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Abstract: Our paper aims to study the geometry of submanifolds of an almost-complex metallic
manifold. We give an example of this type of manifold, and reveal the fundamental properties of
structure induced on submanifolds. We establish subsets of submanifolds in almost-complex metallic
manifolds, such as invariant, anti-invariant, and slant submanifolds.
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1. Introduction

In differential geometry, manifolds equipped with different geometric structures,
such as almost-complex (briefly AC) structures, almost-product structures, and almost-
contact structures, have been investigated extensively. Spidanel defined metallic mean
in [1]. Inspired by metallic mean, golden Riemannian manifolds and metallic Riemannian
(briefly MR) manifolds were introduced in [2–4]. Golden Riemannian manifolds, MR
manifolds, and their submanifolds have been studied widely by many authors. Various
types of submanifolds of golden and MR manifolds—such as invariant, anti-invariant,
slant, and lightlike—were examined in [5–15]. Recently, different types of manifolds, called
the almost-poly-Norden manifold and the almost-bronze manifold, were introduced in [16]
and [17], respectively. See [18–20] for several studies about poly-Norden manifolds.

Consider the equation x2− ax + 3
2 b = 0 , where a and b are the real numbers satisfying

−
√

6b < a <
√

6b and b ≥ 0. The equation has complex roots, as Ca,b = a±
√

a2−6b
2 .

The complex numbers Ca,b = a+
√

a2−6b
2 were named complex metallic means family in [21].

In particular, if a = 1 and b = 1, then the complex metallic means family Ca,b = a+
√

a2−6b
2

reduces to the complex golden mean: C1,1 = 1+
√

5i
2 , i2 = −1, which is a complex analog of

the well-known golden mean [2]. Inspired by the complex metallic means family, the almost-
complex metallic (briefly ACM) structure and the ACM manifold were introduced in [21].

In this paper, we instigate a study of submanifolds in ACM manifolds. We present
fundamental properties of structure induced on submanifolds, and investigate the geometry
of some subsets of submanifolds in ACM manifolds, such as invariant, anti-invariant,
and slant submanifolds.
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2. Preliminaries

The positive solution of

x2 − ax +
3
2

b = 0

is called complex mean [21], which is described by

Ca,b =
a +
√

a2 − 6b
2

, (1)

where a and b are the real numbers satisfying b ≥ 0 and−
√

6b < a <
√

6b. In [21], by using
the complex mean given in (1), a new type of structure on a Riemannian manifold was
defined by the authors. LetM be a Riemannian manifold. An ACM structure is a (1, 1)
tensor field, J̃M onM, which satisfies the relation

J̃2
M − aJ̃M +

3
2

bI = 0, (2)

where I is the identity (1, 1) tensor field onM. In this case, we sayM is an ACM manifold
equipped with an ACM structure J̃M.

Note that if we take a = m and b = 2
3 in (2), we obtain an almost-poly-Norden structure.

Example 1. Conceive the 4-tuples real space R4 and identify a map,

J̃M : R4 → R4;

J̃M(x1, x2, y1, y2) = (Ca,bx1, Ca,bx2, (a− Ca,b)y1, (a− Ca,b)y2),

where Ca,b = a+
√

a2−6b
2 . We can easily see that J̃M satisfies J̃2

M − aJ̃M + 3
2 bI = 0. That is,

(R4, J̃M) is an example of ACM manifolds.

If (M, g̃) is a semi-Riemannian manifold given with an ACM structure, such that the
metric g̃ is J̃M−compatible,

g̃( J̃MX̃, J̃MỸ) = ag̃( J̃MX̃, Ỹ)− 3
2

bg̃(X̃, Ỹ) (3)

equivalent to
g̃( J̃MX̃, Ỹ) = g̃(X̃, J̃MỸ), (4)

for every X̃, Ỹ ∈ Γ(TM); therefore, (M, J̃M, g̃) is called an almost-complex metallic semi-
Riemannian (briefly ACMSR) manifold.

Proposition 1 ([21]). If J̃M is an ACM structure onM, then

J± = ±
(

2
2Ca,b − a

J̃M −
2a

2Ca,b − a
I
)

are two AC structures onM. Inversely, if J is an AC structure onM, then

J̃M =
a
2

I ±
(

2Ca,b − a
2

J
)

are two ACM structures onM, where Ca,b = a+
√

a2−6b
2 .

An ACM structure, J̃M, is called integrable if its Nijenhuis tensor field

NJ̃M
(X, Y) = [ J̃MX, J̃MY]− J̃M[ J̃MX, Y]− J̃M[X, J̃MY] + J̃2

M[X, Y]
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vanishes [21].

3. Submanifolds of Almost-Complex Metallic Manifolds

LetN be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃). We ex-
press the induced Riemannian metric on N by g. For any X ∈ Γ(TN ) and U ∈ Γ(TN⊥),
we put

J̃MX = hX + ψX, (5)

J̃MU = RU + SU, (6)

where hX is the tangential part of J̃MX, ψX is the normal part of J̃MX, RU is the tangential
part of J̃MU, and SU is the normal part of J̃MU.

From (4)–(6), it is easy to see that

g( J̃MX, Y) = g(X, J̃MY), ∀X, Y ∈ Γ(TN ), (7)

g(SU, V) = g(U, SV), ∀U, V ∈ Γ(TM⊥).

In addition, ψ and R are related by

g(ψX, U) = g(X, RU).

∇ and ∇̃ are the Levi-Civita connections onN andM, respectively. For any X, Y ∈ Γ(TN )
and an orthonormal basis {N1, N2, . . . , Ns} of TN⊥, where i, j ∈ {1, 2, . . . , s}, the Gauss
and Weingarten formulas are the following:

∇̃XY = ∇XY +
s

∑
i=1

ti(X, Y)Ni,

∇̃X Ni = −ANi X +
s

∑
j=1

τij(X)Nj.

Here, ANi is the shape operator in the direction of Ni given by g(ANi X, Y) = hi(X, Y),
and hi are the second fundamental tensors.

Lemma 1. Let (M, J̃M, g̃) be an ACMSR manifold. For any X̃, Ỹ, Z̃ ∈ Γ(TM), we have

g((∇̃X̃ J̃M)Ỹ, Z̃) = g(Ỹ, (∇̃X̃ J̃M)Z̃).

Proposition 2. LetN be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃).
For any X, Y, Z ∈ Γ(TM), we have

g((∇Xh)Y, Z) = g(Y, (∇Xh)Z).

Let the normal space TN⊥ of an n-dim submanifold N in an (n + s)-dim ACMSR
(M, J̃M, g̃) have an orthonormal basis such as {N1, N2, . . . , Ns}. Then, for ∀X ∈ Γ(TN ),
J̃MX and J̃MNi (1 ≤ i ≤ s) can be written, respectively, in the following forms:

J̃MX = hX +
s

∑
i=1

µi(X)Ni, (8)

J̃MNi = ξi +
s

∑
j=1

ηijNj, (9)
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where h is a tensor field of type (1, 1) on N , which modifies tangent vector field X on N
to the tangential part of J̃MX, and µi are real 1-forms and ξi vector fields on N ; ηij are
differentiable valued functions on N , equipped with an s× s matrix stated by (ηij)1≤i,j≤s.

As g( J̃MX, Ni) = g(X, J̃MNi), and g( J̃MNi, Nj) = g(Ni, J̃MNj), then by using (3) and
(7), we have

Lemma 2. In a submanifold N of an ACMSR manifold (M, J̃M, g̃), we have

µi(X) = g( J̃MX, Ni) = g(X, ξi), (10)

g(hX, hY) = ag(X, hY)− 3
2

bg(X, Y)−
s

∑
i=1

µi(X)µi(Y), (11)

ηij = ηji, (12)

∀X, Y ∈ Γ(TN ), where 1 ≤ i, j ≤ s.

Proposition 3. LetN be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃).
Then, there exists a structure (h, g, µi, ξi, (ηij)s×s) on N , induced by the ACM structure ofM,
which satisfies

h2X = ahX− 3
2

bX−
s

∑
i=1

µi(X)ξi, (13)

µi(hX) = aµi(X)−
s

∑
j=1

ηijµj(X), (14)

µj(ξi) = aηij −
3
2

bωij −
s

∑
λ=1

ηiληλj, (15)

hξi = aξi −
s

∑
j=1

ηijξ j,

∀X ∈ Γ(TN ).

Proof. Fulfilling J̃M to both sides of Equation (8), and applying (2), we have

aJ̃MX− 3
2

bX = J̃M(hX) +
s

∑
i=1

µi(X) J̃MNi,

which implies

ahX + a
s

∑
i=1

µi(X)Ni −
3
2

bX = h2X +
s

∑
i=1

µi(hX)Ni +
s

∑
i=1

µi(X)

(
ξi +

s

∑
j=1

ηijNj

)
.

If we equalize the last equation’s tangential and normal components, we get (13) and
(14), respectively. By virtue of (9), we indite

g( J̃MNi, J̃MNj) = g(ξi, ξ j) +
s

∑
λ=1

ηiληλj. (16)

In addition, from (3), we have

g( J̃MNi, J̃MNj) = aηij −
3
2

bωij. (17)
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Then, by applying (12), (16), and (17), we obtain (15). Lastly, taking X = ξi in (14)
gives (16).

Proposition 4. LetN be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃).
Consequently, the equations below hold:

hANi X +∇Xξi −
s

∑
j=1

ηij ANj X−
s

∑
j=1

τij(X)ξ j = 0,

X(ηiλ) + hλ(X, ξi) + hj(X, ξλ) +
s

∑
j=1

(ηijτjλ(X)− ηjλτij(X)) = 0.

Theorem 1. Let N be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃).
If h is parallel, with regard to the Levi-Civita connection on N , and ξi (1 ≤ i ≤ s) are linearly
independent, then N is totally geodesic.

Proof. From

(∇Xh)Y =
s

∑
i=1

[g(ψY, Ni)ANi X + ti(X, Y)RNi],

for every Z ∈ Γ(TN ), we are able to write

s

∑
i=1

[g(ψY, Ni)g(ANi X, Z) + ti(X, Y)g(RNi, Z)] = 0,

which denotes
s

∑
i=1

µi(Y)ti(X, Z) = −
s

∑
i=1

µi(Z)ti(X, Y),

by applying (10). When we replace the functions of X and Z in the above equation, we have

s

∑
i=1

µi(Y)ti(X, Z) = −
s

∑
i=1

µi(X)ti(Y, Z).

If we consider that ∑s
i=1 µi(Y)ti(X, Z) is both symmetric and skew-symmetric for X

and Y, we have
s

∑
i=1

µi(Y)ti(X, Z) = 0;

that is:
s

∑
i=1

g(Y, ti(X, Z)RNi) = 0.

RNi = ξi (1 ≤ i ≤ s) are linearly independent, and this completes the proof.

3.1. Invariant Submanifolds of Almost-Complex Metallic Manifolds

Definition 1. Let N be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃).
If J̃M(TpN ) ⊂ TpN for any point p ∈ N , then N is called an invariant submanifold.

Suppose N is an n-dim invariant submanifold of an (n + s)-dim ACMSR manifold.
Then, from (8), we have µi = 0 for (1 ≤ i ≤ s). The opposite of the previous statement is
also true.
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Proposition 5. Let N be an n-dim invariant submanifold of an (n + s)-dim ACMSR manifold
(M, J̃M, g̃). Then, the matrix E = (ηij)s×s of the induced structure (h, g, µi, ξi, (ηij)s×s) is an
ACM matrix; that is to say:

E2 = aE− 3
2

bIs,

where Is states the unit matrix of order s.

Proof. As N is an n-dim invariant submanifold, then from (15), we obtain

s

∑
λ=1

ηiληλj = aηij −
3
2

bωij,

for 1 ≤ i, j ≤ s.
If we state the matrix (ηij)s×s by E, we complete the proof.

Proposition 6. Let (h, g, µi, ξi, (ηij)s×s) be the induced structure on an n-dim submanifold N of
an (n + s)-dim ACMSR manifold (M, J̃M, g̃). Then, N is an invariant submanifold if and only if
the induced structure (h, g) on N is an ACM structure.

Proof. Suppose that N is an invariant submanifold. As µi = 0 for (1 ≤ i ≤ s), then
from (11) and (13), we can see that

h2X = ahX− 3
2

bX,

g(hX, hY) = ag(X, hY)− 3
2

bg(X, Y),

for all X, Y ∈ Γ(TN ), which insinuates that (h, g) is an ACM structure on N .
Inversely, if (h, g) is an ACM structure on N , then, from (13), we write

s

∑
i=1

µi(X)ξi = 0,

for all X ∈ Γ(TN ), which gives
µi(X) = 0.

Therefore, N is an invariant submanifold.

3.2. Anti-invariant Submanifolds of Almost-Complex Metallic Manifolds

Definition 2. Let N be a submanifold of an ACMSR manifold (M, J̃M, g̃). If J̃M(TpN ) ⊂
(TpN )⊥ for any point p ∈ N , then N is called an anti-invariant submanifold.

Suppose that N is an n-dim anti-invariant submanifold of an (n + s)-dim ACMSR
manifold (M, J̃M, g̃). In this situation, from (8) and (9), for any X ∈ Γ(TN ) , J̃MX and
J̃MNi can be expressed in the following order:

J̃MX =
s

∑
i=1

µi(X)Ni,

J̃MNi = ξi +
s

∑
j=1

ηijNj.
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Proposition 7. LetN be an n-dim anti-invariant submanifold of an (n+ s)-dim ACMSR manifold
(M, J̃M, g̃). In this case, there exists a structure (g, µi, ξi, (ηij)s×s) on N , induced by the ACM
structure ofM, which satisfies

X = − 2
3b

s

∑
i=1

µi(X)ξi,

µi(X) =
1
a

s

∑
j=1

ηijµj(X),

µj(ξi) = aηij −
3
2

bωij −
s

∑
λ=1

ηiληλj,

ξi =
1
a

s

∑
j=1

ηijξ j,

g(X, Y) = − 2
3b

s

∑
i=1

µi(X)µi(Y),

for every X, Y ∈ Γ(TN ).

Proof. Proposition 7 can be proved similarly to Proposition 3.

3.3. Slant Submanifolds of Almost-Complex Metallic Manifolds

Assume thatN is an n-dim submanifold of an (n+ s)-dim ACMSR manifold (M, J̃M, g̃).
For all X ∈ Γ(TN ), by using the Cauchy–Schwartz inequality, we can write

|g( J̃MX, hX)| ≤ ‖ J̃MX‖‖hX‖.

Thus, there exists a function θ : Γ(TxN )→ [0, π], such that

g( J̃MXx, hXx) = cosθ(Xx)‖ J̃MXx‖‖hXx‖,

for any x ∈ N and any nonzero tangent vector Xx ∈ Γ(TxN ). The angle θ(Xx), between
J̃MXx and hXx is called the Wirtinger angle of X, and it verifies

cosθ(Xx) =
g( J̃MXx, hXx)

‖ J̃MXx‖‖hXx‖
=
‖hXx‖
‖ J̃MXx‖

.

Definition 3. Let N be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃).
If the angle θ(Xx) between J̃MXx and hXx is constant for any x ∈ N and Xx ∈ Γ(TxN ), N is
called the slant submanifold, and it verifies:

cosθ =
g( J̃MX, hX)

‖ J̃MX‖‖hX‖
=
‖hX‖
‖ J̃MX‖

. (18)

The slant submanifolds in the ACMSR manifold (M, J̃M, g̃), with the slant angle
θ = 0 and θ = π

2 , are the invariant and anti-invariant submanifolds, respectively. A slant
submanifold N in M is called a proper slant submanifold, which is neither invariant
nor anti-invariant.

Proposition 8. LetN be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃).
If N is a slant submanifold with the slant angle θ, then for any X, Y ∈ Γ(TxN ):

g(hX, hY) = cos2θ{ag(X, J̃MY)− 3
2

bg(X, Y)},
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g(NX, NY) = sin2θ{ag(X, J̃MY)− 3
2

bg(X, Y)}.

Proof. From (18),

cosθ =
‖hX‖
‖ J̃MX‖

,

we can write
cosθ2‖ J̃MX‖2

= ‖hX‖2,

cosθ2g( J̃MX, J̃MX) = g(hX, hX),

if X +Y is written instead of X in the last equation, and considered together with Equation (3):

cosθ2g( J̃MX + J̃MY, J̃MX + J̃MY) = g(hX + hY, hX + hY),

cosθ2(g( J̃MX, J̃MX) + 2g( J̃MX, J̃MY) + g( J̃MY, J̃MY)) = g(hX, hX) + 2g(hX, hY) + g(hY, hY),

cosθ2g( J̃MX, J̃MY) = g(hX, hY),

cosθ2{ag(X, J̃MY)− 3
2

bg(X, Y)} = g(hX, hY).

In addition,
g( J̃MX, J̃MY) = g(hX + NX, hY + NY),

g( J̃MX, J̃MY) = g(hX, hY) + g(NX, NY),

we can write

g(NX, NY) = g( J̃MX, J̃MY)− g(hX, hY)

= g( J̃MX, J̃MY)− cosθ2g( J̃MX, J̃MY)

= sinθ2g( J̃MX, J̃MY)

= sinθ2{ag(X, J̃MY)− 3
2

bg(X, Y)}.

Theorem 2. Let N be an n-dim submanifold of an (n + s)-dim ACMSR manifold (M, J̃M, g̃).
N is slant if and only if

h2 = ε(ah− 3
2

bI),

where ε = cos2θ.

Proof. Let N be a slant submanifold, in this case, for all X, Y ∈ Γ(TxN ):

g(h2X, Y) = g(h(hX), Y)

= g( J̃M(hX), Y)

= g(hX, J̃MY)

= g(hX, hY)

= cos2θ(ag(X, J̃MY)− 3
2

bg(X, Y))

= cos2θg(aJ̃MX− 3
2

bX, Y).

We obtain
h2X = cos2θ(aJ̃MX− 3

2
bX, Y)

thus, ε = cos2θ.
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Conversely, let there exist a ε ∈ [0, 1], such that h2 = ε(ah − 3
2 bI). Then, for any

X ∈ Γ(TxN ):

cosθ =
g( J̃MX, hX)

‖ J̃MX‖‖hX‖

=
g(X, h2X)

‖ J̃MX‖‖hX‖

=
g(X, ε(aJ̃M − 3

2 bI)X)

‖ J̃MX‖‖hX‖

= ε
ag(X, J̃MX)− 3

2 bg(X, X)

‖ J̃MX‖‖hX‖

= ε
g( J̃MX, J̃MY)
‖ J̃MX‖‖hX‖

= ε
‖ J̃MX‖
‖hX‖ .

Therefore, we obtain ε = cos2θ = constant. This completes the proof.
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