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Abstract: In some complex labor production and human–machine interactions, such as subway
driving, to ensure both the efficient and rapid completion of work and the personal safety of staff and
the integrity of operating equipment, the level of mental workload (MW) of operators is monitored
at all times. In existing machine learning-based MW classification methods, the association infor-
mation between neurons in different regions is almost not considered. To solve the above problem,
a graph convolution network based on the squeeze-and-excitation (SE) block is proposed. For a
raw electroencephalogram (EEG) signal, the principal component analysis (PCA) dimensionality
reduction operation is carried out. After that, combined with the spatial distribution between brain
electrodes, the dimensionality reduction data can be converted to graph structure data, carrying
association information between neurons in different regions. In addition, we use graph convolution
neural network (GCN) modified by SE residual to obtain final classification results. Here, to adap-
tively recalibrate channel-wise feature responses by explicitly modelling interdependencies between
channels, the SE block is introduced. The residual connection can ease the training of networks. To
discuss the performance of the proposed method, we carry out some experiments using the raw EEG
signals of 10 healthy subjects, which are collected using the MATB-II platform based on multi-task
aerial context manipulation. From the experiment results, the structural reasonableness and the
performance superiority of the proposed method are verified. In short, the proposed GCN modified
by the SE residual method is a workable plan of mental workload classification.

Keywords: mental workload; graph convolution network (GCN); squeeze-and-excitation; residual
connection

MSC: 68T01

1. Introduction

In recent years, brain–computer interfaces (BCIs) [1,2] have been used as devices for
connecting the human body to external devices, serving for biological research, disease
treatment, etc. Here, due to the non-invasive nature of BCIs, electroencephalogram (EEG)
signals are usually collected based on it, a method which is widely used. Examples
include emotion recognition [3], sleep stage assessment [4], and mental workload (MW)
classification [5]. Among them, MW represents the amount of brain activity per unit of time.
The principal reason for measuring workload is to quantify the mental cost of performing
tasks in order to predict operator and system performance. If the MW is too high, it can
lead to brain fatigue and reduced levels of alertness, which can easily lead to decision
errors [6,7]. In contrast, low MW can lead to negative burnout, which to some extent causes
a waste of human resources [8,9]. Therefore, it is important to assess the MW of operators
in real time to help rationalize the use of resources and improve work efficiency [10,11]. The
continuous and objective measurement of a few physiological indicators of the operator
also enables the assessment of MW. Examples include EEG signals, eye movements, heart
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rate, and respiration. Although the EEG signal is complex, it visually reflects the electrical
activity of the brain. Moreover, EEGs contain the most valid information compared to other
human bioelectrical signals. Thus, in this paper, we focus on the MW classification task
with EEG.

As indicated, there are three types of MW classification methods: subjective perception
of the subject, job performance, and physiological indicators related to MW [12]. Among
the methods based on the subjective perceptions of subjects are the subjective workload
assessment technique (SWAT), the NASA task load index (NASA-TLX), and the workload
profile (WP) [13]. Performance measurement is to measure the operating performance of
the subject based on tasks [8,14]. These three types of methods are susceptible to human
factors, causing a lack of objectivity and relevance. Moreover, real-time monitoring cannot
be realized by these methods, so practical requirements cannot be satisfied. Therefore, MW
classification methods need to be further studied [15–17].

During the development of machine learning [18], many methods have been applied
to the EEG MW classification task, for example, the support vector machine (SVM) [19]
employed by Qu et al. [20] and transfer learning utilized by Zheng et al. [21]. In particular,
there has been focus on the power spectral density (PSD) of raw EEG signals, and on
this basis, PSD are used to output EEG cloud maps before feeding into the network for
feature extraction. Kose et al. [22] used a weighted functional brain network (WFBN)
to analyze dynamic MW conditions. In addition to this, the dynamic changes in the
topology of brain connectivity for MW conditions are evaluated and characterized using
an advanced technique developed based on the weighted edges ordinal sequence (WEOS).
Finally, k nearest neighbor (KNN), SVM, and random forest (RF) are used to complete
the classification.

With the growth of deep learning, numerous models with powerful feature extraction
capabilities are used for MW classification. Pang et al. use a stochastic configuration
network (SCN) and subject-specific classifiers (SSCs) to achieve good classification results.
Umer Asgher [23] et al. accomplish MW classification using SVM and a convolutional
neural network (CNN), respectively. The experimental results show that the tuned CNN
network is stronger than SVM for the datasets used in the paper. Debashis et al. [24]
take full advantage of the correlation between continuous signals in the time series. They
propose a deep hybrid model based on bidirectional long short-term memory (BLSTM)
and long short-term memory (LSTM) for the classification of MW. To address cross-subject
classification, Yu et al. [25] propose a capsule network capturing the structural relationship
between power spectral density and brain connectivity features.

These methods have three drawbacks. Firstly, the traditional machine learning meth-
ods of EEG signal analysis do not take full advantage of the rich spatial information
contained in the EEG signal and the correlations of neurons in different regions. For ex-
ample, the default sorting is directly performed on the data nodes of a regular Euclidean
space such as the sample object, meaning that the deep association information cannot be
extracted. That is, the spatial structure between nodes is ignored. Next, in the fitting process
of subsequent deep learning models, such as CNN and LSTM, which are able to learn the
connection of each node spontaneously, the extraction of correlation between nodes is not
sufficiently in-depth because of factors such as an insufficient number of training rounds
and multiple noises. Finally, the popular EEG signal analysis perspectives are raw signal
and frequency domain signal. In the conversion to frequency domain after pre-processing
of the raw EEG signal, feature loss is also inevitable in the mapping using features such as
PSD. Further, in this process of secondary processing of data, the amount of data will be
continuously reduced, which may result in the inevitable loss of high-level features [21].
Thus, the subsequent training of the model is also prone to overfitting due to the small
amount of feature selection.

In our method, the use of pre-processed raw EEG signals as the input of the graph
convolutional network (GCN) can theoretically solve these two existing drawbacks. In
terms of data, principal component analysis (PCA) [26] feature selection is performed
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after raw data pre-processing. In order to eliminate the “edge” electrodes that have little
impact on the results, the data are downscaled before being sent to the model training.
Meanwhile, reducing the amount of data in advance can also alleviate the problem of
excessive system memory consumption in the subsequent graph convolution training to a
certain extent. In terms of the model, the proposed one refers to the squeeze-and-excitation
(SE) structure and combines residual connection based on the GCN [27,28]. The GCN
network employed is ChebNet [29] and the convolution kernel is a Chebyshev polynomial.
Every three convolutional layers form one residual block. The model has four residual
blocks and eight convolutional layers [30]. The embedded residual connection solves the
gradient disappearance and explosion caused by the increasing number of layers in the
network. Finally, an attention mechanism, namely SE block, is added after each layer of
the network [31]. In order to select and focus on the most important electrode features,
different weights are assigned to each EEG electrode after convolution, pooling, and full
connection. The classification ability of the proposed method is strong.

2. Materials and Methods
2.1. Overall Structure of the Proposed Method

The overall model is divided into two parts: the hand-crafted feature extraction and
network model.

In the hand-crafted feature extraction part, firstly, PCA dimensionality reduction is
used to exclude individual useless dimensional information. Secondly, the EEG signals
collected from multiple nodes are used to shape multiple node topographies containing
node spatial structure information using Pearson correlation coefficients. Then, they are
fed into the model in turn.

The network model consists of the ChebNet convolution, residual connection, and SE
block. The data are sequentially processed using graph convolution, activation, normaliza-
tion process, and pooling. Finally, there is the full link layer. MW can be divided into two
categories, high MW (HMW) and low MW (LMW). HMW and LMW classification is carried
out using the softmax function. To better illustrate the fundamentals of the proposed model,
the specific units in the network framework are described in detail in the following sections.
The overall model framework of the system is shown in Figure 1.

Figure 1. The overall structure of EEGCN.
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2.1.1. Hand-Crafted Feature Extraction

After data collection, the temporal domain signal retains the most valid information,
although it has redundancy. Moreover, the temporal domain signal can visually reflect
the signal transformation with time, so we hand-crafted the extraction temporal domain
features. The temporal domain features are divided into two categories: content-order
and dimensionless. Firstly, the content-order features include mean, standard deviation,
first-order difference, normalized first-order difference, etc. Moreover, the dimensionless
features include skewness, kurtosis, waveform factor, impulse factor, etc.

The one-dimensional signals collected from multiple independent electrodes are com-
bined with the position information between electrodes. Afterwards, PCA is used to reduce
the dimensionality. The specific experimental comparison results are shown in Section 3.
After that, Pearson’s index between dimensions is calculated for the reduced dimensional
multidimensional data. The obtained Pearson coefficients between dimensions are then
used to construct a graph structure. At the end of the hand-crafted feature extraction, these
graph data are fed into the network part.

2.1.2. Network Framework

In the network model part, the temporal domain graph features of the EEG signal
are used as the input features of the graph convolution model. Firstly, they go through
the ChebNet convolution operation to extract the position correlation between electrodes.
Then, they go through the activation layer to improve the ability of the model to fit
nonlinear problems. After that, the normalization process is used to generalize the statistical
distributivity of uniform samples, which can speed up the convergence. Finally, using
a pooling layer for the size reduction of features, the computational cost of the model
is decreased.

The model proposed in this paper introduces the residual connection and SE block
based on GCN [32,33]. Here, every two-graph convolution operation is linked by residual
connection [34]. Moreover, the attention mechanism, i.e., SE [35] block, is added in each
residual connection to adjust the channel-wise feature response. The structure of the SE
block is shown in Figure 2. The SE block is co-trained with the network to focus on the
more important electrodes in the current classification.

Figure 2. SE Block Structure.
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In the SE block part of the attention mechanism, firstly, the squeeze function extracts
the multi-dimensional features after convolution. Then, weights are generated for each
dimension based on the parameter extracted from the excitation function, which can be
seen as the importance of each dimension after feature selection. Finally, the weights are
weighted to the previous features dimension by dimension using multiplication. Mean-
while, the gradient explosion is prevented by combining inter-convolutional information
through the identity map operation.

2.2. The Key Operation of the Proposed Method
2.2.1. GCN

Many studies have shown that the human brain has small-world properties. There are
correlations between single neurons that are consistent with a topological graph structure.
Moreover, multiple independent one-dimensional signal intervals acquired by multi-wire
electrodes that mimic the shape of the human brain can also be considered as graph struc-
tures [28,32]. However, when dealing with the data of graph structure type, the traditional
network models ignore the information of the connection relationship between its indi-
vidual nodes and cannot dig deeper into its features and patterns based on topological
correlation, for example, LSTM [33] and CNN [34,35]. However, from Pearson’s heat map,
it can be seen that there is a correlation between the 30 brain electrodes after excluding the
reference electrodes. Additionally, there is a pattern for most of the electrodes: the closer
the position, the stronger the correlation, as shown in Figure 3.

Figure 3. Inter−electrode Pearson’s heat map.

To solve this problem, this model uses the method of spectral convolution in a graph
convolution network (GCN). The Fourier transform is used to convert the graph to a Carte-
sian coordinate system, so that this matrix can be processed using the normal convolution
principle according to the definition of convolution operation, i.e.,

F [ f1(t) ∗ f2(t)] = F1(w) · F2(w) (1)

where f (t) is the signal in the temporal domain, F1(w) is the signal in the frequency
domain, F is the Fourier transform, ∗ denotes the convolution, and · denotes the product.
Bruna et al. [36] first proposed the use of the Laplace matrix to accomplish the convolution
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operation on the spectral domain. The Laplace matrix is defined as L and normalized as:
L = IN − D−1/2 AD−1/2 where D is the degree matrix and

Dii =
N

∑
j=1

Aij (2)

A is the adjacency matrix and IN is the unit matrix. The feature decomposition of L using
the graph Fourier transform obtains L = UΛUT , where U is the eigenvector matrix of L and
Λ is the eigenvalue diagonal matrix. Therefore, the graph convolution can be defined as
y = Ugθ(Λ)UTx, where gθ(Λ) is the Chebyshev polynomial, which is the most commonly
used convolution kernel for spectral domain convolution, and the polynomial is specified
as follows.

gθ(Λ) =
K−1

∑
k=0

θkTk(Λ), θ ∈ RK (3)

Tk(Λ) is the k approximation of the Chebyshev polynomial of order, so the convolution
formula can be simplified as

y =
K−1

∑
k=0

θkTk(L)x (4)

2.2.2. SE Residual Block

Many studies show that as the depth of the network increases, the network shows
degenerate spectral convolution, leading to an increase in training error [37]. In order to
keep mining the high-level correlation features between data in continuous convolution,
a residual connection is introduced in the model. This structure is shown in Figure 4.
The stacking layer occurs when the residual, F(x), is 0. When F(x) = 0, the stacking
layer only performs constant mapping at this point, so at least the network performance
does not degrade. Moreover, the residual connection will not actually be 0. This also
allows the stacking layer to learn new features based on the input features and, thus, have
better performance.

Figure 4. Residual connection model.

In the case of limited computational power, it is necessary to allocate computational
resources to more important tasks [38,39]. A resource allocation scheme, i.e., attention
mechanism, is created in neural networks. An embeddable type of attention mechanism
module is proposed in the SENet network. The core operations are two blocks, squeeze
and excitation, where squeeze encodes the entire spatial feature as a global feature, using
global average pooling to achieve this.

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j), z ∈ RC (5)

The excitation operation uses the information collected by the excitation operation to
obtain the complete dependence between channels. This is achieved by using two fully
connected layers and two activation layers. The purpose of this operation is firstly that
it learns the nonlinear interactions between different features. Secondly, it focuses on all
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features, instead of enforcing a single thermal activation. The excitation operation can be
represented by the following equation:

s = Fex(z, W) = σ(g(z, W)) = σ(W2ReLU(W1z)) (6)

where W1 ∈ R
C
r ×C and W2 ∈ RC× C

r . In order to control the computational effort while
deepening the model depth, the model adds two bottleneck structure fully connected
layers [39,40]. Finally, we multiply the activation values of each node learned with the
original features. The flexibility of the SE block means that it can be ported to all existing
networks. The proposed model convolution kernel is set to the Chebyshev convolution.
The process and results of the evaluation experiments on the model in order to test the
fitting ability and generalization ability of the proposed model will be described in detail
in the following sections [41].

3. Results
3.1. Evaluation Criteria and Data Processing
3.1.1. Data Collection

The EEG data are collected in this experiment using the MATB-II [42] platform in
the Neuroscan Neuamps system. The sampling rate is 1024 Hz. The bandpass filter is
set to 0.1–200 Hz. The number of channels with a time interval of 60 s is 32. Among the
32 electrodes, A1 and A2 are the reference electrodes, and the reference diagram is shown
in Figure 5. The specific data collection methods will be described in detail in Section 3.

Figure 5. Diagram of electrode position.

Based on the MATB-II [43] platform, we design four tasks with different EEG loads
to monitor the subjects’ status of completing the tasks sequentially in real time [44]. The
four tasks include information monitoring of system instrument scales, vehicle tracking, air
traffic control communication tasks, and fuel resources. The subjects need to manipulate
the mouse and flight joystick to make corresponding operations when facing unexpected
situations and task transitions. The interface of the experimental task is shown in Figure 6.
The system monitoring task is presented in the upper left window of the display. Here, the
requirements for monitoring the instruments and warning lights are simulated, while the
requirements for manual control are simulated by the tracking task. This task is displayed
in the upper middle window. During the simulation, the communication task provides the
operator with pre-recorded auditory messages at selected intervals, while the requirements
for fuel management are simulated by the resource management task. The four areas
correspond to the visual and operational tasks. The two types of loads monitored are LMW
and HMW. The details of the four sub-tasks are shown in Table 1.
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Figure 6. Area 1,2,3 and 4 are four tasks interface of MATB-II platform.

Table 1. Details of four tasks.

Task Title Description
Frequency

LMW HMW

System Monitoring
Monitor the scales of F1–F4 in Area 1
and respond with a mouse when the

scales are not around the center.

1 24

Tracking

In Area 2, keep the target at the grid
center by using the joystick in

MANUAL mode, while no action is
required in AUTO mode.

Scheduling

Monitor scheduling bar in Area 3
and respond to the

activated communication with
keyboard immediately.

Resource
Management

Monitor oil volume in tanks and
pump status in Area 4. Click the
corresponding oil pump with the

mouse when a failure occurs.

The ten subjects selected for this experiment are all graduate students with an engi-
neering background from the Beijing University of Aeronautics and Astronautics, aged
22–25 years old. All of them are male and in good health. Before the start of the experiment,
they are trained to understand the overall experimental procedure and the corresponding
operations to be undertaken for different tasks to avoid experimental errors caused by
unskilled operations.

3.1.2. Classification Evaluation Metrics

In order to comprehensively evaluate the performance of the model, three metrics are
used. These include Kappa, F1 index, and Acc. The Kappa metric is defined as:

kappa =
p0 − pe

1− pe
(7)

Here, p0 is the classification accuracy and pe is the probability of expected and actual
agreement. The Kappa index is used to indicate the degree of classification recognition
agreement. The closer the index is to 1, the stronger its consistency is.
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The F1 metric is defined as:

F1=
2 Precision ∗ Recall
Precision + Recall

(8)

Here, the Precision and Recall metric are defined as:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

All the experimental data can be classified into the following four cases: true positive
(TP), false positive (FP), true negative (TN), and false negative (FN).

3.1.3. Data Processing

PCA [26,45] is a multivariate statistical method to examine the correlation between
multiple dimensions [46]. In the proposed model, the 30-dimensional raw EEG signals
extracted from multiple pathways are subjected to dimensionality reduction, which is
necessary to mitigate the data redundancy. Therefore, in order to compare the classification
effects of dimensionality reduction to different dimensions and find the optimal dimen-
sionality reduction scheme, the 30-dimensional data are processed to 29, 28, 27, 26, 25, and
24 dimensions and fed into the SVM, respectively. The average accuracy comparison of the
model classification is shown in Figure 7. The results after several rounds of experiments
show that the 24-dimensional effect is the worst, with 83.5%. The 26-dimensional results are
slightly better than the 27- and 25-dimensional. Therefore, after dimensionality reduction,
the 26-dimensional data are fed into the proposed model.

Figure 7. Scores of model metrics in different dimensions.

3.2. Experimental Settings

In this experiment, HMW and LMW are collected separately for each subject. The
experiment is performed twice a day for a total of 10 days. The dataset is cut into training
and test sets according to the ratio of 9:1. The data obtained are cut, with a cut criterion of
30 s at a time. Further, the number of samples obtained for each subject at a time is 30,720,
with a total number of samples for 10 subjects of 10 × 30,720 × 18 × 2.

Next, we introduce the hyper-parameter settings of the model. The hyper-parameter
settings are all adjusted after continuous trial and error to best suit the present model.
The batch size is set to 1024 before the model starts training for a total of 200 epochs. The
Chebyshev polynomial with the highest term count of 3 is used as the convolution kernel
of the network. The number of convolution kernels is set to 16, 32, 64, and 128 for each of
the four block layers in order. To prevent overfitting, the random deactivation rate is set to
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0.5. The learning rate is initially set to 1 × 10−6, and the decay rate is set to 1. The learning
rate is updated afterwards using the exponential decay method. The adaptive moment
estimation (Adam) optimizer is used for parameter learning, and the model is run on an
NVIDIA 2080Ti GPU using the software framework Tensorflow 1.14.1.

3.3. Proposed Network Evaluation

In order to evaluate the classification ability of the proposed model at different stages,
t-SEN charts are firstly drawn at different steps, as shown in Figure 8. The data of subject
1 are plotted as an example. The three states of data presented are raw data, Block2, and
Softmax layers. From Figure 8, we can observe that the data distribution is very chaotic
and poorly differentiable before the data go into the model. After the hand-crafted feature
extraction and the two-layer block structure, the distribution of the two types of data in
2D becomes gradually clear. The last layer shows that the HMW and LMW are roughly
separated in two regions, although there are still errors. It can be concluded from this that
the model proposed in the paper allows an excellent classification in terms of MW.

Figure 8. The t−SEN chart of the proposed method at three steps.

To present the classification ability and classification efficiency of the proposed model
more visually, the confusion matrix of classification results generated by this method has
been given in Figure 9. Furthermore, subject 10′s training is used as an example, and the
ROC diagram is provided in Figure 10. In addition to this, loss and accuracy values are
provided for the learning process of the training and validation sets based on the different
iterations in Figure 11.

Figure 9. Confusion matrix of ten subjects.
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3.4. Ablation Experiment

In order to evaluate the classification ability of the model proposed in this paper, two
comparison methods are proposed:

Method I: the model preprocessing stage is added to PCA to reduce the dimensionality,
and then directly fed into the GCN model for training.

Method II: the GCN model is changed into a residual connection on the basis of
method 1, and then the data are fed into the training; The last is the method proposed in
this paper. The specific descriptions of the three methods are shown in Table 2, and the
results of the three methods are shown in Table 3.

Table 2. Specific description of the three methods.

Name Description

Method I GCN
Method II GCN+Residual
Proposed GCN+SE+Residual
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Table 3. Comparison of experimental accuracy of three methods for ten subjects.

Subjects
Acc%

Method I Method II Proposed

subject1 70.6 74.1 87.1
subject2 68.5. 74.6 83.4
subject3 73.9 74.9 88.6
subject4 74.9 78.3 89.2
subject5 69.8 73.6 83.6
subject6 71.2 73.9 83.4
subject7 75.6 77.6 85.2
subject8 74.9 78.4 89.7
subject9 69.7 74.2 85.2
subject10 72.8 75.7 87.2
Average 72.2 75.6 86.3

According to the data 9:1 division ratio, the data of ten subjects are sequentially used
as the test set. The comparison experiments in Table 3 show that the residual connection of
the proposed model has some improvement on the classification ability of the model and
the accuracy is improved by about 3%. This phenomenon is explained by the structural
properties of residual connections. It guarantees the stability of the network during training
and ensures that the network does not experience gradient explosion. Additionally, in the
residual connection, the model only needs to learn the number of residuals between differ-
ent layers, so the model has a better optimization effect during training. The experimental
results show that the accuracy of the model is directly improved by 15% after adding
the SE block. This indicates that although the data belong to the traditional Euclidean
space, training the model by the default ordering and then assigning the same weights
causes information loss. Therefore, the primary and secondary relationships between the
electrodes are considered to have a significant impact on the results.

3.5. Classification Results Comparison between Several Methods

In order to compare the classification ability of the proposed EEGCN models, eight
different models are used to train the same dataset. The results are shown in Table 4.
The first two of them are the methods proposed by Zheng et al. [21] and Qu et al. [20]
based on machine learning. The rest of the six methods in the table are all based on deep
learning. The three comparison methods, CNN, LSTM, and recurrent neural networks
(RNN), all use the same structure and data as the network framework part in Figure 1.
There is no residual connectivity and attention mechanism. The last three methods used
for MW classification are deep learning methods that improve on the classical model. One
classification method proposed by Pang et al. [17] is based on the stochastic configuration
network (SCN). The subject-specific classifiers (SSCs) are built using the individual EEG
data. Umer Asgher et al. [23] propose a method using SVM and CNN for MW classification,
in which they select CNN with two convolutional layers, one max pool layer, and one fully
connected layer before output. A deep hybrid model based on bidirectional long short-term
memory (BLSTM) and LSTM has been proposed for the classification of workload levels by
Debashis Das Chakladar et al. [24].
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Table 4. Comparison of results of the three methods.

Model MAcc(%) MKappa MF1

Transfer Learning [21] 85 0.86 71.8
CSSA [20] 82 0.80 71.3

CNN 74.2 0.69 67.4
LSTM 71.8 0.74 69.6
RNN 70.3 0.77 69.2

SCN+SSCs [17] 75.91 0.65 68.2
CNN+SVM [23] 80.42 0.78 71.9

BLSTM-LSTM [24] 83.87 0.88 72.1
EEGCN 86.3 0.89 72.5

By comparing the results, we see that the classification results of EEGCN are signif-
icantly higher than others, especially the simple CNN, LSTM, and RNN networks. The
comparison models perform poorly in classification, in addition to the fact that they do not
fully extract the high-level feature of electrode signal correlation. This is also explainable
according to the characteristics of the EEG signal. In contrast to the speech signal commonly
used in natural language processing, the EEG signal is less volatile, with more interference
signals. Therefore, just using a simple LSTM or RNN network in the network, with the
exception of the inter-temporal features that can be extracted, the other capabilities are
very weak. Nowadays, RGB pictures have rich features which are commonly used in
image processing. The higher-level features can be continuously mined after continuous
convolution. Constantly adding convolution layers in CNN can easily produce overfitting
and gradient explosion. It can be observed that the simple stacked CNN model is not
suitable for EEG signal processing. It can be shown experimentally that the classical deep
learning models proposed in academia today are not fully applicable to this signal due
to the stochastic non-smoothness of the EEG signal. The experimental results are not
satisfactory when the data are inputted blindly. In the analytical processing of EEG signals,
in order for the network to extract signal features from multiple perspectives, adjustments
to the existing models are needed such as the three comparison methods that follow. Pang
et al. [17] proposed the SCN method, which uses the same data as the proposed method.
The results show that the range of SSC test accuracy is between 56.5% and 90.2% with an
average of 75.9%. It can be seen that the classification ability of SCN is lower than the
model proposed in this paper. In addition, we feed the dataset collected by the MATB-II
platform into the method proposed by Umer Asgher et al. [23]. The data are processed
by SVM and CNN, which select CNN with two convolutional layers, one max pool layer
and one fully connected layer before output. The classification ability is not as good as
the EEGCN model proposed in the paper, which has an average accuracy of 80.42 in the
dataset collected in this paper. Finally, the dataset collected by the MATB-II platform is
fed into the hybrid model proposed by Debashis Das Chakladar et al. [24]. The data are
classified after BLSTM and LSTM, and the average accuracy reaches 83.87, which is slightly
lower than the model proposed in this paper.

4. Discussion

To solve the problem of ignoring correlations in the MW classification task, we provide
a new method. Firstly, the features are extracted in a hand-crafted way by PCA to obtain
the raw EEG signal. Then, to feed the correlated features into the model, we firstly hand
extract the mapping features. Then, they are fed into the GCN for learning. Later, PCA
downscaling and attention mechanisms are added successively to speed up the training.
Thereby, the classification ability of the model is improved, and the average accuracy
reaches 86.3%. This combination of traditional dimensionality reduction methods and
neural networks provides a new idea for future MW classification.

However, the training speed is still slow in the experiments, even though the number
of parameters in the model is only 21M. The GCN used in the proposed model is a
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transductive learning, which needs to load the training set and validation set at the same
time. Additionally, each forward computation will count out all nodes, and the Laplacian
matrix needs to be multiplied with the matrix composed of the features of all nodes during
the convolution process. Thus, the space occupation of such a Laplacian matrix is N × N,
so it is very memory- and video memory-intensive. Therefore, the hardware requirements
are high in the application scenario. To continue solving this existential problem, it is
envisioned whether the correlation between electrodes of different subjects is the same. If
the assumption holds, the model can be optimized in combination with transfer learning
methods. Thus, the amount of training required for the model can be reduced. How to
speed up the training, reduce the memory consumption, and further improve the model
accuracy is the next step of our work.

5. Conclusions

In this study, the correlation between electrodes is included. An SE block and residual
connection-based GCN method is also proposed for MW classification. The model converts
the raw EEG signal after PCA downscaling into a graph structure based on correlation
coefficients between brain electrodes as input. It also uses the SE block and residual
connection for training to obtain the final inference model.

Based on the analysis and discussion of the results, it can be concluded that:

(1) Extraction of graph features

The human brain has small-world properties. Correlations exist between each neuron.
Therefore, we can view the human brain as a topological map structure. Further, the
multiple one-dimensional independent signals collected by the EEG bubble that we fit to the
shape of the human brain can also be abstractly represented as a graph composed of vertices
and edges. After the pre-processing of the temporal-domain signals, such as through
de-artificing, the correlation between each node is quantified using Pearson correlation
coefficients. Thus, the inter-electrode graph features are extracted and subsequently fed
into the GCN to model them from a multidimensional perspective.

(2) GCN network modifications

In the EEGCN model proposed in this paper, a PCA dimensionality reduction strategy
is introduced in the preprocessing stage. An SE block is added to the GCN model to set
learnable parameters for each dimension, so that the model is data-driven and mines the
ratio of weights among different dimensions by itself. The HMW and LMW are classified in
the EEG data collected by the MATB-II platform for the simulated flight task. An average
accuracy of 86.3% is achieved in ten subjects. In comparative experiments using the same
dataset, EEGCN shows a significant improvement over the traditional machine learning
methods and classical deep learning models.

The method proposed in this paper can be applied in the future in some complex
human–machine systems with high safety requirements, such as subway driving aircraft,
piloting, manned spaceflight, and high-altitude operations. The real-time detection and
evaluation of the operator’s brain load can reasonably control the task demand and human
brain load level in the human–machine system, which is very important for the system
efficiency, safety, and human health [47].
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