK [4]
and the CEK protocols. BFV scheme is used to build our comparison protocols. Notice that
the decryption of subgroup-RSA needs to implement a discrete logarithm on the plaintext
space, so the plaintext space needs to be very small (for a ciphertext c in subgroup-RSA, we
may decrypt c by computing m = (logg cS) · S−1 for some secret key S and public key g,
namely, cS = gmS. Since DGK protocol needs only to determine whether the message is
zero, Alice does not need to perform discrete logarithms to derive the direct value of m).

Table 8. Execution Time of Each One of the Benchmarked Encryption Schemes. (Runs ib i5-
9400f@4.0gHz with security level 128, unit ms).

Schemes Plaintext Space Enc Dec KeyGen Add MulPlain

Paillier Zp 22.98 7.756 1871 0.021 -
RSA Zp 0.079 2.216 1792 - 0.008

RSA [5] Z37 0.692 0.209 1038 0.002 -
RSA [7] Z2256 0.685 55.49 1325 0.002 -

BFV Z193/
(
X1024 + 1

)
0.459 0.055 0.360 0.002 0.065

BFV-opt Z193/
(
X1024 + 1

)
0.251 0.060 0.198 0.002 0.058

In [7], the authors claimed that if the plaintext space is bd for some small prime b, then
they can implement discrete logarithms effectively. However, the speed of decryption is
still much slower than that of the encryption without the aid of a sizeable pre-computed
table. In the experiment of CEK protocol, we exclude the decryption time since the discrete
logarithm is not necessary in their protocol.

We use the GMP library to implement the operations of big numbers. Although the
codes run on Golang (Reference code: https://github.com/howard-kuo/cek_protocol/
blob/master/rsaCek.go accessed on 18 February 2023), the performance would not be
very different from the codes written on C directly. Our claim comes from the fact that the
major computation cost lies in operations for evaluating big numbers. Furthermore, those
operations are implemented by GMP, which is an efficient c-base library. Moreover, we use
the Microsoft SEAL library in C++ to implement the BFV encryption scheme. Since the
main computational bottleneck of our protocols is it to draw the samples from a discrete
Gaussian distribution χ, we do some optimization on the sampler, as follows:

Since Prob {|χ| > 19} = 0 in the implementation of SEAL, we can store the commutative
density function at each point (i.e., CDF(x) = Prob {χ > x} for −19 ≤ x ≤ 19). We may draw
a sample from χ by the following function:

DiscreteGaussianSampler():
u← {0, 1, ..., 232 −1}·2−32

x = arg max{y ∈ {−19, ..., 19} | CDF(y) > u}
Return x
We denote the optimized BFV implementation as “BFV-opt” in Table 8.

5.2. Performance Analyses
5.2.1. Computational Cost

The execution time of the DGK protocol, CEK protocol, and our protocols are shown
in Table 9. Recall that DGK protocol uses RSA proposed in [5], CEK protocol uses RSA
proposed in [7], and our protocols use an optimized BFV scheme. We use 3072-bit cipher-
texts in DGK and CEK protocols (we use the same parameters and algorithms described
in [6], and the parameters of our protocol depend on the size of compared integers and

https://github.com/howard-kuo/cek_protocol/blob/master/rsaCek.go
https://github.com/howard-kuo/cek_protocol/blob/master/rsaCek.go
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the secure decryption protocol we used. As discussed in Chapter 3, Alice may learn other
information from the ciphertext generated by Bob. We suggest the reader uses two times
the bit length for the security level they claimed (i.e., log2 n = 6144)). As discussed in
Section 3.2, in the Secure Decryption portion, Protocol 3.1 needs to use a larger q to achieve
indistinguishability; nevertheless, Protocol 3.2 needs to assume further that Bob cannot
break the encryption system with some hint of the errors. As a result, Protocol 4.1 uses
n = 1024, log2q = 27 and n = 2048, log2q = 55, respectively. Protocol 4.3 uses n = 1024,
log2 q = 27 for 32-bit comparison; n = 2048, log2 q = 55 for 2048-bit comparison; n = 4096,
log2 q = 109 for 4096-bit comparison, respectively.

Table 9. The Execution Time of Each One of the Benchmarked Secure Comparison Protocols. (Runs ib
i5-9400f@4.0gHz with security level 128, unit ms, notice β = O(log log n), p(λ) is the time complexity
of subgroup-RSA).

Schemes Secure Decryption Round Complexity 32-Bit 2048-Bit 4096-Bit

Protocol 4.1 Protocol 3.2 4 Õ(λ · l) 7.496 479.7 966.6
Protocol 4.1 Protocol 3.1 2 Õ(λ · l) 15.45 1000 1996.6
Protocol 4.3 Protocol 3.2 8 Õ(λ + l) 1.686 4.246 -
Protocol 4.3 Protocol 3.1 6 Õ(λ + l) - - 12.06

DGK [10] Add Encryption Zero 2 Õ(p(λ) · l) 55.71 3488 6766
CEK [7] Add Encryption Zero 3~5 Õ

(
p(λ) · l · β−1) 28.16 1696 3471

It might sound weird when the ciphertext size, which is n · log2 q, grows quadratic
to n in the specific case in Table 9, but the execution time is not (cf. Figure 3). This is
because the main computational cost is spent on sampling pseudo-random numbers, and
the number of random numbers is linear to n.
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5.2.2. Communication Cost

Ciphertexts in the BFV scheme have size 2 · n · log2 q. In Protocol 4.1, we need
to send l + 1 ciphertext in total, and in Protocol 4.2, we need to send 6 ciphertexts. The
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DGK protocol needs to send 2 · l ciphertexts, and CEK protocols need to send about
2 · l · 8−1 ciphertexts (2 · l · 8−1 RSA ciphertexts and 2 ECC ciphertexts).

We examine their required communication costs and report the results in Tables 10 and 11,
respectively. Since the ciphertext size of the BFV scheme is much larger than that of the
RSA, RSA’s communication rate is more extensive than the CEK or DGK protocol when l is
small. On the other hand, Protocol 4.2 needs only constant-size ciphertexts, and it would
have a better communication rate than the others when l is large. For ease of comparison,
we also show the tendency in required communication rates of the two proposed protocols
in Figure 4.

Table 10. Communication Rate of Each One of the Secure Comparison Protocols with Security Level
128 (for short l, i.e., 0 ≤ l < 32).

Schemes Parameters Ciphertext Size (KB) Communication Cost (KB)

Protocol 4.1 n = 1024, log2 q = 27 6.75 6.75·(l+1)

Protocol 4.2 n = 1024, log2 q = 27 6.75 40.5

DGK [10] log2 N = 3072 0.375 0.65 · l
CEK [7] log2 N = 3072 0.375 0.08125 · l

Table 11. Communication Rates for Larger l (i.e., for l = 32, 2048, and 4096).

Schemes l = 32 (KB) l = 2048 (KB) l = 4096 (KB)

Protocol 4.1 222.75 13,830.75 27654.75

Protocol 4.2 40.5 165 652.4

DGK [10] 24 1536 3072

CEK [7] 3 196 384
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5.3. Remarks on Recently Published Related Works [22–25]

Badawi et al. [22] applied their vector operation-based multi-GPU Levelled-FHE to
implement the inference circuit of two CNNs to perform homomorphically image classifi-
cation on encrypted images from the MNIST and CIFAR 10 datasets. Their implementation
gained 1 to 3 orders of magnitude speed-up compared with the CPU implementation
on ordinary vector/polynomial operations. Further, Ref. [22] presented data parallelism
approaches and applied workload partitioning methods to implement a variant of the BFV
scheme on the NVIDIA K80 and P100 GPU clusters. Likewise, Ref. [23] worked toward
speeding up the NTT, INTT, and NTT-based polynomial multiplication operations on
various GPU platforms and reported that the encryption and the decryption operations of
the BFV scheme on Microsoft’s SEAL library could be more than 100 times faster than on its
Intel i9-7900X CPU counterpart. More positively, a single NTT operation for polynomials
of degree 32768 with 61-bit coefficients can reach the ten-microsecond range on Nvidia
GTX and Tesla series GPUs. These encouraging results give us confidence that with the aid
of GPU’s computing power, the applicability of our protocol will be primarily enhanced
(notice that our computing platform is Intel i5 CPU families only).

In our experiment, the execution time of a single BFV encryption of degree 32,768 is
longer than that of our secure comparison protocol (with degree 1024, security level 128).
Reducing the complexity of the target function and the ciphertext size is the core idea of our
protocol. In more detail, if n = 8192, q has 109 bits, experimentally, a single encryption time
cost of SEAL exceeds 10ms in our experimental settings. Under this circumstance, it would
be hard to construct a comparison protocol that needs less than 12 ms execution time. On
the other hand, 12 ms is the whole time needed for our 4096-bit protocol. This result comes
from the fact that, for the same given degree n, a matrix-based LWE encryption would be
slower than its polynomial counterpart because the respective time complexities are n2 and
n log n.

Specific to the encryption domain comparison, Ref. [24] designed an integer-and-
FHE-based private database query (PDQ) protocol supporting compound conditions with
equality and order comparisons, which scales efficiently for the length of input integers
by applying techniques from the finite field theory. According to [24], the comparison
algorithm needs about 25.259 s to compare 697 pairs of 64-bit integers using the BGV-
level FHE scheme with SIMD techniques at more than 138 bits of security. This yields
an amortized rate of just 36 ms per comparison. In contrast, Ref. [25] showed that FHE
schemes suitable for arithmetic circuits (e.g., BGV or BFV) have a similar performance as
FHE schemes for non-arithmetic circuits (such as the TFHE) in basic comparison tasks such
as less-than, maximum, and minimum operations. Ref. [25] reported that the execution of
the less-than function in the HElib library is up to 3 times faster than the prior work [24]
based on BGV/BFV schemes. In [21], comparing a pair of 64-bit integers, sorting 64 32-bit
integers, and finding the minimum of 64 32-bit integers can be completed in 11 milliseconds,
in 19 s, and in 9.5 s, respectively, on an average laptop without multi-threading. In contrast,
our comparison protocol can compare 64 pairs of 64-bit integers in 12.06 ms, which yields
an amortized cost of 0.188ms. An intuitive reason for better performance is that the degree
of our ciphertext is much smaller (n = 4096). On the other hand, we can only implement an
elementary target function in the encryption domain since the ciphertext is tiny, forcing our
protocol into a higher round of complexity (say, six rounds).

5.4. Summary

The computational cost of the proposed algorithms can be lower than that of the other
protocols in most cases, while the communicational cost is much higher. With the rapid
growth of internet speed, our protocol can be more practical than the others. Suppose
the users attempt to compare many pairs of integers securely. In that case, the method
introduced in Section 3.1 provides a solution to compare them securely with almost the
same execution time examined in Section 5.2, which has lower communication costs and
a faster execution speed than DGK and CEK protocols. Concrete execution times and
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speed-up ratios of various FHE operators have been reported above; however, those values
depend on specific parameters, target functions, hardware configurations, and software
implementation techniques adopted at the experiments.

Moreover, working with FHE also introduces significant engineering challenges in
practice. Different schemes offer varying performance tradeoffs, and optimal choices
are heavily application-dependent. In other words, judging the competing approaches’
superiority is only possible and fair with a standard testing environment and a common
target task.

6. Conclusions

Homomorphic encryption enables end-to-end data security by performing computa-
tions directly on ciphertexts without needing in-advance decryption. However, due to the
unavoidable ciphertext expansion and complicated error-controlling mechanisms, richness
in computational and storage resources play dominating roles in the success of applying a
homomorphic cryptosystem in real-world applications.

Comparison is a standard function required in many applications concerning orders
of involved items; consequently, its homomorphic evaluation has been the object of many
FHE-related works. Since inputs are encrypted, an HE-based comparison algorithm can-
not terminate, like its plaintext domain counterpart, whenever it finds the first difference
between the most significant bits. Comparison is a standard function required in many
applications concerning orders of involved items; consequently, its homomorphic eval-
uation has been the object of many FHE-related works. Since inputs are encrypted, an
HE-based comparison algorithm cannot terminate, like its plaintext domain counterpart,
whenever it finds the first difference between the most significant bits. As a result, HE-based
comparisons correspond to the worst-case complexity in the plain domain.

This work presents a fast, semi-honest, secure comparison protocol based on the BFV
encryption scheme. With its vector-like plaintext space and the aid of batching technique,
the number of required encryptions can be significantly reduced; each comparison needs
only six encryptions in our protocol. In other words, the proposed protocol can achieve
the time complexity for a given security parameter λ. As a result, 4096-bit integers can
be securely compared within 12.08 ms, which is much faster than the state-of-the-art
homomorphic encryption-based secure comparison protocol. Furthermore, we can compare
k pairs of bit integers with almost the same execution time as comparing bit integers and
achieve higher throughput regardless of the compared integer size.

As for our future work, shortly, we will conduct and examine the following research
topics to better the overall BFV scheme’s performance:

(i). For every 2PC protocol with some task f, we may decompose f into simple subtasks,
as we have addressed in Section IV, implying that those protocols can be sped up further
via BFV encryption.

(ii). The computational bottleneck of our protocols comes mainly from the execution
of random number sampling because the cryptographic hash function is much slower than
generating RLWE samples in the implementation of SEAL. We can generate pseudo-random
numbers by generating RLWE samples, accelerating the proposed protocol furthermore.

Notably, in machine learning, FHE has been used for tasks ranging from linear and
logistic regression to Encrypted Neural Network inference. For example, FHE may be
critical in running privacy-preserving ML-as-a-Service (MLasS) applications. Consequently,
there has been increasing interest in FHE-based secure computation solutions. This ten-
dency explains why Gartner [29] projected that “by 2025, at least 20% of companies will
have a budget for projects that include FHE.” Therefore, how to embed our fast, secure
comparison protocol to enhance appropriate MLasS applications will undoubtedly be one
of our future research topics.
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Appendix A. Algebraic Structures and Notations of the BFV Scheme

Appendix A.1. Quotient Ring

Basic objects in the BFV scheme are elements in the polynomial ringR = Z[X]/(Φm(X)),
where Φm(X) is the m -th cyclotomic polynomial, and denotesRt = R/tR for t ∈ N and
“/” as the ring quotient operator. We always treat an element in R or Rt as an integer
polynomial with a degree less than n. For example, given a ∈ R orRt we can assume

a = a0 + a1 · X + . . . + an−1 · Xn−1 + (Φm(X)) (A1)

and we will say ai the “i-th coefficient” of a.
The definitions in Table A1 can be extended to elements inRm orRm, t by operating

on each coefficient of them. For example, if a ∈ Rm, then

Table A1. Notations and Definitions of Mappings between Different Algebraic Structures.

πt : Z→ Zt defined by sending an integer to its residual class, say z 7→ z + tZ
[·]t : Zt → Z defined by sending z + tZ to the unique element in (z + tZ) ∩ (−t/2, t/2].
· : R→ Z defined by sending x to max{ z ∈ Z|z ≤ x}
· : R→ Z defined by sending x to x + 1/2
‖·‖∞ : Zn → Z is the infinity norm

‖a‖∞ = max
0≤i<n

ai (A2)

[a + t · R]t = ∑
0≤i<n

[ai]t · X
i (A3)

modulus operation can be defined as

a mod p =
[
πp(a)

]
p − p · 2−1 (A4)

Appendix A.2. Distribution and Sampling

For a distribution D, we will use x ← D to denote that “x is sampled from a distribu-
tion D”. For a finite set S, we will use x ← S to denote that “x is sampled uniformly from
a finite set S”. Notice that the symbol← is also used as an assignment operator, which can
be regarded as sampled from some degenerate distributions.

Appendix B. Detailed Proofs Associated with Section 2

Appendix B.1. Proof of Lemma 1 (Sufficient Condition for Correct Decryption)

Given ciphertext c = (c0, c1) ∈ R2
q, message m ∈ Rp, and e =

[
c0 + c1 · s− [m]p · ρ

]
q

as the corresponding error, then implies [c0 + c1 · s]q · ρ−1 ≡ [m]p mod p.

https://github.com/howard-kuo/bfv_dgk


Mathematics 2023, 11, 1227 26 of 28

Proof. By the definition of error, we may write

e + v · q = [c0 + c1 · s]q − [m]p · ρ (A5)

for some v ∈ Zn. Multiply both side with ρ−1, we obtain

e · ρ−1 + v · p = [c0 + c1 · s]q · ρ
−1 − [m]p (A6)

Since ‖[e]q‖∞
< ρ · 2−1, elements of e · ρ−1 are less than 1/2, so

v · p = [c0 + c1 · s]q · ρ
−1 − [m]p

and the result follows: ∣∣∣[c0 + c1 · s]q · ρ
−1
∣∣∣≡ [m]p (mod p) (A7)

�

Appendix B.2. Proofs of Claims 1 to 3

a. Poof of Claim 1 (Correctness of Additions)

By the definition of error, we assume c0 + c1 · s = e + [m]p · ρ and c
′
0 + c

′
1 · s =

e′ + [m′]p · ρ, so

[c0+ c
′
0 +

(
c1 + c

′
1

)
· s]q ≡ e + e′ +

(
[m]p + [m′]p

)
· ρ (mod q)

≡ e + e′ +
(
[m + m′]p + p · v

)
· ρ for some v ∈ R

≡ e + e′ +
(
[m + m′]p

)
· ρ + q · v

≡ e + e′ +
(
[m + m′]p

)
· ρ

(A8)

Thus, the error of Add(c, c′) is e + e′ mod q, and ‖e + e′‖∞ < ρ · 2−1 implies.
Dec (Add (c, c′), s) = m + m′ by Lemma 1

b. Proof of Claim 2 (Correctness of Addition between a Plaintext and a Ciphertext).

Since [c0 + m′ · ρ + c1 · s]q ≡ e +
(
[m]p + [m′]p

)
· ρ ≡ e +

(
[m + m′]p

)
· ρ, the error

of new ciphertext would be e, which can be correctly decrypted since original ciphertext
c can.

c. Proof of Claim 3 (Correctness of Multiplication of between a Plaintext and a Ciphertext)

Since [c0 + c1 · s]q ≡ e + [m]p · ρ, multiply both side with [m′]p and derive[
c0 · [m′]p + c1 · [m′]p · s

]
q
≡ e · [m′]p + [m]p · [m′]p · ρ

≡ e · [m′]p +
(
[m + m′]p + p · v

)
· ρ (mod q)

≡ e · [m′]p + [m + m′]p · ρ (mod q)

The error of new ciphertext is e · [m′]p, so ‖e · [m′]p‖∞
< ρ · 2−1 can ensure the correctness.

Appendix C. Detailed Proofs Associated with Section 3

Appendix C.1. Proof of Lemma 2 (Distinguishability of a uniform sample with little bias)

Suppose X ∼ {−T, . . . , T}. Any algorithm A : Z→ {0, 1} can be defined by x 7→ IS(x)
with

Is(x) =
{

1, for x ∈ S
0, for x /∈ S.

(A9)
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We can compute

Prob {A(X) = 1} = Prob {X ∈ S} = (2T)−1·|S
⋂

{−T,...,T}|, (A10)

and
Prob {A (X + e) = 1} = (2T) − 1 · |S

⋂
{−T + e,..., T + e}|. (A11)

Since |S ∩ {−T,..., T}| − |S ∩ {−T +e,..., T +e}| ≤ |e|, we have

|Prob{A(X) = 1} − Prob{A(X + e) = 1}| ≤ (2T) − 1 ·|e|. (A12)

Therefore, the advantage of the adversary is no more than (2T)−1 · |e|.

Appendix C.2. Proof of Claim 4 (The Security of Bob in Protocol 3.1)

We define our simulator by:
(i) Sample from proper distributions: r←Rq and u← {−T,...,T}n.
(ii) Output: (r · s + u + πq ([Dec (cresult, s)]p · ρ, −r).
Notice the ciphertext c′ in Protocol 3.1 can be computed by c′1, e′, and Dec (c′, s), so it

is sufficient to say that (c′1, e′, Dec (c′, s)) is indistinguishable to (r, u, Dec (cresult, s)). By
Corollary 1 and the correctness of Protocol 3.1, (c′b,1, e′b, Dec (c′b, s)) is indistinguishable
to (c′b,1, u, Dec (cb, s)) with an adversary less than ε. By the RLWE assumption, r is
indistinguishable from c′b,1, and we complete our proof.
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23. Özerk, Ö.; Elgezen, C.; Mert, A.C.; Öztürk, E.; Savaş, E. Efficient number theoretic transform implementation on GPU for
homomorphic encryption. J. Supercomput. 2022, 78, 2840–2872. [CrossRef]

24. Tan, B.H.M.; Lee, H.T.; Wang, H.; Ren, S.Q.; Khin, A.M.M. Efficient private comparison queries over encrypted databases using
fully homomorphic encryption with finite fields. In IEEE Transactions on Dependable and Secure Computing; IEEE: Piscataway, NJ,
USA, 2020; pp. 2861–2874.

25. Iliashenko, I.; Zucca, V. Faster homomorphic comparison operations for BGV and BFV. Proc. Priv. Enhancing Technol. 2021, 2021,
246–264. [CrossRef]

26. Driver, M. Emerging technologies: Homomorphic encryption for data sharing with privacy. Gartner Inc. Tech. Rep. Published: 23
April 2020. Available online: https://www.gartner.com/en/documents/3983970 (accessed on 12 February 2023).

27. Huo, M.; Wu, K.; Ye, Q. A note on lower digits extraction polynomial for bootstrapping. arXiv 2019, arXiv:1906.02867.
28. Lyubashevsky, V.; Peikert, C.; Regev, O. On ideal lattices and learning with errors over rings. In Proceedings of the Annual

International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 30 May–3 June
2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–23.

29. Microsoft SEAL (Release 3.4). Oct. 2019, Microsoft Research, Redmond, WA. Available online: https://github.com/Microsoft/
SEAL (accessed on 11 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://homomorphicencryption.org/wp-content/uploads/2018/11/HomomorphicEncryptionStandardv1.1.pdf
http://doi.org/10.1109/TPDS.2020.3021238
http://doi.org/10.1007/s11227-021-03980-5
http://doi.org/10.2478/popets-2021-0046
https://www.gartner.com/en/documents/3983970
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	Introduction 
	Homomorphic Encryption-Based Secure Comparison 
	Secure Decryption 

	The BFV Encryption Scheme 
	Security Assumption 
	Ciphertext and Algebra 
	Encryption and Decryption 
	Encryption and Decryption on Polynomial Algebra 
	The Correctness of Homomorphic Operations 

	Public Key Generation and Encryption 
	Time Complexity 
	Batching 

	Two-Party Computation and BFV Encryption 
	The Secure Decryption Protocol 
	Separate Decryption 
	Two Party Computation via BFV Scheme 

	A High Throughput, Semi-Honest, Secure Comparison Protocol 
	Improving DGK Secure Comparison Protocol via the BFV Scheme 
	High Throughput Comparison Protocol 
	The Single Pair Integer Comparison Protocol 
	The Protocol for Comparing Pairs of Integers Simultaneously 


	Experiment Results 
	Encryption Schemes 
	Performance Analyses 
	Computational Cost 
	Communication Cost 

	Remarks on Recently Published Related Works B22-mathematics-2180059,B23-mathematics-2180059,B24-mathematics-2180059,B25-mathematics-2180059 
	Summary 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

