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Abstract: Association rule mining (ARM) is one of the most important tasks in data mining. In recent
years, swarm intelligence algorithms have been effectively applied to ARM, and the main challenge
has been to achieve a balance between search efficiency and the quality of the mined rules. As a
novel swarm intelligence algorithm, the water wave optimization (WWO) algorithm has been widely
used for combinatorial optimization problems, with the disadvantage that it tends to fall into local
optimum solutions and converges slowly. In this paper, a novel hybrid ARM method based on WWO
with Levy flight (LWWO) is proposed. The proposed method improves the solution of WWO by
expanding the search space through Levy flight while effectively increasing the search speed. In
addition, this paper employs the hybrid strategy to enhance the diversity of the population in order to
obtain the global optimal solution. Moreover, the proposed ARM method does not generate frequent
items, unlike traditional algorithms (e.g., Apriori), thus reducing the computational overhead and
saving memory space, which increases its applicability in real-world business cases. Experiment
results show that the performance of the proposed hybrid algorithms is significantly better than that
of the WWO and LWWO in terms of quality and number of mined rules.

Keywords: data mining; association rule mining; water wave optimization algorithm; hybrid algo-
rithm; Levy flight

MSC: 68T09

1. Introduction

Significant amounts of data are generated every day in all industries, and the field of
data mining has expanded quickly in recent years. Data mining, also known as knowledge
discovery, aims to find valuable implicit information in large amounts of data [1]. Asso-
ciation rule mining (ARM) is a powerful data mining technique that has been used in a
variety of applications to uncover valuable patterns and relationships in large datasets [2].
ARM has long been in the spotlight as a fundamental strategy and is still used today in
a variety of applications including market basket analysis, medical diagnostics, network
intrusion detection, and other areas [3,4].

Frequent itemset mining (FIM), as a major phase in the traditional ARM algorithms,
mines all possible association rules by first mining all the frequent item sets. However,
the large number of possible association rules generated leads to expensive computational
overhead. For example, in a network intrusion detection system based on association rules,
extracting the features of network traffic and building a rule will be difficult if the network
data grow quickly, as FIM might not be able to effectively mine the association relationship
between features.

Traditional algorithms to resolve the problems of optimization need enormous compu-
tational efforts that are inclined to fail as the scale of the problem rises [5,6], which is time-
and space-consuming [7,8]. To overcome this issue, some swarm-intelligence-based FIM
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methods, such as ant colony optimization (ACO) [9], bee swarm optimization (BSO) [10],
bat algorithm (BA) [11,12], cuckoo search (CS) [13], penguin search optimization algorithm
(PeSOA) [14], and particle swarm optimization (PSO) [15], have been utilized for ARM.
From the perspective of runtime performance, these are far more effective, but the quality
of the solutions still needs to be improved.

The water wave optimization (WWO) algorithm is a promising swarm intelligence
algorithm that has gained attention from researchers because of its impressive performance
in solving optimization problems. It has several advantages compared with other swarm
intelligence algorithms, such as fewer parameters, high computational efficiency, and
easy implementation. Zheng [16] first proposed the WWO algorithm based on shallow
water wave models. As a novel algorithm, WWO has a broad development prospect in
optimization problems and engineering applications [17], such as the traveling salesman
problem and high-speed rail dispatching [18,19]. Zheng et al. [20] proposed a systematic
approach to adapting WWO to specific heuristic algorithms for various combinatorial
optimization problems. The proposed approach tested the flow-shop scheduling problem,
and the results demonstrated that it is competitive. Yan et al. [21] proposed an enhanced
WWO based on the elite opposition-based learning strategy and the simplex method
(ESWWO), and the experimental results demonstrated that ESWWO is a practical and useful
approach for path planning and function optimization problems. Given the effectiveness of
WWO in engineering scheduling problems and path optimization problems, in this paper, it
is employed to improve the performance of the primary ARM algorithm. However, WWO
tends to get stuck in local optima and converge slowly when there are many transaction
items in the datasets. To address this issue, an improved WWO with Levy flight (LWWO)
is proposed to achieve better solutions in the global search process.

The wave in WWO makes probabilistic decisions based on the search length of the
water wave in the current dimension when generating a feasible solution. The probability
distribution used to select the next feasible solution is crucial when solving a locally optimal
problem [22,23]. Moreover, the levy distribution has a heavy tail feature, which means
that it has a thicker tail than other distributions [24–26]. Therefore, in the levy distribution,
the tails have a higher probability of being selected, which gives a variety of solutions
for LWWO. Additionally, expanding the variety of solutions increases the likelihood of
discovering the optimal solution. Levy flight strategy has been shown to be successful in a
variety of swarm intelligence algorithms, such as PSO [27–29], artificial bee colony (ABC)
algorithm [30], CS algorithm [31,32], and so on.

To further improve the performance of swarm intelligence, scholars have conducted a
lot of research on the hybrid strategy and achieved good results [33,34]. In addition, there
are successful cases to prove that WWO has good performance when hybridizing with
other algorithms. Rekha et al. [35] designed the water moth search algorithm (WMSA)
for training a deep recurrent neural network to detect malicious network activities by
combining WWO and moth search optimization (MSO). Zhang et al. [36] proposed an
improved sine cosine WWO algorithm (SCWWO), which parallels the sine cosine algorithm
(SCA) and WWO in the wave propagation and breaking phases. Experimental results
demonstrate that SCWWO significantly improves convergence speed and computational
accuracy. In this paper, a novel hybrid strategy on LWWO is proposed to obtain better
performance. The basic idea of the hybrid strategy is to combine the characteristics of
different algorithms. During the iterative update of the population, the algorithms with the
appropriate characteristics are selected according to the different needs of the pre- and post-
iteration periods. In this study, seeking appropriate algorithms to combine with LWWO is
important to further improve the global search capability of water waves. In recent years,
scholars have applied various forms of swarm intelligence to ARM and achieved good
performance. Zhou et al. [37] applied ACO to solve the sequential rule mining problem,
and interesting temporal association rules were extracted. Khan et al. [38] applied the ARM
technique to protein classification, which combines the ARM and supervised classification
mechanisms using ACO. According to experimental findings, the classifier performed
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well by identifying the most precise and brief rules. Heraguemi et al. [39,40] proposed an
algorithm based on BA for ARM, and the proposed algorithm performed better than the
FP-growth algorithm in terms of computation speed and memory usage. Afshari et al. [41]
proposed an efficient approach that benefits from the CS algorithm for hiding sensitive
association rules. Based on the effective application of the above algorithms on ARM, in
this paper, LWWO is hybridized with the ACO, BA, and CS, respectively.

This paper proposes a novel LWWO-based ARM method with a hybrid strategy for
discovering hidden relationships between items in datasets. The proposed method not
only fuses the advantages of different algorithms but also facilitates a balance between the
exploration and exploitation capabilities of WWO, which allows the algorithm to obtain
the global optimal solution to the maximum extent and improve the quality of the mined
association rules. The main contributions of this paper are summarized as follows:

(1) Levy flight is used in the WWO algorithm’s location update process to improve the
variety of solutions and prevent it from being stuck on the local optimal solution.

(2) A hybrid strategy is proposed to help the algorithm balance exploration and ex-
ploitation. A hybrid algorithm with greater global search capability was obtained by
hybridizing ACO, BA, and CS with LWWO, respectively.

(3) The proposed hybrid LWWO–ARM method generates rules directly. Different from
traditional ARM algorithms, the proposed method does not generate frequent item
sets, reducing the computational overhead of the algorithm, which improves its
applicability in practical cases.

The proposed hybrid LWWO–ARM method is tested on six datasets of different sizes
and dimensions, which exhibits significantly better performance than primary WWO in
terms of the number and quality of rules.

2. Theory Background
2.1. Association Rule Mining

ARM was first proposed by Agrawal as an important research task in data mining,
and is also known as the market-basket problem: In a set of items and sales records, which
include information about transactions related to the item, association rules are mined
to obtain important relationships between the items. In summary, ARM aims to extract
relationships between features of different elements [42]. Similar to functional dependency
(FD), ARM expresses important relationships between database attributes. For example,
with 100% confidence, an association rule is a constant conditional FD. Many studies
have shown that ARM techniques can significantly accelerate the general FD discovery
approaches [43,44].

Association rule analysis has been widely used in various industries. It can extract
relevant information from complex and large amounts of data, which has been used in
the financial industry to predict customer needs and provide more suitable product rec-
ommendations [45]. By mining the information data of the enterprise, it can predict the
sales situation of the enterprise and provide a more specific development plan for the
development of the enterprise. On online e-commerce platforms, intelligent recommen-
dations can be made based on the correlation information of users’ browsing behavior,
and the correlation between different products can be studied to improve the sales of
products. Moreover, in the medical field, some researchers use ARM for the identification
of cancer-related genes [46].

Association rules provide an expression ( A→ B ) to present the correlation between
features, indicating that if event A has occurred, then event B is also likely to occur [47].
In association rules, there are various indicators to evaluate their quality. The proposed
hybrid algorithms based on LWWO consider two standards: support and confidence.
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(1) Support

Support is one of the criteria for assessing the quality of a rule; it is a measure of how
often an item or a set of items appear in a dataset. The value of support can be calculated
using Equation (1):

Sup(A→ B) =
P(A ∪ B)
|N| (1)

where P(A ∪ B) is the number of transitions that contain both A and B and |N| is the
number of all transactions in the database.

(2) Confidence

Confidence is also a criterion for the quality of association rules; it is a measure of
how likely an item or a set of items are to appear together in a transaction. The value of
confidence can be calculated using Equation (2):

Con f (A→ B) =
P(A ∪ B)

P(A)
(2)

where P(A) is the number of transactions that only contain A.

2.2. Brief Introduction to WWO

WWO is a powerful algorithm that can be used to solve a variety of optimization
problems. It is based on the principles of shallow water wave motion, which involves three
operations: propagation, wave breaking, and refraction. WWO is computationally efficient
and is capable of finding high-quality solutions.

(1) Propagation.

The process of propagation can be seen as moving from deep water to shallow water,
and the propagated solution is updated Xd

′ according to Equation (3):

Xd
′ = Xd + rand[−1,1] · λLd, d = 1, 2, . . . , n (3)

where rand[−1,1] is a uniformly distributed random number with mean zero and standard
deviation one, and Ld is the length of the d th dimension of the search space. If the
updated location Xd

′ exceeds the search range, it is randomly reset to a location within the
search range.

If f (x′) > f (x), Xd
′ replaces Xd in the population, and its height is reset to hmax;

Otherwise, the height of x is decreased by one and x is retained.
After each generation update, the wavelength λ of each wave x is calculated as in

Equation (4):
λ = λα−( f (x)− fmin+ε)/( fmax− fmin+ε) (4)

where fmax is the maximum fitness value and fmin is the minimum fitness value in the
current population, α is the wavelength reduction factor, and ε is a very small constant to
avoid division-by-zero.

(2) Refraction.

When the water wave x propagates many times without improvement, its wave height
decreases to h = 0. Refraction is performed on it as Equation (5) to avoid search stagnation:

Xd
′ = xd

∗ + N(
xd
∗ + xd

2
,
∣∣∣∣ xd
∗ − xd

2

∣∣∣∣), d = 1, 2, . . . , n (5)

where xd
∗ denotes the current optimal solution and N(µ, σ2) denotes the Gaussian random

number with mean µ and variance σ2.
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Afterwards, the wave height of Xd
′ is reset to hmax, and its wavelength is updated by

Equation (6):

λnew = λ
f (x)
f (x′)

(6)

(3) Breaking.

Once the WWO algorithm searches for a new optimal water wave xd
∗, then the wave

breaking operation is performed as Equation (7):

Xd
′ = xd

∗ + N(0, 1) · βLd, d = 1, 2, . . . , k (7)

where β is the wave breaking parameter. Additionally, N(0, 1) is a function that generates
a random number with a Gaussian distribution that has a mean of zero and a standard
deviation of one. If the wave Xd

′ is better than xd
∗, Xd

′ replaces xd
∗ in the population.

2.3. Brief View of Levy Flight

Levy flight refers to a random walk with a heavy-tailed probability distribution of step
lengths, which means that there is a high probability of a large change in position during
the random walk [48–50]. Abundant studies have shown that the individual behavior of
many animals in nature is well-represented by the characteristics of Levy flight. The essence
of Levy flight is a method to randomize the step length to simulate flight. Levy flight is a
method to represent the levy distribution in random steps, as shown in Equation (8):

Levy(s) ∼ |s|−1−β, 0 < β ≤ 2 (8)

where s is the step length of Levy flight, it can be calculated according to Equations (9) and (10):

s =
µ

|v|1/β
, µ ∼ N(0, σ2

µ), v ∼ N(0, σ2
v ) (9)

σµ =

{
Γ(1 + β) · sin(πβ/2)

Γ[(1 + β)/2] · β · 2(β−1)/2

} 1
β

, σv = 1 (10)

where the parameters β = 1.5, µ, and ν are both normal distributions and Γ is the standard
gamma function.

3. Proposed Approach
3.1. Integrating Levy Flight with WWO

The primary WWO algorithm can deal with low-dimensional unimodal optimization
problems with mathematical functions simply and efficiently. However, when the same
method is applied to high-dimensional complex optimization problems, the solutions
obtained by traditional WWO are not very satisfactory and the computation time is long.
To improve the global search and local exploration capabilities of WWO, Levy flight is
integrated into the location update process of the algorithm. Levy flight maximizes the
diversity of the search space, which ensures that the algorithm updates the water wave
positions efficiently, helping the WWO to achieve better search results. Therefore, the WWO
position update formula is optimized and can be expressed by Equation (11):

x′(d) = x(d) + Levy · λL(d) (11)

In brief, the pseudo-code of the LWWO is described in Algorithm 1.
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Algorithm 1: Pseudo-Code of LWWO

Input: population (P) and maximum number of iterations (T);
Output: Best solution x∗

1: Randomly Initialize a population P of n waves and the parameters (α, β, λ)
2: While stop criterion is not satisfied do
3: for each x ∈ P do
4: propagate x to a new x′ using Equation (3)
5: if f (x′) > f (x) then
6: if f (x′) > f (x∗) then
7: Break x′ using Equation (11)
8: Update x∗ with x′

9: Replace x with x′

10: else
11: x.h = x.h− 1
12: if x.h = 0 then
13: Refract x to a new x′ using Equations (5) and (6)
14: Update the wavelengths using Equation (4)
15: Return x∗

3.2. The Hybrid Strategy for LWWO

To prevent the algorithm from falling into a local optimum to the greatest extent,
it is necessary to apply a method that can explore the entire search space and exploit
local regions. An effective mixture of different algorithms takes advantage of different
search strategies to balance exploration and exploitation. A hybrid strategy is proposed
to improve the global optimization capability of LWWO. ACO, BA, and CS were selected
for hybridization with LWWO because they have a strong exploratory capability and
have been proven to perform well on ARM in previous studies. Then, hybrid algorithms
LWWO–ACO, LWWO–BA, and LWWO–CS were applied to ARM.

In this study, the proposed method comprises four stages: data pre-processing, hybrid
algorithms for ARM, rule evaluation, and generation of association rule sets. The overall
flow of the hybrid algorithm for ARM is shown in Figure 1. The process of selecting the
optimal solution for the hybrid algorithm is illustrated in the dashed box, using LWWO–CS
as an example. The proposed hybrid algorithm obtains the current optimal solution by
comparing the values of the fitness functions of LWWO and CS.
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In this paper, we combine the strengths of multiple algorithms to compensate for the
shortcomings of the primary WWO, such as slow convergence speed and weak ability to
jump out of the local optimum. In the whole process, the number of populations is the
same for each algorithm, and the total number of iterations is the sum of the iterations of
two algorithms. When the iterations of LWWO are complete, the current population is
retained and used as the initial population for the next stage.

In general, swarm intelligence algorithms converge slowly during the population
initialization phase. Therefore, at the beginning of the iteration, it is advisable to choose an
algorithm with good convergence and strong search capabilities to approach the optimal
solution. In the middle and late stages of the iteration, individuals of the population tend
to cluster around local optimal solutions; thus, algorithms with greater exploratory power
are needed.

As WWO is relatively slow to converge in the early stages, the ACO algorithm, which
has a good convergence and search capabilities, is chosen to be mixed with it. In the
later stage of the iteration, since WWO is weak in jumping out of the local optimum, it is
suggested to combine with an algorithm with a stronger ability to jump out of the local
optimum, such as the BA and the CS algorithms, which can further search the solution
space to find other possible optimal solutions.

The data structure of the proposed algorithm is HashSet, which limits the storage
of duplicate elements, making it well-suited for filtering duplicate association rules and
storing the individuals in the population that meet the requirements. At the same time,
the proposed method uses HashMap to store the rules, their corresponding support and
confidence, which are stored in memory as key-value pairs. The proposed hybrid algorithm
based on LWWO pseudo-code is provided in Algorithm 2.

Algorithm 2: Pseudo-Code of the proposed hybrid algorithm based on LWWO

Input: population and maximum number of iterations, datasets;
Output: rules stored in HashSet, the support and confidence stored in HashMap to an Excel table
1: Scan the datasets and count the number of attribute items
2: Convert the transactions in the datasets into a 0-1 matrix
3: Randomly Initialize the population and the parameters of algorithm A
4: Iterations = T; T = T1 + T2; t = 1
5: While t < T1 do
6: for each individual in the population do
7: Compute the fitness values for individuals in the population
8: Update the individuals in the population by location update formula of algorithm A
9: Binarize the updated individuals using sigmoid activation function using Equation (13)
10: Evaluate individuals in the population, deposit the individuals that meet the rules in
HashSet, deposit the corresponding support and confidence in HashMap
11: end for
12: t = t + 1
13: end while
14: Use the population after algorithm A iterations as the initial population of algorithm B
15: Initialize the parameters for algorithm B;
16: while t < T2 do
17: for each individual in the population do
18: Compute the fitness values for individuals in the population
19: Update the individuals in the population by location update formula of algorithm B
20: Binarize the updated individuals using sigmoid activation function using Equation
(13).
21: Evaluate individuals in the population, deposit the individuals that meet the rules in
HashSet, deposit the corresponding support and confidence in HashMap
22: end for
23: t = t + 1
24: end while
25: Count the execution time of hybrid algorithm and the number of rules searched
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3.3. The Hybrid Algorithms for Association Rule Mining

The ARM process can be summarized as follows: First, a mapping needs to be created
between the records in the dataset; in other words, for existing data records, relationships
between attributes are revealed by association rules.

Figure 2 illustrates the entire operation of the hybrid algorithm based on the LWWO
generation rules. In the process, the data are first converted into binary format, and then
candidate solutions are encoded as individuals in the population. It is important to define
a suitable fitness function to assess the quality of each individual. Then, a hybrid algorithm
is used to mine the data for association rules and continues the search process until the
iteration is complete. Finally, when the evolution of the individuals is complete, the hybrid
algorithm outputs strong association rules.
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3.4. Rule Encoding

In swarm intelligence, each individual in the population represents a possible solution
in the solution space. Aiming at the problem of ARM, each individual represents a possible
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rule. By encoding them, each solution is transformed into a rule. For the algorithms
mentioned in this paper, binary encoding is used to encode the raw data. Binary encoding
means that the records in a dataset are transformed into a zero–one matrix and all data
records are stored in zero or one format, which makes it easy to read the data records and
also increases the speed of calculation. The conversion method is shown in Figure 3. For an
attribute item present in a transaction, the corresponding position is set to one. Otherwise,
it is set to zero.
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There are two approaches to encoding association rules: in the Michigan approach, a
rule represents a solution, while in the Pittsburgh approach, it uses a set of rules to represent
a solution. Considering that each individual represents a rule, for the problem of how
to distinguish the antecedent from the latter, the proposed algorithm uses the Michigan
method, which consists of two attribute terms that jointly represent the transaction terms
in a rule; each rule consists of a rule antecedent and a rule consequent.

As an example, the rules generated from the transaction in Figure 3 are encoded as
shown in Table 1, where each attribute item consists of two digits, the first digit indicating
whether the attribute is included in the rule, and the second digit indicating whether the
attribute is the antecedent of the rule or the consequence of the rule. For example, if I1
is coded as 1–1, it means that the generated rule has the attribute item I1, and I1 is in the
antecedent of the rule. Thus, this individual can be decoded as a rule I1 → I2 .

Table 1. Randomly generated Michigan-coded individuals.

I1 I2 I3 I4 I5

1 1 1 0 0 1 0 0 0 1

After the positional update of population individuals, the code of population individ-
uals is longer coded zero–one, so it is necessary to recode the updated individuals. The
updated equation is as in Equation (12):

x(t)′′i =

{
1 r3 < Sig(x(t)′i)
0 r3 ≥ Sig(x(t)′i)

(12)

where r3 is a random number in the range between zero and one, and Sig(x) is the sigmoid
function, as shown in Equation (13):

Sig(x) =
1

1 + e−x (13)

3.5. The Fitness Function

Constructing a suitable fitness function is a key step in solving optimization problems
and is used to evaluate the quality of the solution. Specifically applied to ARM, support
and confidence are important criteria for evaluating whether a rule is valid or not.
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Support indicates the probability that all data items in a rule will appear in the dataset
at the same time and reflects the level of support for a rule. Confidence reflects the feasibility
of a rule. They are used to determine the importance and validity of a rule. We consider
combining support and confidence to define the required fitness function. The fitness
function is formed as in Equation (14):

f itnessi = α× Supporti + β× Con f idencei (14)

where Supporti is the support for randomly generated rules, Con f idencei is its confidence,
and α and β determine the weight of support and confidence in the iterative process,
respectively. α and β are all in the range (zero, one), and α + β = 1. If α is set to zero, only
the influence of confidence on the rules is considered, and rules with a weak association
between the antecedent and the consequent may be mined. If β is set to zero, only the
influence of the support on the rules is considered, and rules with very low accuracy may
be mined, ignoring rare rules. Considering appropriate weights can balance support and
confidence, which has a good effect on mining strong association rules.

In addition, whether a rule is determined to be a strong association rule requires con-
sideration of minimum support and minimum confidence. Finally, whether an individual
can be retained as a strong association rule is calculated by Equation (15):

fi =
Supporti + Con f idencei
Min_Sup + Min_Con f

(15)

where Min_Sup and Min_Con f are the minimum support and the minimum confidence
defined by the user, respectively. If fi < 1, it means that the rule represented by the
individual is not strongly associated and should be discarded. Otherwise, it can be retained
as a strong association rule, and the rule will be written to the output file.

4. Experimental Results and Discussion

For the purpose of validating the performance of the proposed method, the correspond-
ing computational experiments for hybrid algorithms, WWO, and LWWO implemented
on ARM were conducted. Each algorithm was run 30 times on different datasets, and the
average results were recorded. All algorithms were written in Java and executed on an
Intel Core i7 machine with 16 GB of memory, running on Windows 10. The datasets and
parameter settings are explained in detail in the following sections.

4.1. Datasets

The datasets were downloaded from the “LUCS-KDD Discretised/Normalised”
database. To test the performance of the algorithms applied on ARM on datasets of
different sizes and dimensions, six different datasets were selected for experiments to com-
pare the performance of the five algorithms (WWO, LWWO, LWWO–ACO, LWWO–BA,
LWWO–CS). The information of the datasets is shown in Table 2; these data were pre-
processed by discretization and dimension reduction and then used in the experiments.

Table 2. Dataset descriptions.

Dataset Rows Columns

Iris 150 19
Heart 303 52
Ecoli 336 34

Breast 699 20
Flare 1389 39
Led7 3200 24
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4.2. Parameters Settings

As for ARM, the quality of a rule is usually determined by its support and confidence.
Through the analysis in Section 3.5, the proposed method uses Equation (14) as the fitness
function of the proposed algorithm. The weight of support and confidence jointly determine
the direction of population convergence and the search target. We tested the performance of
different parameter combinations on a shopping basket dataset. As shown in Table 3, when
the support weight (α) is 0.7 and the confidence weight (β) is 0.3, most algorithms perform a
relatively large number of association rules and a good quality of the mined rules. Therefore,
to ensure the fairness of the experiment, the experiment had the following settings:

• 500 for the total number of iterations (T);
• 60 for population size;
• 0.7 for support weight (α);
• 0.3 for confidence weight (β);
• 0.1 for the minimum support (Min_Sup);
• 0.5 for the minimum confidence (Min_Con f ).

Table 3. Different weight of support and confidence tests.

Support Weight (α) Confidence Weight (β) Evaluation Indicators ACO BA CS WWO LWWO

0.1 0.9
Rule_num 166 1671 1356 775 1665
Avg_conf 0.9569 0.9497 0.8505 0.9635 0.9497

0.2 0.8
Rule_num 487 1331 736 619 1319
Avg_conf 0.9852 0.9329 0.9431 0.9557 0.9329

0.3 0.7
Rule_num 387 1573 1672 733 1531
Avg_conf 0.9564 0.9494 0.9255 0.9449 0.9494

0.4 0.6
Rule_num 214 1834 868 743 1743
Avg_conf 0.8941 0.9246 0.9506 0.9349 0.9246

0.5 0.5
Rule_num 149 1633 1702 822 1621
Avg_conf 0.9646 0.9376 0.9583 0.9529 0.9376

0.6 0.4
Rule_num 234 1539 2266 722 1712
Avg_conf 0.9529 0.9364 0.9167 0.9250 0.9364

0.7 0.3
Rule_num 470 1833 1795 876 1867
Avg_conf 0.9694 0.9363 0.8562 0.9481 0.9363

0.8 0.2
Rule_num 190 1382 653 786 1368
Avg_conf 0.9558 0.9133 0.8365 0.9675 0.9133

0.9 0.1
Rule_num 229 1288 451 775 1257
Avg_conf 0.8904 0.8886 0.9109 0.9635 0.8886

4.3. Evaluation Standard

It is insufficient to use only the number of rules mined as the evaluation standard.
Consequently, the quality of the rules obtained should also be used as one of the criteria for
determining the efficacy of the algorithms. This paper uses the average confidence and the
average support of the rules mined as a supplementary evaluation criterion, to observe the
quality of the rules mined by the algorithm. In summary, it was finally determined that
the performance of the algorithm was evaluated from four aspects: average mining time
(avg_time), average number of rules mined (rule_nums), average confidence (avg_conf),
and average support (avg_sup).

4.4. Performance Comparison

Since the Led7 dataset contains the largest number of records, it was used as a sample
to count the execution time of each algorithm for different numbers of records, and the
results are shown in Table 4 and Figure 4. Overall, LWWO had the shortest execution time,
with a reduction of 44.06–51.08% over WWO. This indicates that the Levy flight strategy
was effective in improving the search speed of WWO. The time taken by LWWO–CS
was closest to that of WWO, while LWWO–BA and LWWO–ACO took more time than
WWO. Compared with WWO, when the number of records was 1600, LWWO–ACO and
LWWO–BA took 41.27% and 32.82% more time, respectively, and LWWO–CS took only
12.00% more time; when the number of records was 3200, LWWO–ACO and LWWO–BA
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took 26.33% and 19.66% more time, respectively, while LWWO–CS took only 7.58% more
time. This indicates that LWWO–CS has an advantage over the other two hybrid algorithms
in terms of execution time.

Table 4. Running time of each algorithm with different data volume (ms).

Number of Records WWO LWWO LWWO–ACO LWWO–BA LWWO–CS

400 331 174 418 382 342
800 552 281 767 702 629

1200 791 387 1136 1079 923
1600 1042 552 1472 1384 1167
2000 1271 711 1837 1672 1389
2400 1498 834 2092 1952 1661
2800 1809 976 2388 2218 1937
3200 2085 1137 2634 2495 2243
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4.5. Comprehensive Evaluation

In this section, the average execution time of each algorithm, the average number of
rules mined, the average confidence, and the average support are tested on six benchmark
datasets of varying dimensions and sizes, and the detailed statistics are shown in Table 5.

Figure 5 shows a comparison of the average execution times of the five algorithms on
different datasets. It can be seen that the execution time of the algorithms increased on the
dataset with a higher number of transactions. The Heart dataset had a similar number of
transaction records as the Ecoli dataset, but it had a higher dimensionality; the algorithms
had a longer average execution time on the Heart dataset. On all datasets, the execution
time of the LWWO was 32.28–55.67% shorter than that of the primary WWO. All three
hybrid algorithms showed a slight increase in execution time compared with primary
WWO. LWWO–ACO took the longest time and LWWO–CS showed some advantages in
terms of time consumption.
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Table 5. Detailed data of each algorithm on different datasets.

Dataset Algorithm Time(ms) Num Sup Conf Fitness

Iris

WWO 163 39 0.128 0.804 0.601
LWWO 78 53 0.159 0.833 0.631

LWWO–ACO 236 97 0.252 0.846 0.668
LWWO–BA 229 272 0.248 0.867 0.681
LWWO–CS 193 263 0.304 0.856 0.690

Heart

WWO 381 81 0.188 0.722 0.562
LWWO 258 113 0.217 0.756 0.594

LWWO–ACO 692 168 0.226 0.794 0.624
LWWO–BA 674 334 0.224 0.803 0.629
LWWO–CS 564 242 0.235 0.824 0.647

Ecoli

WWO 194 124 0.303 0.792 0.645
LWWO 86 173 0.325 0.799 0.657

LWWO–ACO 256 272 0.332 0.816 0.671
LWWO–BA 237 513 0.336 0.815 0.671
LWWO–CS 201 371 0.339 0.826 0.680

Breast

WWO 586 65 0.307 0.797 0.650
LWWO 323 76 0.332 0.806 0.664

LWWO–ACO 769 127 0.346 0.818 0.676
LWWO–BA 756 391 0.365 0.823 0.686
LWWO–CS 622 376 0.359 0.819 0.681

Flare

WWO 822 252 0.127 0.827 0.617
LWWO 484 364 0.156 0.831 0.629

LWWO–ACO 1336 619 0.172 0.863 0.656
LWWO–BA 1261 1099 0.180 0.904 0.687
LWWO–CS 1056 781 0.193 0.930 0.709

Led7

WWO 2085 155 0.151 0.786 0.596
LWWO 1137 179 0.168 0.837 0.636

LWWO–ACO 2634 271 0.197 0.852 0.656
LWWO–BA 2495 938 0.224 0.851 0.663
LWWO–CS 2143 896 0.286 0.868 0.693

The bolded numbers in the table are the optimal values for that group of experiments.
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Figure 6 shows the comparison of time consumption and the number of rules required
by each algorithm on different datasets. Across all datasets, the number of rules mined
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by LWWO was 15.48–44.44% more than that of WWO, which shows that Levy flight can
effectively increase the diversity of solutions. The number of rules mined by LWWO–ACO
was 1.75–2.48 times that of WWO, and the time-consumption increased by 26.33–81.63%.
The number of rules mined by LWWO–BA was 4.12–6.97 times that of WWO, and the
time-consumption increased by 19.66–76.90%. The number of rules mined by LWWO–CS
was 2.99–6.74 times that of WWO, and the time-consuming increased by 2.78–48.03%. It
shows that the proposed hybrid algorithms have a significant increase in the number
of association rules mined compared with WWO, with LWWO–BA showing the largest
improvement. This indicates that the proposed hybrid algorithms are able to effectively
increase the diversity of solutions and have a strong global search capability. Furthermore,
the time-consumption of the hybrid algorithms is increased by a reasonable degree.
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Figure 7 shows the comparison of the average support of the algorithms. On the six
datasets, the improved algorithm had a significantly higher average support compared
with WWO. Specifically, the support of LWWO–ACO ranged from 0.172 to 0.346, that of
LWWO–BA from 0.180 to 0.365, that of LWWO–CS from 0.193 to 0.359, that of WWO from
0.127 to 0.307, and that of LWWO from 0.156 to 0.332. The average support of all the hybrid
algorithms was higher than that of WWO and LWWO, with a more obvious advantage on
the Iris and Led7 datasets.
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Figure 8 shows a comparison of the average confidence of the algorithms on the six
datasets. It indicates that the hybrid algorithms slightly improved the confidence of the
association rules mined. Compared with WWO, the average confidence of LWWO–PSO
improved by 2.63–9.97%, the average confidence of LWWO–BA improved by 2.90–11.22%,
and the average confidence of LWWO–CS improved by 2.76–14.13%. It indicates that the
hybrid algorithms also had slightly improved confidence in the association rules, with
LWWO–CS performing the best.
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Figure 9 shows a comparison of the average fitness for the five algorithms. On all
datasets, the average fitness of LWWO–ACO improved by 3.95–11.08%, that of LWWO–BA
by 4.03–13.32%, and that of LWWO–CS by 4.77–16.44% compared with WWO. Com-
pared with LWWO, the average fitness of LWWO–ACO improved by 1.81–5.86%, that of
LWWO–BA by 2.13–9.22%, and that of LWWO–CS by 2.56–12.72%. It indicates that the
quality of the association rules mined by the three hybrid algorithms improved, with a
more significant advantage on the Flare dataset; LWWO–CS had the best performance.
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By comparing the performance of the algorithms on different datasets through the
above graphs, it can be inferred that the proposed hybrid algorithm can obtain strong
association rules with higher support and confidence. In addition, LWWO–BA obtained
the highest number of rules on all datasets. The best performance on all datasets was
LWWO–CS, which had the highest average fitness value and the shortest time consump-
tion among the hybrid algorithms. Compared with WWO, the three hybrid algorithms
significantly increased the number of association rules mined and improved the quality of
the association rules mined with an acceptable increase in time consumption, indicating
that the proposed hybrid algorithms are effective and robust for ARM.

5. Summary and Conclusions

ARM is an important technique for uncovering relationships between different items
in large datasets. Therefore, in the era of big data, it is worthwhile to deeply study ARM
algorithms. In this paper, three hybrid algorithms, called LWWO–ACO, LWWO–BA,
and LWWO–CS, are proposed for ARM. These algorithms combine the search strategies
of different algorithms to maximize the global optimal solution in the search process.
Experiments on six datasets of various dimensions and sizes show that the proposed
hybrid algorithms outperform WWO and LWWO in terms of the number and quality of
rules mined. Moreover, LWWO–CS shows the best competitiveness, which indicates the
effectiveness of the hybrid strategy on ARM. Furthermore, the proposed ARM approach
does not require the generation of frequent item sets, thus improving mining efficiency and
maintaining a good balance between rule quality and mining efficiency, making it suitable
for practical applications.

So far, in our experiments, we have only focused on discovering association rules
between items in the dataset; the specific relationships of the items in the obtained asso-
ciation rules will be further investigated in the future. Another possible direction for our
future research is to focus on the similarity of the mined association rules and to filter the
redundant rules in the rule sets more efficiently. In future work, it would be interesting to
apply the proposed hybrid algorithms to different datasets and compare them with other
ARM methods to see how well they work in real-world settings.
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Abbreviations

ARM association rule mining
WWO water wave optimization algorithm
LWWO water wave optimization algorithm with Levy flight
FIM frequent item sets mining
ACO ant colony optimization algorithm
BSO bee swarm optimization algorithm
BA bat algorithm
CS cuckoo search algorithm
PeSOA penguin search optimization algorithm
PSO particle swarm optimization algorithm
ABC artificial bee colony algorithm
WMSA water moth search algorithm
SCWWO sine cosine water wave optimization algorithm
SCA sine cosine algorithm
FD functional dependency

LWWO–ACO
water wave optimization algorithm with Levy flight hybrid with ant colony
optimization algorithm

LWWO–BA water wave optimization algorithm with Levy flight hybrid with bat algorithm

LWWO–CS
water wave optimization algorithm with Levy flight hybrid with cuckoo
search algorithm
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