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Abstract: The electro-thermo-convection of a dielectric liquid in a horizontal capacitor is investigated
under the autonomous charge injection from the cathode and heating from above. In the case of a DC
electric field, the linear stability analysis is carried out, and the thresholds of monotonic and oscillatory
instability are determined. The finite difference method is used for the numerical simulation of the
nonlinear behavior of electro-thermo-convective patterns: stationary convection and traveling waves.
In the case of AC, electric field transient and permanent oscillations are analyzed. Two types of
stable solutions are found. The modulated traveling waves are characterized by the quasiperiodic
oscillations of convective characteristics. Another solution is modulated electroconvection (MEC).
The patterns of MEC oscillate around some average flow synchronously with the external AC field
and do not move laterally. The average intensity of convective mixing in modulated traveling waves
is several times less than in modulated electroconvection. The spatiotemporal evolution of the
stream function, temperature, and charge distributions for different types of transient and permanent
solutions are analyzed.
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1. Introduction

The electroconvection appears and is supported under the action of an electric field
in a dielectric or a low conducting liquid. Various charge generation mechanisms exist:
injective, dissociation–recombination, dielectrophoretic and others [1–6].

In the present paper, we consider the flows of liquid dielectrics caused by the action of
an electric field on the charges injected into the liquid. In our case, a negative free charge is
created at the cathode–liquid interface as a result of redox electrochemical reactions [7,8].

M +
(
X+Y−

)
→M(e) +

(
XY−

)
→ Y−f ree, (1)

where M is the metallic electrode giving away electron, e, to the (X+Y−) ion pair and Y−f ree
is the injected ion component.

The theory of charge transfer across the electrode–liquid interface is much more
difficult in comparison with the transfers across the metal–semiconductor or electrode–
vacuum interfaces. Depending on the situation, various models of charge injection in a
dielectric liquid are applied. The model of autonomous injection is most commonly used.
The injected charge is constant there [3,7–9]. The injected charge can depend linearly on the
electric field strength at the electrode [10–12]. More complex models are used to explain
such experimental data as current oscillations in the capacitor [13] or luminescence of liquid
dielectric flows [14]. These models assume that free charge appears in the near-electrode
region when the electric field strength is greater than a certain critical value [15].

An isothermal dielectric liquid in a steady electric field can demonstrate monotonous
instability. Nonlinear stationary electroconvective patterns appear as a result of backward
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bifurcation [3,10]: the electroconvective flow and conductive state of the quiescent liquid
coexist in a certain range of electric Rayleigh numbers. The pattern formation of 3D laminar
electroconvection in a cubical cavity is investigated in detail [16].

Electroconvection of a non-isothermal dielectric liquid (so-called electro-thermo-
convection) connects with a large variety of flows due to the interaction of the buoyancy
and Coulomb force [7,17–22]. It is shown that the location of the injection electrode (below
or above) does not change the stability thresholds and the maximum velocity of the steady
convection in the case of heating from below [19]. Heat transfer is either enhanced [17]
or suppressed [20] during the heating of a dielectric liquid with strong charge injection.
The sidewall heating of a closed cell (when the temperature gradient and Coulomb forces
are orthogonal to each other) has been investigated in [21], where it is found that chaotic
oscillatory flows of a liquid dielectric are possible.

Heating of the capacitor from above can lead to oscillatory instability when injected
charge depends linearly on the electric field strength at the cathode [11,12,22,23]. In this
case, stable traveling waves and stable modulated waves are formed as a result of forward
bifurcation, which can be realized in a horizontal layer or in annular channels.

In a modulated external field, the situation can change dramatically. An example
of a qualitative change in the behavior of an object placed in an alternating field is the
pendulum with a vibrating suspension point [24]. Regardless of the origin, alternating
driving force can not only change the stability properties but also affect the nonlinear
evolution of hydrodynamic and, in particular, convective systems [25–27]. It is used to
control the flows and the heat transfer in various situations. In the case of an alternating
electric field, parametric instabilities can appear [18,28], and various wave flows can be
generated [23,29]. The effect of pulsed direct current or AC on the transient evolution of
thermos-electro-convection and their bifurcation behavior is analyzed in the case of heating
from below [30].

The electro-thermo-convective flows in a modulated field are an interesting example
of a self-organization phenomenon. The practical applications of the problem are connected
with the fact that an electric field is an efficient way to enhance heat transfer. Experi-
ments [31,32] show that heat transfer (the Nusselt number) in an electric field increases by
more than ten times.

In this paper, we discuss the electro-thermo-convection of a dielectric fluid heated
from above in the external DC or AC electric fields of a horizontal capacitor. In contrast
to the previous case of injection, depending on the electric field strength [11,12,22], a free
negative charge is created on the cathode–liquid surface by an autonomous injection (the
injected charge is constant). This is the specific novelty of the present study.

Negative values of the Rayleigh number correspond to heating the liquid from above.
In the absence of an electric field, the oscillatory disturbances exist, but they decrease [25],
and the mechanical equilibrium of liquid is absolutely stable. The heating of the liquid
from above in the electric field changes the situation. The Coulomb force and the buoyancy
are directed opposite to each other in the state of mechanical equilibrium. The interplaying
of these forces causes oscillatory instability. The critical electric Rayleigh numbers and
frequencies of marginal disturbances (fundamental frequencies) are found for different
sets of parameters. The growth in the oscillatory perturbations at the negative values of
the Rayleigh number leads to the formation of nonlinear wave electro-thermo-convective
regimes.

2. Governing Equations

Let us consider a plane horizontal capacitor of thickness d filled with a dielectric
viscous liquid placed in the gravitational field g (Figure 1). We assume that all liquid
characteristics, such as dynamic viscosity, η, temperature diffusivity, χ, relative permittivity,
ε, and ionic mobility, K, are constant. The Cartesian coordinate system is used: the x-axis
is situated along the top electrode (cathode); the z-axis is directed across the layer. The
perfect heat- and electroconducting boundaries are located at coordinates z = 0; z = d.
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Horizontal electrodes have different temperatures Tu = T(z = 0) = Θ, Tl = T(z = d) = 0
(the temperature difference ∆T = Tl − Tu is applied to the layer). The cathode potential
generally varies according to the harmonic law Φ(0, t) = V sin(2πνt) with the amplitude
V � V0 (the relative amplitude α = V/V0), and the frequency, ν. We will consider two
cases: (i) constant potential difference: α = 0, Φ(d) − Φ(0) = V0 and (ii) modulated
potential at the cathode (α 6= 0).

Mathematics 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

2. Governing Equations 
Let us consider a plane horizontal capacitor of thickness d filled with a dielectric vis-

cous liquid placed in the gravitational field 𝒈 (Figure 1). We assume that all liquid char-
acteristics, such as dynamic viscosity, η, temperature diffusivity, χ, relative permittivity, 𝜀, and ionic mobility, K, are constant. The Cartesian coordinate system is used: the x-axis 
is situated along the top electrode (cathode); the z-axis is directed across the layer. The 
perfect heat- and electroconducting boundaries are located at coordinates z = 0; z = d. Hor-
izontal electrodes have different temperatures 𝑇௨ = 𝑇(z = 0) = Θ, 𝑇௟ = 𝑇(z = d) = 0 (the tem-
perature difference ∆𝑇 = 𝑇௟ − 𝑇௨ is applied to the layer). The cathode potential generally 
varies according to the harmonic law Φ(0, t) = 𝑉 sin(2πνt) with the amplitude 𝑉 ≪𝑉଴ (the relative amplitude 𝛼 = 𝑉/𝑉଴), and the frequency, ν. We will consider two cases: (i) 
constant potential difference: 𝛼 = 0, Φ(𝑑) − Φ(0) = 𝑉଴ and (ii) modulated potential at the 
cathode (α ≠ 0). 

 
Figure 1. Problem geometry and coordinate system. 

The density of a liquid dielectric linearly depends on temperature: 

ρ = ρ0 (1 − βT 𝜃), (2)

We use dimensionless variables by choosing the following scales: time—d2𝜌଴ /𝜂 , 
length –d, velocity—𝜂/𝜌଴d, pressure –𝜂ଶ/𝜌଴ℎଶ, temperature—𝛩, electric potential [Φ]=V0, 
and charge density [q] = 2

0 0V dε ε  ( 0ε  is the electric constant), and write the system of 
electro-thermo-convection equations for an incompressible liquid [17]: 

( ) Raq ,
t PrM

∂ + ∇ = −∇ +∇ − ∇Φ + θ
∂

ev v v v
2

2
2

T
p  𝐞 =  (0,0, −1), (3)

( ) ( )2
2

q Tq q q ,
t M

∂ + ∇ = − ∇Φ ⋅∇
∂

v  (4)

div , q,= ∇ Φ =v 20 -  (5)

( ) 1 ,
t Pr

∂θ + ⋅∇ θ = ∇ θ
∂

v 2  (6)

where v is the liquid velocity, and p is the pressure. 
The buoyancy force and the Coulomb force act on some volume of liquid (3). The 

charge balance Equation (4) contains the convective transport and the charge mobility in 
the electric field. In our case (Equations (3)–(6)) of unipolar injection, only one type of 
carrier (negative charge) is generated on the cathode due to redox electrochemical reac-
tions. The dielectric liquid has no residual conductivity and, therefore, no positive carri-
ers. We consider the case of the autonomous injection from the cathode when the injected 
charge value does not depend on the electric field [3]. 

Figure 1. Problem geometry and coordinate system.

The density of a liquid dielectric linearly depends on temperature:

ρ = ρ0 (1− βT ·θ) (2)

We use dimensionless variables by choosing the following scales: time—d2ρ0/η,
length—d, velocity—η/ρ0d, pressure—η2/ρ0h2, temperature—Θ, electric potential [Φ] = V0,
and charge density [q] = ε0εV0/d2 (ε0 is the electric constant), and write the system of
electro-thermo-convection equations for an incompressible liquid [17]:

∂v
∂t

+ (v∇)v = −∇p +∇2v− T2

M2 q∇Φ +
Ra
Pr

θe,e = (0, 0,−1), (3)

∂q
∂t

+ (v∇)q =
T

M2

(
q2 −∇Φ · ∇q

)
, (4)

div v = 0, ∇2Φ = −q, (5)

∂θ

∂t
+ (v · ∇)θ =

1
Pr
∇2θ, (6)

where v is the liquid velocity, and p is the pressure.
The buoyancy force and the Coulomb force act on some volume of liquid (3). The

charge balance Equation (4) contains the convective transport and the charge mobility in
the electric field. In our case (Equations (3)–(6)) of unipolar injection, only one type of
carrier (negative charge) is generated on the cathode due to redox electrochemical reactions.
The dielectric liquid has no residual conductivity and, therefore, no positive carriers. We
consider the case of the autonomous injection from the cathode when the injected charge
value does not depend on the electric field [3].

For the no-slip, perfectly heat-conducting electrodes, we write the boundary conditions:

z = 0 : v = 0, θ = 1, q = −C, Φ = α sin 2πνt
z = 1 : v = 0, θ = 0, Φ = 1.

(7)

The system of Equation (3) contains the following dimensionless parameters: the
Prandtl number, Pr = η/ρ0χ, the electric Rayleigh number, T = ε0εV0/ηK, the charge
mobility parameter, M =

√
ε0ε/K2ρ0, the Rayleigh number, Ra = ρ0gβ∆T/ηχ. Note that

when the layer is heated from above, the temperature difference ∆T, and therefore, the
Rayleigh numbers Ra are negative.
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The electric Rayleigh number T is a measure of the ratio of Coulomb force and viscous
dissipative forces; it is analogue of the Rayleigh number. M is the ratio of “hydrodynamic”
mobility to ionic mobility [33]; it can vary over a wide range: 4 < M < 120 [3].

The parameter C = q0d2/V0ε0ε in boundary conditions (7) determines the injection
strength (q0 is the charge injected into the liquid from the cathode). The dimensionless
injection C is the ratio of the injected charge per unit area q0d to the surface charge that it
would be present on the electrodes due to the applied external field V0ε0ε/d [33].

3. Linear Stability Analysis

In the mechanical equilibrium state (v = 0), the temperature, the charge, and potential
distributions can be written in the following form:

θ0 = 1− z, q0 =
3a2(2αz + 1)−1/2

1− (2a + 1)3/2 , Φ0 =
1− (2az + 1)3/2

1− (2a + 1)3/2 , (8)

where α is an auxiliary parameter associated with the charge at the cathode by the ratio
q0(0) = −C = 3a2

1−(2a+1)3/2 For each C, the a is first determined, and then distributions q0(z)

and Φ0(z) are obtained. For example, the injection strength C = 0.224 corresponds to the
value a =0.25, and the injection strength C = 1.0 corresponds to the value a =1.58.

Under heating of the layer from above, oscillatory instability appears as a result of
the interplaying of two forces (the buoyancy force appearing due to the difference in the
densities of heated liquid volumes and the Coulomb force acting on the negative charges
injected from the cathode).

To analyze the stability of the quiescent liquid (so-called conductive state, θ0(z), q0(z),
Φ0(z)) relative to small disturbances, we consider perturbed fields of vertical velocity,
electric potential, volume charge, and temperature as follows:

w, q0 + q, Φ0 + φ, θ0 + ϑ

and will consider the solution in the form of 2D disturbances [25].
w(t, x, z)
q(t, x, z)
Φ(t, x, z)
ϑ(t, x, z)

 =


w(z)
q(z)
Φ(z)
ϑ(z)

 exp(−λt + ikx), (9)

where w(z), q(z), Φ(z), and ϑ(z) are the amplitudes of disturbances, k is the wave number
characterizing their spatial period, and λ is the growth rate. Substituting perturbations (9).

− λ
(

w// − k2w
)
= k4w− 2k2w// + wIV − T2

M2 k2
(

q/
0 Φ−Φ/

0 q
)
− k2 Ra

Pr
ϑ, (10)

− λq + q/
0 w =

T
M2

(
2q0q− q/

0 Φ/ − q/Φ/
0

)
,

Φ// − k2Φ + q = 0,

− λϑ =
1
Pr

(
ϑ// − k2ϑ

)
+ w.

z = 0, z = 1 : w = w/ = 0, ϑ = 0, Φ = 0;
z = 0 : q = 0

Here, the prime indicates differentiation with respect to the transverse coordinate z.
We carry out the linear stability analysis of the basic state (8) by solving the spectral-

amplitude problem (10). The numerical procedure is based on the shooting method with
the orthogonalization scheme for integration [33]. We have tested the results of linear
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stability in the absence of heating by comparing our data with the results of [34]. In both
cases, for the injection parameter C =0.1, the critical electric number is Tc =24,147.

Figure 2 shows the marginal instability curves for the monotonic and oscillatory
electro-thermo-convection for different values of charge mobility M and two values of the
Rayleigh numbers: Ra = −2500, −1000. The monotonous instability regions are located
above the black curves. The oscillatory instability regions are located between dashed blue
and solid black lines.
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The marginal instability curves for monotonic disturbances T(k) and, therefore, the
critical electric Rayleigh number Tc and the critical wave number kc for monotonic insta-
bility (λ = 0) do not depend on the charge mobility M. This behavior can be explained
by the properties of the system (6). In the case of λ = 0, the simultaneous substitution of
parameters using the following scaling,

M→ bM, w→ w
b2 , q→ q, Φ→ Φ, ϑ→ ϑ

b2 ,

does not change Equation (10). Hence, the critical parameters Tc, kc for monotonic distur-
bances also remain unchanged.

On the other hand, the intensity of heating strongly affects these critical values Tc,
kc. They grow with increasing of the Rayleigh number (|Ra|). At the same time, the range
of wave numbers in which oscillatory perturbations grow is expanded.

An increase in parameter M at fixed Ra shifts threshold Tc for the oscillatory instability
up and narrows the range of wave numbers k, where oscillatory perturbations grow: the
intersection point of the marginal curves for monotonic and oscillatory perturbations is
shifted to the region of smaller k (Figure 2, dashed blue lines).

Figure 3 illustrates the dependences of the critical electric Rayleigh number Tc, the
frequency of marginal oscillations ω and the critical wavenumber kc on charge mobility M.
The thresholds of the oscillatory instability Tc (solid blue lines in Figure 3a) increases with
M, while marginal oscillation frequency (blue dashed lines in Figure 3a) and the critical
wavenumber kc corresponding to oscillatory perturbations (solid blue lines in Figure 3b)
decreases. When the charge mobility is greater than some critical value M > Mc(C), the
global minimum of the neutral curve (for example, Figure 2) corresponds to the monotonic
disturbances (black lines in Figure 3). For C = 1.0 and Ra = –2500, the value of Mc is 35.
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The dependences of the critical electric Rayleigh number Tc on the Rayleigh number for
different levels of charge injection (parameter C) are shown in Figure 4. As the injection level
increases, the thresholds for monotonic and oscillatory convection Tc decrease. It happens
because a stronger injection imparts a larger charge to the liquid volume, and the Coulomb
forces acting on the liquid are greater. Accordingly, the movement of a charged but a colder
(and, hence, heavier) element of the liquid to the cathode (up) becomes easier. It should be
noted that the value Ra∗ of the Rayleigh number for which oscillatory perturbations become
dangerous depends on parameter C. Calculations show that Ra∗ ≈ −177 for C = 0.224 and
Ra∗ ≈ −500 for C = 1.0.
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4. Nonlinear Electro-Thermo-Convection: Method of Solution and Characteristics of
Wave Regimes

Numerical simulation of 2D wave regimes of electro-thermo-convection is carried out
with the help of the two-field method: in the Navier–Stokes equation, instead of pressure p
and velocity v, stream function ψ and the vorticity ϕ are used [10,25].

vx = −∂ψ

∂z
, vz =

∂ψ

∂x
, ϕ = (rot v)y (11)

The system of Equation (3) is written in the following form:

∂ϕ

∂t
− ∂ϕ

∂x
∂ψ

∂z
+

∂ϕ

∂z
∂ψ

∂x
=

∂2 ϕ

∂x2 +
∂2 ϕ

∂z2 +
T2

M2

(
∂Φ
∂z

∂q
∂x
− ∂Φ

∂x
∂q
∂z

)
− Ra

Pr
∂ϑ

∂x
, (12)

∂q
∂t
− ∂q

∂x
∂ψ

∂z
+

∂q
∂z

∂ψ

∂x
=

T
M2

(
q2 − ∂Φ

∂x
∂q
∂x
− ∂Φ

∂z
∂q
∂z

)
, (13)

∂2ψ

∂x2 +
∂2ψ

∂z2 = −ϕ, (14)

∂2Φ
∂x2 +

∂2Φ
∂z2 = −q, (15)

∂ϑ

∂t
− ∂ϑ

∂x
∂ψ

∂z
+

∂ϑ

∂z
∂ψ

∂x
=

1
Pr

(
∂2ϑ

∂x2 +
∂2ϑ

∂z2

)
. (16)

z = 0 : Φ = α sin2π f t, ψ = 0, ∂ψ
∂z = 0, ϑ = 1, q = C,

z = 1 : Φ = 1, ψ = 0, ∂ψ
∂z = 0, ϑ = 0

(17)

We impose periodic boundary conditions along the x-axis with period l for all functions
describing the electro-thermo-convection:

F(x, z, t) = F(x + l, z, t), (18)

where F = (ψ, ϕ, ϑ, q, Φ).
The system (12)–(16) with boundary conditions (17), (18) is solved by means of the

finite-difference method. The balance equation for vorticity (12) is solved on the basis of an
explicit scheme. The switching of calculations from the algorithm with central differences
to the algorithm with “upwind” differences and back is performed depending on the
stability criterion [10]. For the balance equations for heat and charge (16), (13), we apply an
explicit scheme. Both the Poisson equations for the stream function (14) and the electric
potential (15) are solved using the iterative method of successive over-relaxation at each
time step. We use the grid with steps ∆x = ∆z = 0.05. The further mesh refinement did
not show any sensible improvement in the calculation results.

The electro-thermo-convective flows are classified based on the behavior of the maxi-
mal ψmax , the minimal ψmin and local ψloc values of the stream function in a computational
domain: 0 ≤ x ≤ l, 0 ≤ z ≤ 1,

ψmax (t) = max
[
ψi,j (tk)

]
, ψmin (t) = min

[
ψi,j (tk)

]
, ψloc (t) = ψ(x0, z0, tk), (19)

where local value ψloc is the stream function at a fixed point (x0 = l/4, z0 = 1
2 ).

We also use the Fourier spectrum A (ω) of the temporal oscillations ψloc (t) and the
phase velocity of the traveling wave defined as the derivative of the horizontal coordinate
of the stream function maximum:

vph = dx(ψ=ψmax )/dt. (20)

Simulations show that the vertical coordinate of this maximum for the electro-thermo-
convective flows is z(ψ=ψmax ) = 1/2.
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The spatiotemporal field distributions of stream function ψ as well as the expansion of
this field into the Fourier series F̂n(t) in spatial harmonics, make it possible to characterize
in detail the features of various flows of the liquid dielectric. We confine our analysis to the
expansion of the stream function ψ in the lateral direction in the cross-section at the height
(z = 1/2):

F
(

x, z =
1
2

, t
)
= F̂0(t) + ∑∞

n=1 F̂n(t)eiknx (21)

For describing the structures formed in the liquid in our case, it is sufficient to use the
information on the first ψ̂1(t), the second ψ̂2(t) and the third ψ̂3(t) harmonics of the stream
function expansion.

All subsequent calculations are performed for the following values of parameters
typical for dielectric liquids: Ra = −2500, Pr = 10, M = 14.14, and C = 0.224; 1.0 [10,11,17,21].
An example of liquids that are similar in properties to this set of parameters can be ethanol
with chlorine ions [3] or cyclohexane with the addition of triisoamylammonium perchlorate
salt and tetramethylphenylenediamine filling a capacitor with stainless steel electrodes [8].
In [8], the electrode gaps are 0.1 mm–1.5 mm, and electric field strength varies from 0 to
100 kV/cm to study unipolar homogeneous injection. For further estimates, we will use
the distance between the electrodes, 1.5 mm, and the voltage between the electrodes, 405 V
(E = 2.7 kV/cm).

In order to verify the numerical method, we compare the results of the linear theory
with the results of calculations in the fully nonlinear problem. For C = 0.224, the critical
value for the oscillatory instability Tosc, which is obtained in nonlinear calculations, differs
from the results of the linear theory Tlin

osc by less than 1.5%; for example, Ra = −2500,
M = 14.14: Tosc = 6905, and Tlin

osc= 6805. The difference in frequencies at the threshold of
electro-thermo-convection is approximately the same (2%; ω = 9.608; ωlin = 9.598).

5. Nonlinear Electro-Thermo-Convection: Results and Discussion
5.1. DC Electric Field

Here, we discuss the bifurcation and spatiotemporal properties of the electro-thermo-
convective states of a dielectric liquid in the steady electric field, α = 0. The bifurcation
map of the solutions for Ra = −2500 in the case of moderate injection C = 1.0 is shown in
Figure 5.
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snapshots of the stream function and temperature for the traveling wave; right inset: snapshots of the
stream function and temperature for the steady overturning convection.
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This map contains the dependences of the maximal value of the stream function
and the phase velocity on the electric Rayleigh number T. In the region T < TC liquid
is quiescent (v = 0), and the distributions of charge density q0(z) and electric field Φ0(z)
depend only on transverse coordinate z (conductive state). Electro-thermo-convection
arises at the electric parameter TC(C) as a result of forward Hopf bifurcation (Figure 5).
In the region T > TC = 655, the oscillatory disturbances growth, and the traveling wave
solution appears as a result of the transient process (Figure 6, T = 670, t > 80). The traveling
wave (TW, Figure 5) exists in the range of the electric Rayleigh number 655 < T < 671.
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Figure 6. Time evolution of maximal value of the stream function T = 670, C = 1.0, l = 1.44.

The two electro-thermo-convective rolls rotating in opposite directions form one spatial
period l of the TW solution (Figure 5, insert). In our consideration, all fields characterizing
this flow (the stream function, the temperature, the charge density, and the electric potential)
are shifted to the left with a constant phase velocity, while the maximal value of the stream
function remains constant at fixed T. Despite the lateral motion of the traveling wave, the
total fluid flow along the horizontal axis is zero. This is easy to prove using boundary
conditions for the stream function:∫ 1

0
ux dz = −

∫ 1

0

(
∂ψ

∂z

)
dz = −

∫ 1

0
dψ = ψ(0)− ψ(1) = 0. (22)

For cyclohexane with salt additives [8] (ε = 2.2; K = 1.2·10−8 cm2

V ·c; η = 0.979·10−3 Pa· c;
V0 = 405 V), we obtain the electric Rayleigh number T = 670, which corresponds to the
interval in which numerical simulation predicts the existence of a traveling wave.

With further increase in the electric Rayleigh number (T > 671, Figure 5), the intensity
of electro-thermo-convection sharply grows, and the regime of stationary overturning
convection is formed (Figure 5, the transition is marked with an up arrow SOC). This
regime is characterized by mirror symmetry between rolls that rotate in opposite directions
(Figure 5, right insert). The maximal value of the stream function ψmax = 2 is much greater
than in the traveling wave mode. The phase velocity of the traveling wave decreases
monotonically with increasing electric Rayleigh number.

With a decrease in the parameter C, the range of stable traveling waves shifts towards
large values of the electric Rayleigh number. For C = 0.224, TW exists in the interval
6818 < T < 7037.
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5.2. AC Electric Field

If we change the electric potential on the cathode Φ(z = 0) = α sin 2πνt with the
frequency ν and the amplitude of α, new oscillatory solutions can be generated.

If the modulation amplitude does not exceed a certain critical value α∗(ν) in gen-
eral, the oscillations of the stream function ψloc have two different frequencies, and these
dynamics correspond to modulated traveling waves (MTW). The evolution of the flow
characteristics ψloc, ψmax, ψmin versus time and the Fourier spectrum of the ψloc(t) are
shown in Figure 7 for C = 0.224, T = 6950. The Fourier spectrum (Figure 7b) contains a
few frequencies which are the combination of the fundamental frequency of the traveling
wave in the unmodulated case ν0 = 1.35 and the modulation frequency ν. The largest peak
corresponds to ν0, and the height of the peaks at 2ν0, ν0 ± ν in the spectrum is smaller.
If the external frequency ν coincides with the fundamental oscillation frequency ν0, the
spectrum looks simpler (Figure 7d). It contains only multiples of frequencies; we have
periodic TW.
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Figure 7. (a,c) The oscillations of the stream function ψloc(t) (black lines) and its envelopes (red lines
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The modulation of the field causes a change in the amplitude of the spatial harmonics
ψ̂n(t) (Figure 8). The behavior of harmonics is different for different frequency ratios
Q = ν/ν0. In the most common case, the characteristic frequencies ν0 and ν of the MTW
solution is not rationally related to each other. The oscillations of the first harmonic ampli-
tude ψ̂1(t) (red line Figure 8a) is an example of such a quasiperiodic TW with Q = 0.74074.
Thus, the trajectory of ψ̂1(t) (Figure 8b) is not closed, and orbits fill the area between∣∣ψ̂1(t)

∣∣
max = 0.83 and

∣∣ψ̂1(t)
∣∣
min = 0.77. In Figure 8d–f, we show the trajectories for periodic

TWs with Q = 1 and 2, respectively. Here, the orbits of ψ̂1(t) are closed after one and two
periods of Φ(0, t), respectively. The contribution of the second harmonic

∣∣ψ̂2(t)
∣∣
max = 0.098

does not exceed 13% of the contribution from the first harmonic. The contribution of the
third harmonic is small,

∣∣ψ̂3(t)
∣∣
max = 0.04. The behavior of the third harmonic (blue line in

Figure 8) corresponds to a standing wave. The contribution of higher harmonics is even
smaller:

∣∣ψ̂i(t)
∣∣
max <

∣∣ψ̂3(t)
∣∣
max, i = 4, 5 · · ·
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Figure 8. (a,c,e) Evolution of the lateral Fourier modes of in the expansion (12) of the stream

function ψ
(

x0, z = 1
2 , t
)

: ψ̂1(t) ¯red, ψ̂2(t)¯green, ψ̂3(t)¯blue, and (b,d,f) their trajectories in the

plane spanned by the real and imaginary parts of ψ̂n(t).

If the modulation amplitude α exceeds a certain critical value α > α∗ (ν), the MTW
loses stability, and a more intensive oscillating solution is formed in a liquid dielectric
(Figure 9). In this modulated electroconvective (MEC) regime, the flow amplitude varies in
some intervals (ψ1 < ψmax(t) < ψ2) synchronously with the potential difference around
the unmodulated SOC solution.
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Figure 9. The emergence of the modulated electroconvection regime (MEC) from the modulated
traveling wave. (a) The time evolution of the maximal value of the stream function, (b) behavior of
the x-coordinate of the stream function maximum on the world line plot; Pr = 10, M = 14.14, C = 0.224,
Ra = −2500, T = 6950, ν = 2, α = 0.05, l = 2.

Let us consider the transient process from the MTW to the MEC solution, which is
illustrated in ψmax for α = 0.05 and ν = 2. The change in the spatial position (x-coordinate)
of ψmax is depicted on the world line plot (Figure 9b, 30 < t < 52, blue circles). The lateral
motion of convective rolls along the layer takes place. It can be seen from Figure 9b that the
traveling wave propagates from left to right, and it is phase-modulated: the phase velocity
of the wave is equal to the inverse slope to the t(x) line.

In the time interval 47.5 < t < 50, the position of the maximum of the stream function
oscillates in the interval of coordinates 0.5 < x < 0.8 and 1.5 < x < 1.8, leaving “horseshoe”
traces on the world line plot. The left boundaries of these intervals (x = 0.5 and x = 1.5)
correspond to the positions of extrema of the first spatial harmonic, and oscillations them-
selves are associated with changes in the second harmonic amplitude. After the external
period, switching occurs: the position of the maximum is shifted by half-length of the
cell (±l/2). If t > 50, the x-coordinate of ψmax does not change. There is no movement of
convective structures in the horizontal direction. The transient process is finished, and the
modulated electroconvective flow is formed.

The dependence on the critical value of the amplitude (α∗) on frequency is the bound-
ary between the modulated traveling wave (MTW) and the modulated electroconvection
(MEC). Such dependence α∗(v) at C = 0.224, T = 6950 is shown in Figure 10a. Below this
curve, the MTW regime is stable; above this boundary, modulated electroconvection (MEC)
is stable. The dependence α∗(ν) is not monotonic; it has local minima and maxima. The
frequencies of the minima have specific values which correspond to the ratio ν0v = n/2,
n = 1, 2, 4. This confirms the presence of parametric resonance in the system. The absolute
minimum at the boundary of parametric instability of the MTW is clearly manifested (the
first resonance tongue). It corresponds to the external frequency that is twice the funda-
mental one (v = 2 ν0, n = 1). Due to the presence of dissipation in the convective system, the
remaining minima (resonance tongues) are not so sharp and are located much higher in
amplitude.
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However, the dependence α∗(ν) corresponding to the parametric excitation of modu-
lated electroconvection is slightly different from the classical Floquet theory of parametric
instability [35]: v = 2v0/n, n = 1, 2, 3 . . . There is no minimum of a curve α∗(ν) with a
frequency ratio of v0/v = 3/2. This difference is not surprising because the considered
system is explicitly nonlinear.

Interval of amplitude ψmax variation as a function of frequency is shown in Figure 10b
at α = 0.03. The lower shaded regions correspond to the modulated traveling wave. One
can see that the ratio of frequencies v0/v = 0.75 between the first two resonant tongues
is the least favorable for parametric excitation of the modulated electroconvection: range
of amplitude ψmax variation here is minimum (Figure 10b, v0/v = 0.75). With an increase
in the period of external modulation (growth of the ratio v0/v), the interval of amplitude
variation of the solutions grows.

The upper regions in Figure 10 correspond to the solutions located inside the resonant
tongues and characterize modulated electroconvection (MEC). As follows from the theory
of parametric resonance [36], the conditions for energy transfer from an external source to
the system are more favorable in the first resonant tongue 0.40 < v0/v < 0.58, so the interval
of change in the amplitude of the response is greater there than in the second resonant
tongue 0.87 < v0/v < 1.3.

Using an alternating electric field, it is possible to control the intensity of convection
and, consequently, heat transfer. Changing the excitation frequency switches the low-
intensity flow to a more intense one.

6. Conclusions

Electro-thermo-convection of a dielectric liquid subject to autonomous unipolar in-
jection from the cathode and heating from above have been investigated in the external
DC and AC electric fields. The linear stability analysis was carried out in the case of a DC
electric field. The critical wave and Rayleigh numbers, as well as frequencies of marginal
oscillations, were determined. The spatiotemporal behavior and the bifurcation properties
of oscillating electro-thermo-convection have been analyzed with the help of finite differ-
ence numerical simulations. Traveling waves and the regime of stationary overturning
convection are found at the moderate (C = 1.0) and the weak injection (C = 0.224).

Parametric excitation of instability takes place in the case of an AC electric field. The
low-intensity modulated traveling waves (MTW) and the high-intensity modulated elec-
troconvection (MEC) were found as stable solutions. An analysis of the spatial harmonics
made it possible to elucidate the properties of modulated traveling waves at various fre-
quencies of the external field. The characteristics of oscillatory instability in a DC electric
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field provide important predictive information for the analysis of electro-thermo-convection
in an AC field.
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