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Abstract: Lassa fever is a deadly viral illness that is endemic in some parts of West Africa, including
Nigeria. A deterministic model in the form of a non-linear system of differential equations is
developed to analyse the dynamics and possible control of the disease. The model is tested by fitting
it to data from Nigeria’s Lassa fever outbreak using a least-squares fitting routine and the model is
shown to provide a reasonable fit to the data. Parameters representing various control measures in the
model are estimated using the model fitting. Important epidemiological features of the model such as
the basic reproduction number (R0), the disease-free equilibrium, and the endemic equilibrium are
determined and analysed. The disease-free equilibrium is shown to be asymptotically stable when
R0 < 1. A bifurcation about R0 = 1 was determined using the Center Manifold Theorem. Using
numerical simulations of the model future dynamics of Lassa fever disease in Nigeria are predicted
and the impact of control measures on the disease determined. The use of approved rodenticides is
shown to be the most effective control followed by reducing person-to-person and rodent-to-person
contacts, respectively. Isolation and treatment of infected individuals are shown to be less effective
when compared with the other control measures.

Keywords: Lassa fever; disease dynamics; basic reproduction number; stability analyses; model
fitting
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1. Introduction

Lassa haemorrhagic fever, also known as Lassa fever, is a zoonotic, viral illness caused
by Lassa virus [1]. A rodent, the multimammate rat (Mastomys natalensis) is the host of the
virus. The primary transmission route of the disease to humans is through direct or indirect
contact with food or objects contaminated with urine or faeces of infected multimammate
rats. Other possible transmission routes include person-to-person transmission and rodent-
to-rodent transmission [1–3].

Multimammate rats are abundant in rural areas of parts of some West African countries,
including Nigeria, Sierra Leone, Liberia, and Guinea [1]. Consequently, Lassa fever has
been endemic in these West African countries where the multimammate rats are present.
The number of infections per year of Lassa fever is estimated between 100,000 and 300,000,
with approximately 1% leading to death [2]. The disease predominates in rural areas where
the host rodents are numerous. Low standards of living and poor sanitation in these rural
communities attract these rodents and is the main reason why this disease is dominant in
those areas.

Several preventive and control strategies have been recommended by the World Health
Organization (WHO) for the possible elimination of Lassa fever from endemic communities.
For instance, prevention of Lassa fever can be achieved through encouraging improved
sanitation to reduce rodents entering residential homes [1]. Preventive measures such as

Mathematics 2023, 11, 1181. https://doi.org/10.3390/math11051181 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051181
https://doi.org/10.3390/math11051181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9426-6763
https://orcid.org/0000-0002-2580-8984
https://doi.org/10.3390/math11051181
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051181?type=check_update&version=1


Mathematics 2023, 11, 1181 2 of 18

proper storage of foodstuffs, maintaining environmental sanitation, and keeping cats can
also reduce the disease especially, in Lassa fever endemic areas. Adequate precautions
should be taken when handling Mastomys rats. Also, all animal products should be
thoroughly cooked [1].

Early detection and proper treatment of Lassa fever are strongly recommended to
reduce the fatality rate [1]. Isolation of infected persons and provision of treatment reduces
the risk of person-to-person transmission in health care facilities. Early supportive care
with rehydration and proper treatment improves the survival of infected persons. Health
professionals dealing with infected persons must use approved safety measures to avoid
contact with body fluids [1].

Lassa fever is currently endemic in Nigeria with hundreds of laboratory-confirmed
cases per month during the annual peak, which is typically observed during the dry sea-
son (December–April). Approximately 90–95% of these people are infected by indirect
contact with food or household items contaminated by the excreta of infected Mastomys
rats or direct contact with these rats [1]. To reduce the spread of Lassa fever outbreaks
in Nigeria, the Nigerian Government, through the Centre for Disease Control (NCDC),
implemented several control measures to combat the disease which include the following:
(i) Dissemination of guidelines for proper case management, and infection prevention and
control (IPC); (ii) Enhanced surveillance activities for Lassa fever-affected areas to increase
discovery of cases; (iii) Provision of special treatment centres for clinical management in
affected areas; (iv) Increased laboratory capacity to ensure timely processing of samples;
(v) Risk communications and community engagement activities through television, radio,
print, social media, and other strategies; (vi) Implementation of a vector and environmental
control response team in affected areas. Mathematical models in the form of differential
equations have been successfully used to study the dynamics and control of several infec-
tious diseases like Lassa fever. These models, such as the one considered here, can assist in
existing control measures being more effective.

Even though Lassa fever appears in WHO’s lists of prioritizing diseases for research
and development in emergency contexts, only a few theoretical studies are available [2].
Mathematical modelling is a theoretical approach that has been used extensively for the
research and development of preventive measures for several infectious diseases [4–7].
Some findings on Lassa fever using mathematical models are summarized below. Ibrahim
and Denes [2] used a mathematical model to study the seasonal influences on the dynamics
of Lassa fever disease in Nigeria. Particularly, they investigated parameters that result in
the periodic recurrence of Lassa fever in Nigeria. By using a mathematical model, Ref. [8]
discovered that any control strategy that reduces rodent populations and the risk of trans-
mission from rodents to humans will assist in achieving Lassa fever elimination in Nigeria.
Musa et al. [9] used mechanistic modelling that takes into consideration quarantine, iso-
lation, and hospitalization processes of Lassa fever epidemics in Nigeria from 2016–2019.
Particularly, the similarities in the transmission dynamics driving three major Lassa fever
outbreaks from 2016–2019 in Nigeria were outlined by their study. Ndenda et al. [10] used
fractional-order dynamic modelling to study the influence of environmental viral load,
interpersonal contact, and infected rodents on Lassa fever transmission dynamics. They
discovered that using multiple interventions and control measures such as environmental
sanitation, and reducing rodents-to-humans and humans-to-humans transmission can aid
in reducing infections significantly. Mariën et al. [11] used a mathematical model to study
the impact of rodents’ control to fight Lassa fever. They show that rodent vaccination is
a strategy that could lead to Lassa virus elimination. Abdulhamid et al. [12] considered
environmental transmission to study Lassa fever dynamics using a deterministic mathe-
matical model. Their study reveals that the existence of backward bifurcation in the model
makes the control of Lassa fever more difficult. Zhao et al. [13] used a mathematical model
to investigate the effects of rainfall on Lassa fever epidemics in Nigeria by quantifying
the association between reproduction number and rainfall for several locations in Nigeria.
There is no doubt that these studies have made significant progress in understanding the
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dynamics and control of Lassa fever. However, as far as we are aware, none of those studies
uses a mathematical model that incorporates multiple control measures together with real
data to study and make predictions of the possible future dynamics of the Lassa fever
epidemic in Nigeria. The purpose of this study is to fill this gap. The findings from this
study should aid both researchers and policymakers in developing better control strategies
for effective control and management of seasonal Lassa fever outbreaks in endemic areas.

2. Model Development

A mathematical model is formulated for Lassa fever disease that takes into considera-
tion all the major factors that influence Lassa fever transmission dynamics and its control.
For the model development, the following assumptions are made. To make the model more
realistic, the possible control measures (i.e., treatment of infected persons, isolation of in-
fected persons, use of rodenticides, and preventive measures) that are considered effective
in fighting Lassa fever are incorporated in the model formulation. Since the Lassa fever
virus is transmitted between two hosts (humans and rodents), two host populations are
present in the model formulation. The total human population at time t, denoted by Nh(t), is
partitioned into sub-populations: susceptible (S(t)), infected (I(t)), isolated (P(t)), treated
(T(t)) and recovered (R(t)) individuals (i.e., Nh(t) = S(t) + I(t) + P(t) + T(t) + R(t)).
On the other hand, the total rodent population at time t, denoted by Nr(t), is divided into
susceptible (X(t)) and infectious (Y(t)) rodents (i.e., Nr(t) = X(t) + Y(t)). A susceptible-
infected model only is used for the dynamics of the rodent population because Mastomys
rats infected with the Lassa virus do not become ill, but they can shed the virus in their
urine and faeces [14].

The dynamics across each of the subpopulations are captured in the model develop-
ment as follows. The transmission of Lassa fever can occur through human-to-human,
rodent-to-human, human-to-rodent or rodent-to-rodent transmissions [2]. Susceptible indi-
viduals may proceed from the susceptible human class to the infected class upon contracting
the disease through human-to-human or rodent-to-human transmission. Infected individu-
als are either moved to the isolated class for treatment in the treatment class or proceed
directly to the treatment class. Treated individuals proceed to the recovered/temporally
immune class upon recovery. Recovered individuals return to the susceptible class as their
immunity relapses. Control measures that can lead to a reduction in human-to-human,
rodent-to-human, human-to-rodent, and rodent-to-rodent transmission are represented in
the model as reduction parameters. The use of approved rodenticides is another control
measure that is present in the model as a rate of rodent death due to this control. Based on
these assumptions, the model for the dynamics and control of Lassa fever is presented here:

dS(t)
dt

= Λh − (1− chh)βhh
I(t)

Nh(t)
S(t)− (1− crh)βrh

Y(t)
Nr(t)

S(t)− µS(t) + ωR(t),

dI(t)
dt

= (1− chh)βhh
I(t)

Nh(t)
S(t) + (1− crh)βrh

Y(t)
Nr(t)

S(t)− (σ + ν + µ + δ)I(t),

dP(t)
dt

= σI(t)− (ν + δ + µ)P(t),

dT(t)
dt

= νI(t) + νP(t)− (γ + µ + η)T(t), (1)

dR(t)
dt

= γT(t)− (ω + µ)R(t),

dX(t)
dt

= Λr − (1− crr)βrr
Y(t)
Nr(t)

X(t)− (1− chr)βhr
I(t)

Nh(t)
X(t)− (ξ + ρ)X(t),

dY(t)
dt

= (1− crr)βrr
Y(t)
Nr(t)

X(t) + (1− chr)βhr
I(t)

Nh(t)
X(t)− (ξ + ρ)Y(t).
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The meaning of variables and parameters of model (1) can be found in Tables 1 and 2,
respectively.

Table 1. Variables for model (1).

Variables Meaning Unit

Nh(t) Total human population at time t Persons
S(t) Population susceptible humans at time t Persons
I(t) Population of infected human at time t Persons
P(t) Population of isolated individuals at time t Persons
T(t) Populations of treated individuals at time t Persons
R(t) Recovered/immune human at time t Persons
Nr(t) Total rodents population at time t Rodents
X(t) Population of susceptible rodents at time t Rodents
Y(t) Population of infected rodents at time t Rodents

Table 2. Parameters for model (1).

Variables Meaning Unit

Λh Recruitment rate of humans through birth or immigration Persons day−1

βhh Human-to-human transmission rate Day−1

βrr Rodent-to-rodent transmission rate Day−1

βrh Rodent-to-human transmission rate Day−1

βhr Human-to-rodent transmission rate Day−1

µ Natural mortality rate of humans Day−1

σ Rate of isolation of infected individuals Day−1

ν Treatment rate of I(t) and P(t) Day−1

δ Disease induced death rate of I(t) and P(t) Day−1

η Disease induced death rate of T(t) Day−1

γ Expected recovery rate of T(t) Day−1

ω Rate of relapse from R(t) to S(t) Day−1

ξ Natural death rate of rodents Day−1

ρ Death rate of rodents due to control measures (CM) Day−1

Λr Recruitment rate of rodents through birth Rodents day−1

chh Reduction of human-to-human transmission using CM Dimensionless
chr Reduction of human-to-rodent transmission using CM Dimensionless
crh Reduction of rodent-to-human transmission using CM Dimensionless
crr Decrease in rodent-to-rodent transmission using CM Dimensionless

3. Validity of the Model Using Empirical Data of a Lassa Fever Outbreak in Nigeria

From 2018 until now, Nigeria has recorded its highest annual incidences of Lassa
fever [15,16]. Statistics from the Nigeria Centre for Disease Control (NCDC) present the
following data: 633 confirmed cases of Lassa fever in 2018, 810 in 2019, 1189 in 2020, and 510
in 2021 [16]. This current situation has prompted national and international healthcare
mobilization and raised concerns about the ongoing Lassa fever outbreak [15]. In this
section, the data are used to explore how effective (1) is in modelling Lassa fever outbreaks
in Nigeria.

Model Fitting and Parameter Estimation

The data sets used to fit the model were extracted from the Nigeria Centre for Disease
Control and Prevention (NCDC) website [16]. The data provide comprehensive information
on the number of confirmed and suspected cases of Lassa fever in Nigeria from 2018 to
2022. The model was fit to this data using a least-squares fitting routine. Parameters
used in the model are estimated from existing literature and parameters representing the
various control measures are estimated using the model fitting. Confirmed cases and



Mathematics 2023, 11, 1181 5 of 18

suspected cases of Lassa fever in Nigeria from 2018 to 2021 extracted from the NCDC
data set are presented in Figure 1. A suspected case of Lassa fever is defined as any
individual with at least one of the following symptoms: malaise, fever, headache, sore
throat, cough, nausea, vomiting, diarrhoea, myalgia, chest pain, hearing loss etc. [16].
On the other hand, a confirmed Lassa fever case is defined as any suspected case with
laboratory confirmation [16].
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Figure 1. Plot showing the monthly confirmed cases and suspected cases of Lassa fever in Nigeria
from 2018 to 2021 [16].

The data are presented yearly for visualization of the seasonality of the Lassa fever
dynamics in Nigeria. From the figure, it is easily observed that the annual peak of Lassa
fever cases (confirmed and suspected cases) is typical during the dry season (December–
April). Also, both the confirmed and suspected cases of Lassa fever have similar trajectories
in Figure 1. So either of them can be used to predict the future dynamics of Lassa fever in
Nigeria. However, in this study, we shall consider the confirmed case data in our analysis.

In fitting model (1) to the data, the following assumptions are made. The con-
firmed cases comprise the following: infected individuals I(t), isolated individuals P(t),
and treated individuals T(t). The transmission rates βhh, βhr, βrh, βrr, and the recruit-
ment rate of susceptible rodents through birth Λr are multiplied by a seasonality factor
(1 + cos(πt

6 + 0.5)) to account for the seasonal pattern observed in the data [2,9,15–17].
For fitting the model, we consider parameter values from the literature (3). The units of
most of the parameter values in Table 3 are per day, but all parameters were converted
to units per month for the numerical simulations. Other parameters, including those rep-
resenting various control measures, are estimated using the least squared fitting method
and are chh = 0.1468, crh = 0.9999, σ = 0.01097 month−1, ν = 0.001066 month−1,
ρ = 1.2244 month−1, chr = 0.6951, and crr = 0.000001179. Results of the model fitting
are given in Figure 2. Overall, the R-squared value for this fit is low (0.567) due to high
fluctuations in seasons where the disease is more prevalent (2). However, the model is
adequate for the purposes of this study where overall trends are compared for assessing
the impacts of the different control measures. The model considered in this study is a set of
non-linear ordinary differential equations that have been used previously to fit infectious
disease outbreaks such as Lassa fever [9].
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Table 3. Parameter information for model (1).

Parameter Unit Baseline Range Source

Λh Persons day−1 10, 000 – [2]
Λr Rodents day−1 83.33 – [18]
βhh day−1 0.221 0.03–0.50 [2]
βrh day−1 0.0296 0.01–0.80 [2]
βhr day−1 0.259 0.03–0.50 [2]
βrr day−1 0.052 0.005–0.40 [2]
µ day−1 0.00005 – [2]
δ day−1 0.485 0.10–0.50 [9]
η day−1 0.269 0.10–0.50 [9]
γ day−1 0.446 0.00–1.00 [9]
ω day−1 0.00578 0.0035–0.03 [9]
ξ day−1 0.003 0.001–0.006 [9,19]
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Figure 2. Model fit of the confirmed cases of Lassa fever in Nigeria from 2018 to 2021, where vertical
lines represent the error bars of the model fit.

4. Model Analyses

The dynamics of model (1) are investigated by means of dynamical system analysis
supported with numerical simulations. The mathematical analyses, presented in this sec-
tion, using various mathematical techniques, enable the determination of epidemiological
trends in the model dynamics. For instance, the stability analysis of the model about the
disease-free equilibrium is analysed by linearizing the model about its equilibrium point to
determine the short-term dynamics of the model. Also, bifurcation analysis is presented us-
ing the Centre Manifold Theorem to determine the dynamics when the basic reproduction
number crosses unity. The following simplifications are used for the analysis of model (1):
d1 = σ + ν + µ + δ, d2 = ν + δ + µ, d3 = γ + µ + η, d4 = ω + µ, and d5 = ξ + ρ.

4.1. Stability Analysis

The disease-free equilibrium (DFE) of model (1), the steady-state solution of the model
in the absence of Lassa fever disease, is calculated by setting the right-hand sides of
model (1) to zero and simultaneously solving the equation for this case. The resulting DFE
of model (1) is

(S0, I0, P0, T0, R0, X0, Y0) =

(
Λh
µ

, 0, 0, 0, 0,
Λr

d5
, 0
)

. (2)



Mathematics 2023, 11, 1181 7 of 18

The basic reproduction number is an important epidemiological quantity used in
estimating the ability of a new pathogen to spread. The basic reproduction number (R0) of
model (1) is calculated using the next-generation matrix method [20] and is given by

R0 =
Rhh +Rrr +

√
(Rhh +Rrr)2 + 4(RrhRhr −RhhRrr)

2
, (3)

where Rhh = (1−chh)βhh
d1

, Rrr = (1−crr)βrr
d5

, Rrh = (1−crh)βrhS0
d5X0 , and Rhr = (1−chr)βhrX0

d1S0 .
The quantities Rhh, Rhr, Rrh and Rrr represent contributions to the basic reproduction
number from the human-to-human, rodent-to-human, human-to-rodent and rodent-to-
rodent transmissions, respectively. Epidemiologically, ifR0 < 1, the disease is likely to die
out and ifR0 > 1, the disease can persist [4,20]. Thus, implementing control measures that
will keep R0 below unity is an important target of the epidemiologist for improving the
chances of achieving disease eradication [4–6,20].

LetR∗0 = RrhRhr
(1−Rhh)(1−Rrr)

. By algebraic calculations, it is easy to show that

R0 = 1⇐⇒ R∗0 = 1. (4)

The essence of establishing this relationship is because of the roleR∗0 will play in our
subsequent analyses.

Theorem 1. ForRhh < 1 andRrr < 1, the DFE of model (1) is locally stable ifR∗0 < 1.

The proof of this theorem is given in the Appendix A. Mathematically, this suggests
that Lassa fever disease could be eliminated if the initial population sizes of infected
humans and rodents are within some neighbourhood of the DFE (2) provided thatRhh < 1,
Rrr < 1, andR∗0 < 1.

4.2. Existence of Lassa Fever Disease Endemic Equilibrium

The existence of the Lassa fever endemic equilibrium (EE) for model (1) is investigated
in this section. The EE for model (1) denoted by

E∗ = (S∗, I∗, P∗, T∗, R∗, R∗, Y∗) (5)

is the steady-state solution of model (1) in the presence of Lassa fever disease. The existence
of EE is summarized in Theorem 2 below.

Theorem 2. For Rhh < 1 and Rrr < 1, the Lassa fever model (1) has at least one endemic
equilibrium wheneverR∗0 > 1.

The proof of Theorem 2 is given in the Appendix B. The existence of endemic equilib-
rium for model (1) shows that it is possible for Lassa fever to be endemic if the endemic
equilibrium is proved to be stable whenever R∗0 > 1. The direction of bifurcation about
R0 = 1 for model (1) can give some insight on the conditions under which Lassa fever can
be endemic or not in a system.

4.3. Bifurcation Analysis

The quantity R0 is often a bifurcation parameter. The bifurcation about R0 = 1 for
model (1) is determined using Center Manifold Theory as described in [21]. This result of
the bifurcation analysis is summarized in the theorem below.

Theorem 3. Lassa fever model (1) undergoes a forward bifurcation at R0 = 1, whenever h2 <
h3 + h4 + h5.
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The proof of Theorem 2 is given in the Appendix C. Epidemiologically, if model (1)
undergoes a forward bifurcation at R0 = 1, it implies that reducing the basic reproduc-
tion number below unity is sufficient for complete eradication of Lassa fever. Therefore,
determining the possible control measures that will keep the basic reproduction number
below unity is crucial for the complete eradication of Lassa fever based on our model
formulation. In the next section, numerical simulations are considered to investigate the
long-term dynamics of model (1) and the impact of Lassa fever control measures using the
previous Lassa fever outbreaks in Nigeria as a case study.

5. Numerical Example: A Case Study of Lassa Fever Outbreak in Nigeria

Using the parameter values estimated from fitting the model to the data, the basic
reproduction numberR0 for Lassa fever is calculated to beR0 = 1.1868. This result shows
that Lassa fever is likely to remain endemic in Nigeria for many years unless effective
control measures are introduced that keep the basic reproduction number below unity.

Using these estimated parameter values, the possible long-term dynamics of Lassa
fever in Nigeria are predicted as shown in Figure 3.
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Figure 3. Plot showing a possible long-term dynamics of Lassa fever in Nigeria using the estimated
parameter values.

Figure 3 is a graphical illustration of the possible long-term dynamics of the Lassa
fever outbreak in Nigeria using model (1). The figure, which is for a duration of 120 months
(10 years), accurately captures the seasonal periodic dynamics of the Lassa fever outbreak
in Nigeria. This suggests that seasonal outbreaks of Lassa fever are expected to continue
in Nigeria for a long time. Therefore, effective control intervention strategies are highly
recommended, especially during the Lassa fever disease annual peak (December to April)
for the possible elimination of the disease.

Effects of Control Measures on Lassa Fever Disease

Since the inception of the recent Lassa fever outbreak in Nigeria, several control mea-
sures have been implemented. In this section, the effect of control measures on Nigerian
Lassa fever is analysed using model (1). The analyses use the estimated parameter val-
ues together with parameter values given in Table 3. The results are presented in the
Figures below.

Human-to-human transmission is one of the major ways of contracting Lassa fever.
This transmission route is very common among health workers caring for Lassa fever-
infected persons. Case Management and Infection Prevention and Control (IPC) are control
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measures that are currently used by the Nigeria Government to reduce person-to-person
transmission of Lassa fever, especially among health workers [1]. For this reason, the Gov-
ernment has been conducting Case Management and IPC training for treatment center
healthcare workers [1]. These control measures are captured in model (1) by Chh, which
allows for a reduction of human-to-human transmission. Figure 4 is a graphical illustration
of the effects of a reduction of human-to-human transmission using Chh in (1). The figure
shows that increasing this control measure (Chh) decreases the number of confirmed cases
of Lassa fever during the annual peak period (December to April). Specifically, 99% efficacy
of the control measure can save about 450 individuals from contacting the infection during
the annual peak period. Note that outside the peak period, the number of infections dies
out making the impact of control less important. Therefore, we recommend the effective
implementation of these control measures, especially during the dry season, for optimal
reduction of human-to-human transmission of Lassa fever disease in Nigeria.
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Figure 4. Plot showing the effects of reduction of human-to-human transmission using control
measures (Chh) on the dynamics of Lassa fever in Nigeria.

Rodents-to-human transmission is the primary transmission route of Lassa fever.
Humans mainly get infected with Lassa fever through this transmission pathway when
they come in contact with food or household items contaminated with urine or faeces from
Mastomys rats. Vector and environmental control is the Nigerian Government intervention
strategy for reducing rodents-to-human transmission of Lassa fever [1]. Through this
intervention strategy, the Ministry of Environment of Nigeria is implementing a Lassa
fever environmental response campaign in affected states (locations) [1]. These control
measures are captured in model (1) by Crh, which allows for a reduction of rodents-to-
human transmission. Figure 5 is a graphical illustration of the effects of a reduction of
rodents-to-human transmission using Crh in model (1). The figure shows that the effective
implementation of these control measures can lead to a significant decrease in the number
of Lassa fever confirmed cases in Nigeria. In fact, rodents-to-human control, unlike human-
to-human control, accumulates over time and so some minimal control can effectively
eliminate the disease over time, for example, Crh = 0.25 in Figure 5.

The impact of these control measures can also be explained in terms of the basic
reproduction number. For instance, when no control measure for a reduction in rodents-to-
human transmission is considered (Crh = 0.0), the basic reproduction number increases
to R0 = 1.3065. However, if the control measure is considered such that (Crh = 0.75),
the basic reproduction number decreases to R0 = 1.2199, illustrating the impact of this
control measure. Therefore, effective implementation of these control measures is strongly
recommended for the possible elimination of Lassa fever in Nigeria.
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Figure 5. Plot showing the effects of reduction of rodents-to-human transmission using control
measures (Crh) on the dynamics of Lassa fever in Nigeria.

Rodents-to-rodents transmission is an indirect route through which Lassa fever disease
can be transmitted to humans [2]. This is because rodents-to-rodent transmission increases
the population of infected rodents, which increases the probability of rodents-to-human
transmission. Thus, decreasing rodents-to-rodents transmission is a control measure that
can reduce Lassa fever disease. Studies have shown that the use of rodent vaccination is a
strategy that could lead to Lassa virus elimination [11]. Note, that the main target of rodent
vaccination is to reduce rodents-to-rodent transmission. So, control measures such as rodent
vaccination is captured in model (1) as reduction of rodents-to-rodents transmission using
Crr. Figure 6 is a plot showing the effects of reduction of rodents-to-rodents transmission of
Lassa fever in Nigeria. The figure shows that effective implementation of this control with
about 99% efficacy can save about 300 individuals in Nigeria from being infected with the
disease during the peak period and consequently lead to possible eradication of the disease
in Nigeria. Also, as with direct transmission, rodents-to-rodents control can eliminate the
disease over time. Thus, effective implementation of this control is strongly recommended
for the possible elimination of Lassa fever in Nigeria.
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Figure 6. Plot showing the effects of reduction of rodents-to-rodents transmission using control
measures (Crr) on the dynamics of Lassa fever in Nigeria.
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Isolation of infected individuals is one of the approved epidemiological methods
of controlling Lassa fever transmission. Effective implementation leads to a reduction
in human-to-human transmission and rodents-to-human transmission. The Nigerian
government through their Clinical Management Program established several treatment
centers where infected individuals can be isolated for proper treatment [1]. This control
measure is captured in model (1) as the rate of isolation of infected individuals (σ). Figure 7
is a plot showing the effects of the rate of isolation of infected individuals (σ). The figure
shows that increasing the rate of isolation of infected individuals decreases the number
of Lassa fever confirmed cases in Nigeria during the disease annual peak. Unlike the
previous two controls, isolation alone does not stop the seasonal outbreak, as shown in
the figure. Therefore, prompt isolation of infected individuals in combination with other
control measures are recommended.
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Figure 7. Plot showing the effects of rate of isolation of infected individuals (σ) on the dynamics of
Lassa fever in Nigeria.

Treatment of infected individuals is an approved medical method of controlling
Lassa fever infections. Effective implementation of this control measure saves human
lives. The Nigerian government, through their Clinical Management Program, established
several treatment centres where infected individuals can be properly treated [1]. This
control measure is captured in model (1) as a rate of treatment of infected individuals (ν).
Figure 8 is a plot showing the effects of treatment of infected individuals (ν). The figure
shows that increasing the rate of treatment of infected individuals decreases the number of
confirmed Lassa fever cases. Again, treatment alone does not stop the seasonal outbreak,
as shown in the figure. Hence, proper treatment of infected individuals together with other
control measures are recommended.

The killing of infected rodents using approved rodenticides is another control measure
that reduces Lassa fever transmission. The Ministry of Environment of Nigeria, through the
Vector and Environmental Control Strategy, is implementing a Lassa fever environmental
response campaign in affected locations [1]. Control measures such as the Vector and
Environmental Control Strategy are captured in model (1) as killing rodents using ρ.
Figure 9 is a plot showing the effects of killing rodents using chemical control measures
(ρ). The figure illustrated that increasing the rate of killing rodents reduces Lassa fever
infections. Effective implementation of this control can save about 1200 humans from
contacting the disease during a disease peak period. In this case, above a threshold of
rodent reductions, the disease is completely eliminated. Thus, killing of rodents, especially
infected rodents, is strongly recommended for the possible eradication of Lassa fever
in Nigeria.
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Figure 8. Plot showing the effects of the rate of treatment of infected individuals (ν) on the dynamics
of Lassa fever in Nigeria.
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Figure 9. Plot showing the effects of killing rodents using chemical control measures (ρ) on the
dynamics of Lassa fever in Nigeria.

6. Discussion

Lassa fever is a deadly illness caused by the Lassa virus and its main host is the
multimammate rat, which is dominant in some rural areas of West Africa. Lassa fever is
endemic in some West African countries including Nigeria where multimammate rats are
present. Seasonal outbreaks of Lassa fever have been confirmed in Nigeria since 2018 to
date [1]. This study considered a mathematical model to analyse the dynamics and control
of Lassa fever in Nigeria as a case study.

A deterministic model (1) for the dynamics and control of Lassa fever was developed.
The model is shown to fit Nigerian data on Lassa fever outbreaks between 2018 and 2021
using parameters from previous literature and fitting control parameters.

The model is shown to have a unique disease-free equilibrium and at least one en-
demic equilibrium. The basic reproduction number R0 of the model was determined
using the next-generation matrix method. It is shown that the disease-free equilibrium is
asymptotically stable whenR0 < 1. This means that Lassa fever disease will be eradicated
using the specified control measures if the initial population of the infected individuals
lies within the region of attraction of the disease-free equilibrium whenR0 < 1 otherwise
the disease persists. The Center Manifold Theorem was used to determine the conditions
for the bifurcation about R0 = 1. For h2 > (h3 + h4 + h5), the model undergoes forward
bifurcation, which implies that keeping the basic reproduction number below unity is suffi-
cient for the total eradication of Lassa fever using the specified control measures. Further
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analysis was considered to determine the long-term dynamics of Lassa fever transmission
and the impact of control measures using model (1). This was carried out using numerical
simulations with the published data from Nigeria as a case study.

As the model is a good fit for the outbreak of Lassa fever in Nigeria from 2018 to 2021,
it is used further for predictions of Lassa fever trends in Nigeria. Using the parameter
values, the basic reproduction numberR0 for Lassa fever over this period isR0 = 1.1868.
This result shows that Lassa fever is likely to remain endemic in Nigeria for many years
unless effective control measures are implemented. This fact is supported by numerical
predictions. Therefore, effective control intervention strategies are highly recommended in
Nigeria, especially during the Lassa fever disease annual peak (December to April) for the
possible elimination of the disease in Nigeria.

The influence of various control measures for Lassa fever disease in Nigeria is ex-
amined using the model (1) together with the estimated parameter values. Effective
implementation of the reduction in human-to-human transmission using control measures
can save about 450 individuals from contracting the infection during the annual peak
(December to April) in Nigeria. Similarly, effective implementation of the reduction in
rodents-to-human transmission using control measures leads to a significant decrease in
the number of Lassa fever confirmed cases in Nigeria. Also, effective implementation of
the reduction of rodents-to-rodents transmission using control measures can save about
300 individuals in Nigeria from being infected with the disease during the peak period and
consequently lead to possible eradication of the disease in Nigeria. Furthermore, effective
implementation of the killing of infected rodents using approved rodenticides can save
about 1200 from getting infected. Isolation and treatment of infected individuals are shown
to have some influence in reducing Lassa fever disease in Nigeria but were less effective
when compared with other control measures like the use of rodenticides, reduction in
person-to-person transmissions, and rodent-to-person transmissions. Also, isolation and
treatment of infected individuals do not stop the seasonal outbreaks. A possible explanation
for the insignificant impact of isolation and treatment could be that treated individuals
do not have permanent immunity against re-infection. Therefore, based on these results,
effective implementation of control measures such as the use of rodenticides, reduction in
person-to-person, rodent-to-rodent, and rodent-to-person transmission should be the main
focus for the possible elimination of the seasonal Lassa fever outbreaks in Nigeria.

The results of our study agree with other findings on Lassa fever disease outbreaks in
Nigeria. For instance, Ref. [9] used a mechanistic modelling study of Lassa fever epidemics
in Nigeria from 2016–2019. Similarities in the transmission dynamics driving the three
major Lassa fever outbreaks over that period were outlined by their study. Qualitatively,
their model and the one used here support the occurrence of forward bifurcation where
the stability changes from a disease-free equilibrium to an endemic equilibrium. However,
our model incorporates multiple control measures together with data to study and make
predictions of the possible dynamics of future Lassa fever epidemics. Although our model
successfully captured the overall dynamics of a Nigerian Lassa fever outbreak, it has
limitations. A major limitation is that data on rodent population densities in that country
are not available even though rodents are the major source of Lassa fever infection. Future
research can focus on Lassa fever dynamics when rodent data become available.
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Appendix A. Proof of Theorem 1

Proof. The eigenvalues of the Jacobian of model (1) about the DFE are:

λ1 = −µ,

λ2 = −d2,

λ3 = −d3,

λ4 = −d4,

λ5 = −d5,

λ6 =
−
(
d1R0

hh + d5R0
rr
)
−
√(

d1R0
hh + d5R0

rr
)2

+ 4d1d5(RhrRrh −R0
hhR

0
rr)

2
,

λ7 =
−
(
d1R0

hh + d5R0
rr
)
+
√(

d1R0
hh + d5R0

rr
)2

+ 4d1d5(RhrRrh −R0
hhR

0
rr)

2
,

where R0
hh = (1−Rhh) and R0

rr = (1−Rrr). Obviously, λ1 < 0, λ2 < 0, λ3 < 0, λ4 <
0, λ5 < 0 and λ6 < 0. Mathematically, λ7 < 0 if RhrRrh − (1 − Rhh)(1 − Rrr) < 0.
But, RhrRrh − (1−Rhh)(1−Rrr) = (1−Rhh)(1−Rrr)

(
RhrRrh

(1−Rhh)(1−Rrr)
− 1
)

. Therefore,

λ7 < 0 if RhrRrh
(1−Rhh)(1−Rrr)

< 1. Hence, the DFE (2) is locally stable ifR∗0 < 1.

Appendix B. Proof of Theorem 2

Proof. The proof of the existence of the Lassa fever endemic equilibrium (EE) for model (1)
is established as follows. The EE for model (1) denoted by

E∗ = (S∗, I∗, P∗, T∗, R∗, R∗, Y∗) (A1)

is the steady-state solution of model (1) in the presence of Lassa fever disease. Equating the
right-hand sides of model (1) to zero and solving simultaneously, gives the following:

S∗ = S0 − A2 I∗, P∗ =
σI∗

d2
, T∗ =

ν(σ + d2)I∗

d2d3
, R∗ =

γν(σ + d2)I∗

d2d3d3
,

X∗ = N∗r −Y∗, Y∗ = N∗r − X∗, N∗h = S0 − A1 I∗, N∗r =
Λr

d5
, (A2)

where A1 = δd2d3+δσd3+νηd1
µd2d3

> 0 and A2 = (νγµ+ν(µ+η)d4+(δ+µ)d3d4)d1
µd2d3d4

> 0. Substituting

Rrr,Rhh,Rrh andRhr into model (1) and solving for Y∗ from the equation dI
dt = 0, gives

Y∗ =
d1S0 I∗(N∗h −RhhS∗)

d5RrhN∗h S∗
. (A3)

Observe from the above equation (A3) that Y∗ > 0⇐⇒ N∗h −RhhS∗ > 0. Substituting
S∗ = S0− A2 I∗ and N∗h = S0− A1 I∗ into N∗h −RhhS∗ and simplifying gives N∗h −RhhS∗ =
S0(1−Rhh)+ (A2Rhh−A1)I∗. Since, N∗h −RhhS∗ > 0, we must have that S0(1−Rhh) > 0
and (A2Rhh − A1) > 0. This shows that (1 − Rhh) > 0 at the endemic stage of the
model (1).

Also, substituting the basic reproduction numbers and simplifying dY
dt = 0, gives

d1S0Rhr I∗X∗ = d5Y∗N∗h (N∗r −RrrX∗). (A4)
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For endemic equilibrium to exist, we must have that N∗r − RrrX∗ > 0. Further
simplification gives N∗r −RrrX∗ = N∗r (1−Rrr) +Y∗Rrr. This also shows that (1−Rrr) >
0 at the endemic stage of the model (1).

Taking these into consideration and substituting equations (A2) into equation (A4)
and solving for I∗ in the equation (A4), gives the polynomial

a3(I∗)3 + a2(I∗)2 + a1(I∗) + a0 = 0, (A5)

where the coefficients

a0 = l1(S0)2d5Rrh,

a1 = S0
(

l2d5S0Rrh − l1(A1 + A2)d5Rrh − l3d1S0(1−Rhh)
)

,

a2 = S0
(

l1S0 A1 A2d5Rrh − l2(A1 + A2)d5Rrh − l3(A2Rhh − A1)d1 − l4d1S0(1−Rhh)
)

,

a3 = l2 A1 A2d5Rrh − l4(A2Rhh − A1)d1S0,

and

l1 = S0N∗r (1−Rhh)(1−Rrr)(R∗0 − 1),

l2 = −N∗r [A2RrhRhr + (A2Rhh − A1)(1−Rrr)],

l3 = S0[RrhRhr + (1−Rhh)Rrr],

l4 = (A2Rhh − A1)Rrr −RrhRhr.

Clearly,

l1 > 0⇐⇒ R∗0 > 1,Rrr < 1,Rhh < 1,

l2 < 0⇐⇒ Rrr < 1,

l3 > 0⇐⇒ Rhh < 1.

From the above, we observe that the coefficients

a0 > 0⇐⇒ R∗0 > 1,Rrr < 1,Rhh < 1,

a1 < 0⇐⇒ R∗0 > 1,Rrr < 1,Rhh < 1.

So there is at least a sign change in the coefficients a0, a1, a2, a3 of the polynomial (A5).
Hence, by Descartes rule of signs, there exists at least one positive real root for equation
(A5) wheneverR∗0 > 1,Rrr < 1,Rhh < 1. This completes the proof.

Appendix C. Proof of Theorem 3

Proof. To prove that model (1) undergoes a forward bifurcation atR0 = 1, we proceed as
follows. Using the Center Manifold Theory as described in [21], let φ = βrh be a bifurcation
parameter. By denoting x1 = S(t), x2 = I(t), x3 = P(t), x4 = T(t), x5 = R(t), x6 =
X(t), x7 = Y(t), Nh(t) = x1 + x2 + x3 + x4 + x5, and Nr(t) = x6 + x7, model (1) becomes
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dx1

dt
= Λh −

(1− chh)βhhx2x1

x1 + x2 + x3 + x4 + x5
− (1− crh)βrhx2x1

x6 + x7
− µx1 + ωx5 := f1,

dx2

dt
=

(1− chh)βhhx2x1

x1 + x2 + x3 + x4 + x5
+

(1− crh)βrhx2x1

x6 + x7
− (σ + ν + µ + δ)x2 := f2,

dx3

dt
= σx2 − (ν + δ + µ)x3 := f3,

dx4

dt
= νx2 + νx3 − (γ + µ + η)x4 := f4, (A6)

dx5

dt
= γx4 − (ω + µ)x5 := f5,

dx6

dt
= Λr −

(1− crr)βrrx7x6

x6 + x7
− (1− chr)βhrx2x6

x1 + x2 + x3 + x4 + x5
− (ξ + ρ)x6 := f6,

dx7

dt
=

(1− crr)βrrx7x6

x6 + x7
+

(1− chr)βhrx2x6

x1 + x2 + x3 + x4 + x5
− (ξ + ρ)x7 := f7,

with R0 = R∗0 = 1 corresponding to βrh = φ = φ∗ = d1d5(1−Rrr)(1−Rhh)
βhr(1−crh)(1−chr)

. The DFE (2)

becomes (x∗1 , x∗2 , x∗3 , x∗4 , x∗5 , x∗6 , x∗7) =
(

Λh
µ , 0, 0, 0, 0, Λr

ξ+ρ , 0
)

. For φ = φ∗, the Jacobian of
model (A6) at the DFE is calculated as

J =



−µ −p12 0 0 ω 0 −p27
0 −p22 0 0 0 0 p27
0 σ −d2 0 0 0 0
0 ν ν −d3 0 0 0
0 0 0 γ −d4 0 0
0 −p72 0 0 0 −d5 −p67
0 p72 0 0 0 0 −p77


, (A7)

where p12 = (1 − chh)βhh = d1Rhh > 0, p22 = d1 − (1 − chh)βhh = d1(1 − Rhh) >

0, p27 =
(1−crh)β∗rhx∗1

x∗6
> 0, p72 =

(1−chr)βhr x∗6
x∗1

> 0, p67 = (1− crr)βrr = d5Rrr > 0, p77 =

d5 − (1− crr)βrr = d5(1−Rrr) > 0.
A right eigenvector w = (w1, w2, w3, w4, w5, w6, w7)

′ associated with simple zero eigen-
value is

w =

(
d1 A2w2, w2,

σw2

d2
,

d1νw2

d2d3
,

γd1νw2

d2d3d4
, w6,

p22w2

p27

)′
,

where w2 = w2 > 0, w6 = − (p27 p72+p67 p22)w2
d5 p27

< 0 and the superscript ′ represent the
transpose. Similarly, a left eigenvector v = (v1, v2, v3, v4, v5, v6, v7) associated with simple
zero eigenvalue is

v =

(
0,

p72v7

p22
, 0, 0, 0, 0,

p22 p27

(p72 p27 + p2
22)w2

)
,

where v2 is determined taking into consideration the condition v.w = 1 of the eigenvectors.
According to the Center Manifold Theory [21] the bifurcation of model (1) aboutR0 = 1
are totally determined by the sign of a and b, where

a =
n

∑
k,i,j=1

vkwiwj
∂2 fk

∂xi∂xj
(0, 0), (A8)

b =
n

∑
k,i=1

vkwi
∂2 fk

∂xi∂φ
(0, 0), (A9)
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and fk is the kth component of f . Algebraic computation of a and b gives

a =
2

x∗1 x∗6
(h2 − (h3 + h4 + h5)), (A10)

b =
v2w7(1− crh)x∗1

x∗6
> 0, (A11)

where h2 = v2w7d5Rrh(w1x∗6 + w∗6 x∗1) > 0, h3 = v2(w1h1d1Rhhx∗6 + w2
7d5Rrhx∗1) >

0, h4 = v7d1Rhr(w7(w1 + h1)x∗6 + w2w∗6 x∗1) > 0, h5 = v7w2
7d5Rrrx∗1 > 0, h1 = w2 +

w3 + w4 + w5 and w∗6 = −w6 > 0. So, the bifurcation at R0 = 1 depends on the sign of a
and there are two possibilities (i.e., a < 0 or a > 0). According to the Center manifold Theo-
rem [21], if a < 0 (i.e., h2 < h3 + h4 + h5), then model (1) undergoes a forward bifurcation
atR0 = 1. This completes the proof.
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