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Abstract: Convolutional neural networks (CNN) have transformed the field of computer vision by
enabling the automatic extraction of features, obviating the need for manual feature engineering.
Despite their success, identifying an optimal architecture for a particular task can be a time-consuming
and challenging process due to the vast space of possible network designs. To address this, we propose
a novel neural architecture search (NAS) framework that utilizes the clonal selection algorithm (CSA)
to automatically design high-quality CNN architectures for image classification problems. Our
approach uses an integer vector representation to encode CNN architectures and hyperparameters,
combined with a truncated Gaussian mutation scheme that enables efficient exploration of the search
space. We evaluated the proposed method on six challenging EMNIST benchmark datasets for
handwritten digit recognition, and our results demonstrate that it outperforms nearly all existing
approaches. In addition, our approach produces state-of-the-art performance while having fewer
trainable parameters than other methods, making it low-cost, simple, and reusable for application to
multiple datasets.

Keywords: clonal selection algorithm (CSA); computer vision; convolutional neural networks (CNN);
deep learning EMNIST; neural architecture search (NAS)

MSC: 68T45

1. Introduction

Deep learning has revolutionized the field of computer vision by enabling automatic
feature extraction, eliminating the need for manual feature engineering [1,2]. Recent
advancements in deep learning have been driven by three key factors: the availability of
large datasets, high-performance computing resources, and new and improved algorithms,
such as CNN [3] and have made previously impossible smart applications widely available,
from image recognition to autonomous driving [1]. Despite their success, designing the
optimal CNN architecture remains a challenge, as it involves critical design decisions that
affect accuracy and speed, such as layer organization, hyperparameters, and activation
functions [4]. While some efforts have been made to automate the discovery of the best
CNN architecture, many modern architectures still rely on human expertise and intuition
gained from experimentation. Fortunately, nature-inspired optimization algorithms offer
an alternative approach to automated CNN architecture design [5].

In this paper, we propose a new and efficient neural architecture search (NAS) frame-
work based on CSA for automatically designing high-quality convolutional neural network
(CNN) architectures for image classification tasks. CSA is a nature-inspired optimization al-
gorithm that mimics the immune system’s clonal selection process to generate high-affinity
antibodies that recognize antigens [6,7]. In the proposed framework, we use an integer
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vector representation to encode CNN architectures and hyperparameters, combined with
a truncated Gaussian mutation scheme that enables efficient exploration of the search
space. Our approach offers a promising and efficient alternative to traditional manual
design methods for deep learning architectures, leveraging the power of nature-inspired
optimization algorithms to overcome the challenge of finding the optimal CNN architecture.
We evaluate our methodology on challenging datasets such as EMNIST, which contains
both digits and letters, and achieve cutting-edge performance in terms of accuracy and
model complexity.

The contributions of our research are as follows:

1. We propose a new and efficient NAS framework based on CSA for automatically
designing high-quality CNN architectures for image classification tasks.

2. We introduce an integer encoding scheme for encoding hyperparameters and the
layers of the CNN architecture, which enables efficient implementation of different
mutation types.

3. We evaluate our methodology on challenging datasets such as EMNIST, which con-
tains both digits and letters, and achieved cutting-edge performance in terms of
accuracy and model complexity.

4. Our proposed method outperforms nearly all existing approaches, while having fewer
trainable parameters than other methods, making it low-cost, simple, and reusable for
application to multiple datasets.

5. Our approach provides a promising and efficient alternative to traditional manual
design methods for deep learning architectures, leveraging the power of nature-
inspired optimization algorithms to overcome the challenge of finding the optimal
CNN architecture.

This paper is organized as follows: In Section 2, we provide a comprehensive review
of existing NAS methods for designing CNN architectures, highlight their limitations, and
explain the unique contributions of our proposed NAS framework. Section 3 provides a
brief background on CNN and presents the CSA. In Section 4, we detail the implementation
of the proposed NAS-based CSA approach for automatically designing CNN architectures.
The datasets used and the experimental setup, including hyperparameters and evaluation
metrics, are described in Section 5. In Section 6, we present the results of our experiments,
including a detailed discussion of the findings. Finally, Section 7 summarizes the main
findings of the research, discusses their implications, and proposes potential directions for
future research.

2. Related Work

CNN models have been highly successful in a variety of applications due to their
ability to automate the feature engineering process by learning “hierarchical feature ex-
tracts” from data [8]. While human experts have traditionally designed successful network
architectures, there is a growing interest in the use of NAS techniques to automatically learn
high-performance architectures. Some commonly used NAS algorithms for evolving net-
work architectures are grid search [9], random search [10], reinforcement learning [11,12],
Bayesian optimization [13–15], and evolutionary algorithms (EA) [16,17]. The first approach
for evolutionary NAS comes from Miller et al. [18], who used the genetic algorithm (GA)
method to evolve artificial neural network (ANN) architectures for specific tasks. Then,
Stanley and Risto [19] introduced NeuroEvolution of Augmenting Topologies (NEAT), a
GA-based method for evolving ANN architectures. Real et al. [20] found that evolution
performs equally well as reinforcement learning in terms of accuracy but created better
mid-term performance and more modest models. Young [21] proposed MENNDL, a frame-
work for evolving a fixed three-layer CNN architecture using GA, but the search space
was limited, consisting of only six hyperparameters. Recently, researchers have applied
evolutionary NAS to CNN architecture design, achieving state-of-the-art performance.
Loshchilov et al. [22] proposed the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) for CNN hyperparameters tuning using the MNIST dataset. However, their
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work did not consider some of the convolutional parameters (e.g., filter sizes, activation
functions, etc.) In [23], the authors proposed a differentiable version of the Compositional
Pattern Producing Network, named the DPPN. The DPPNs are generated using microbial
GAs and capable of replicating CNN architectures. Baldominos [24] presented a common
framework for the automatic design of CNN topologies and developed two solutions based
on GA and grammatical evolution. They used the MNIST dataset to evaluate their pro-
posals and achieved highly competitive results based on the latest state of the art. Swarm
algorithms have also been adopted to automatically design CNN architectures. Wang
et al. [25] proposed a multi-objective particle swarm optimization (PSO) method to evolve
CNN architectures for image classification. Byla et al. [26] proposed ant colony optimiza-
tion (ACO) to collectively search for the best CNN architecture for image classification
problems. Other extraordinary works that employed nature-inspired methods for evolving
CNN architectures are detailed in the following [27–42].

Manually designing optimal CNN architectures is a challenging task due to the vast
search space and the critical design decisions that affect the model’s accuracy and speed. To
overcome this challenge, we propose a novel neural architecture search (NAS) framework
that utilizes the clonal selection algorithm (CSA), an immune-inspired optimization algo-
rithm that has shown promise in other optimization tasks. CSA is a diversity-generating
algorithm that aims to find solutions that not only perform well but also differ from ex-
isting solutions. This approach is particularly useful for exploring the vast search space
of CNN architectures and identifying high-quality designs for image classification tasks.
Our proposed method expands the search space to include other sets of layers and hy-
perparameters, such as pooling layers, number of epochs, batch size, optimizers, and
activation functions, to efficiently explore the search space and discover optimal CNN ar-
chitectures that generalize well across different datasets. We evaluate the proposed method
on challenging and imbalanced datasets such as EMNIST, which contains both digits and
letters, with a larger amount of data. In contrast to other works that often use standard
datasets such as CIFAR-10 [43] and MNIST [44] to benchmark their proposals, our work
tests the proposed method on more challenging datasets. Our proposed method achieves
competitive performance on the EMNIST datasets and demonstrates the effectiveness of
using CSA in NAS for CNN architecture design.

3. Background
3.1. CNN

A CNN is a type of deep feed-forward neural network that has proven to be effective
for various applications, including image classification, object detection, segmentation,
and many others [45]. One of the earliest and most influential CNN models was LeNet-5,
developed by Yann LeCun [46]. It was originally designed for handwritten and machine-
printed character recognition, but its success led to its use in many other areas, including
facial recognition and self-driving cars. The architecture of a CNN is unique compared to
other types of neural networks, such as multi-layer perceptrons. CNN layers are arranged
in three dimensions, including width, height, and depth. Neurons in one layer only connect
to some of the neurons in the following layer, rather than all of them [47]. A simple CNN
architecture consists of several layers, with each layer transforming one activation volume
into another through a differentiable function [48]. The four main types of layers used
to build CNN architectures include the convolutional layer, the ReLU layer, the pooling
layer, and fully connected. Figure 1 illustrates a general architecture of a CNN. It consists
of multiple layers, each with a specific function in transforming the input image to a set
of class probabilities. The input image is first processed by a set of convolutional layers,
followed by ReLU layers for nonlinearity and pooling layers to downsample the feature
maps. Finally, the fully-connected layers are used to obtain the class probabilities.
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Figure 1. Illustration of CNN architecture.

3.1.1. Convolutional Layer

The convolutional layer is a fundamental building block of CNNs. It performs convo-
lution, a mathematical operation that combines two functions to form a third function. In
a CNN, convolution is performed on the input image with the application of a filter (or
kernel) to produce a feature map as an output [45]. The filter is slid over the input image,
and element-wise multiplication between the filter values and their corresponding values
in the input image is performed at each location. These values are then summed and used
as input to the feature map.

In a convolutional layer, there are usually multiple filters that convolve with the input
image and generate different feature maps. These features are then assembled to form the
final output of the convolutional layer. To perform the convolution operation, the number
of filters and their spatial size must be specified [48]. Padding and stride also need to be
determined. Padding is necessary to avoid the feature maps’ spatial size from shrinking as
the network moves to deeper layers. Zero-padding is often used to keep the feature map
the same spatial size as the input image. The amount of zero-padding (P) that is needed to
achieve this is given by Equation (1):

P =
F − 1

2
(1)

where F is the width or height of the filter. The stride parameter controls how the filter
convolves around the input volume. A stride size of one means the filter slides one pixel at
a time, while a stride size of two means the filter slides two pixels at a time. Higher stride
values produce smaller feature maps. When applying a convolution with a kernel size of
F on an input image with size W1, zero-padding size P, and stride size S, the size of the
output or feature map W2 can be calculated as follows:

W2 =
W1 − F + 2P

S
+ 1 (2)

3.1.2. ReLU

In order to introduce nonlinearity into a CNN, each generated feature map in the
convolutional layer is passed individually through a rectified linear unit (ReLU) function.
The ReLU function is defined as:

f (z) = max(0, z) (3)

where z is the input to the ReLU function. ReLU is often preferred over other activation
functions (such as sigmoid or tanh) because it can train networks faster without a substantial
penalty for generalization accuracy [45].

3.1.3. Pooling Layer

The pooling layer is inserted between the convolutional layers in a CNN architecture.
The main function of the pooling layer is to reduce the dimensionality of the rectified
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feature maps to reduce the number of parameters and computation in the network, which
in turn reduces the training time and controls overfitting [48]. Pooling is often performed
by a simple operation such as average or max pooling. Max pooling has shown better
performance and faster convergence compared to other types of pooling [49]. Therefore,
recent work generally tends towards using max pooling in CNN architectures.

Max pooling is applied by dividing the input feature map into non-overlapping
rectangular regions and taking the maximum value in each region as the output. The
rectangular regions can be of various sizes, but the most common choice is to use 2 × 2
regions with a stride of 2. This downsamples the feature maps by a factor of two, which
results in smaller feature maps and reduces the computational complexity of the network.

Average pooling computes the average value of each rectangular region instead of the
maximum value. It can also downsample the feature maps but is less commonly used than
max pooling in modern CNN architectures.

The pooling layer has no learnable parameters, and its main purpose is to introduce
translation invariance and make the network more robust to small translations in the input
image. By downsampling the feature maps, the pooling layer forces the network to learn
more robust features that are less sensitive to the exact location of the object in the image.

3.1.4. Fully-Connected Layer

The fully-connected layer (FCL) [2] is typically located at the end of a CNN architec-
ture. Its input is a flattened vector obtained from the output of the previous convolutional
or pooling layer. The FCL’s output is then passed through the last layer, which is usually a
softmax layer. The softmax function is a common choice for the output layer of a classifica-
tion network, as it produces a probability distribution over the possible classes [50]. The
softmax function takes a vector of arbitrary real-valued scores and produces a vector of
probabilities that sums to one. The formula for the softmax function is:

P(i) =
ezi

∑K
j=1 ezj

(4)

where P(i) is the probability that the input image belongs to class i, zi is the score for class
i, and K is the total number of classes. The softmax function effectively converts the scores
output by the FCL into a set of probabilities that can be interpreted as the confidence of the
model in its classification decision.

3.2. CSA

The CSA is a computational optimization technique inspired by the principles of clonal
selection and affinity maturation in the adaptive immune system [51]. The algorithm works
by initializing a random population of antibodies to a given antigen or problem [6]. These
antibodies represent potential solutions to the optimization problem. Each antibody is
evaluated by its affinity score or fitness value, which reflects how well it performs in finding
the optimal solution. Antibodies with the highest affinity scores are selected and cloned
to generate a new set of antibodies. The number of clones produced for each antibody is
proportional to its affinity score. This new set of antibodies is then subjected to an affinity
maturation process, where a mutation operator is applied to improve the solutions. The
mutation rate is usually inversely proportional to the affinity score. The best-performing
antibody from the mutated set is then selected to replace the original antigen, and the
process is repeated until a termination criterion is met [52].

The CSA algorithm has been shown to be robust, self-tuning, and highly effective in
solving various optimization problems, especially those with multiple local optima [53].
The CSA algorithm has been applied in diverse areas, including data clustering, image
segmentation, and feature selection, among others [54]. Although inspired by the biological
immune system, CSA is a heuristic algorithm and does not model the immune system
accurately. Nonetheless, the algorithm’s effectiveness in solving optimization problems has
led to its popularity in the field of optimization and machine learning.
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4. Automated CNN Design Using CSA

The design of CNN networks can be a complex task, as it involves many hyperpa-
rameters that determine the effectiveness of the model in solving a specific problem. To
simplify this process, a CSA-based approach is proposed in this section to automatically
generate the complete design of the CNN and improve its performance in solving a specific
problem, such as the classification of handwritten letters and digits. The hyperparameters
related to the CNN architecture and their ranges considered in the proposed approach are
shown in Table 1. Some hyperparameters, such as the padding and stride of convolutional
layers, are fixed. The last layer of the CNN architecture will always be a softmax layer
with the number of neurons corresponding to the dataset’s number of classes or labels. For
instance, for the EMNIST Digits dataset, there are 10 neurons in the output layer (softmax
layer), which represents the 10 possible classes in the dataset. The output of each neuron
corresponds to a probability value for each class.

Table 1. CNN architecture hyperparameters and range.

Hyperparameter Range

# Epochs [1–49]
Batch Size [1–255]

# Conv layers [1–9]
# Filters in each conv layer [1–65]

Filters size in each conv layer [1–9]
Activation function in each conv layer {Relu(1), Tanh (2), Linear (3), Sigmoid (4)}

Max pooling size (if any) after each conv layer {False (1), True (2)}
Pooling size of each max pooling layer [2–9]

# Dense layers [1–9]
# Neurons for each dense layer [1–65]

Activation function in each dense layer {Relu (1), Tanh (2), Linear (3), Sigmoid (4)}
Optimizer {SGD (1), Adadelta (2), RMSprop (3), Adam (4), Nadam (5)}

Learning rate [0.00001, 0.0001, 0.001, 0.01]

Once the key hyperparameters of the CNN design are determined, an efficient search
procedure for these hyperparameters is performed using CSA. CSA is a robust optimization
algorithm that can perform heuristic searches in large and complex spaces if the encoding
of the search space is suitable. Therefore, an integer encoding scheme for the CSA method
is proposed and implemented. This encoding scheme accurately and efficiently encodes
all possible CNN architectures and hyperparameters, allowing for a variety of mutation
applications. In addition to the encoding scheme, a CSA affinity assessment method must
be defined and implemented. This method is used to measure the affinity between the
antigen and the antibody during the affinity maturation process. The CSA algorithm then
uses the affinity scores to select and clone the best antibodies for further mutation. The
overall procedure is illustrated in Figure 2. In the upcoming subsections, we detail the
steps involved in our proposed method, which include encoding the antigen, generating
antibodies, evaluating affinity and selecting the best candidates, cloning and mutating the
selected candidates, and evaluating the resulting clones.
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Figure 2. Proposed CSA–CNN architecture optimization procedure.

4.1. Antigen Encoding

In the proposed CSA–CNN architecture optimization procedure, the first step is to
encode the CNN architecture as an antigen. The antigen is a set of hyperparameters that
represent a potential solution to the optimization problem. The optimal values of these
hyperparameters must be found using the CSA algorithm to create a CNN architecture with
the highest test classification accuracy. The antigen is represented by a set of 13 hyperpa-
rameters, which are encoded as an integer vector. These hyperparameters form the genes of
the antigen. Figure 3 shows an example of a randomly generated antigen, which represents
a CNN architecture. The values of the hyperparameters in the antigen are restricted to the
ranges defined in Table 1.

Figure 3. Randomly generated antigen, representing a CNN architecture.
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4.2. Antibodies

The size of the antibody population is an important factor in the performance of the
CSA–CNN optimization procedure. In this work, we set the population size to 20, meaning
that 20 different candidate solutions (antibodies) are generated in each iteration of the
algorithm. These antibodies are randomly created in response to the antigen initialized
in the previous step, as depicted in Figure 4. Each antibody is also encoded as an integer
vector, similar to the antigen, and represents a unique CNN architecture.

Figure 4. A randomly generated initial population of antibodies (CNN architectures).

4.3. Affinity Evaluation and Selection

After the creation of the population of antibodies, the affinity of each antibody in
the population is evaluated by measuring the accuracy of the CNN model on a held-out
test dataset. The weights and biases of the CNN model are trained using a specific set
of hyperparameters determined by the antibody genes in the training dataset, and the
accuracy of the test classification is computed as the ratio of correctly classified test instances
to the total number of test instances. The higher the accuracy is, the higher the affinity of
the antibody will be. The primary antigen, which is the initial solution, is also evaluated
using the same method. Antibodies with higher affinity than the antigen are selected, while
those with lower affinity are removed from the population, reducing the execution time of
the algorithm. The selected antibodies proceed to the next steps of the procedure, cloning
and mutation, to produce new candidate solutions.

4.4. Cloning and Mutation

The next step in the proposed CSA–CNN architecture optimization procedure is
cloning and mutation. After selecting the antibodies with higher affinity than the antigen,
a set number of clones for each selected antibody is created. The number of clones is
determined using the following formula:

Nclones = β × Nantibodies, (5)

where, Nantibodies is the population size of antibodies, and β is the clone factor, which is a
hyperparameter that determines the number of clones. In this work, we use a clone factor
of 0.3. A higher affinity value results in more clones being created.

After creating the clones, a mutation operation is performed on each clone. The
mutation operation involves randomly selecting genes from the clone and replacing their
values with new ones obtained using truncated Gaussian distribution (TGD). TGD is
similar to normal distribution but is truncated at a defined range. The range for TGD is
determined based on the ranges of the hyperparameters in the antigen. The mutation
process is controlled by a mutation rate, which is inversely proportional to the affinity
of the antibody. The mutation rate determines the probability of individual component
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mutation for a given candidate solution, and it is calculated as the exponential of negative
product of the mutation rate and the candidate’s affinity value, that is, exp(−ρ · f ). Here,
f represents the candidate’s normalized fitness value, and ρ is the user-defined mutation
rate hyperparameter. The lower the candidate’s affinity value is, the higher the probability
of mutation will be. An illustration of TGD mutation for the antibody Ab20 is shown in
Figure 5.

Figure 5. Truncated Gaussian mutation applied to CNN.

After the mutation operation, the fitness of each clone is evaluated using the same
affinity evaluation method used in the previous step. The clone with the highest affinity is
then selected to replace the original antigen, and the process repeats with the new antigen
until a termination condition is met, such as finding the optimal CNN architecture or
reaching a maximum number of iterations (generations).

5. Experimental Design
5.1. EMNIST Dataset

The performance of the proposed method in discovering the optimal architecture of
a CNN is evaluated using the EMNIST dataset. While the MNIST dataset is commonly
used to evaluate the performance of deep learning algorithms, achieving high accuracy
with CNN models on this dataset is relatively easy [55–59]. To provide a more challenging
and complex dataset for new benchmarks in deep learning, Cohen et al. [60] developed
the EMNIST (Extended MNIST) dataset in 2017. The EMNIST dataset comprises lowercase
letters (a-z), uppercase letters (A-Z), and handwritten digits (0–9) and is derived from the
NIST Special Database 19 [61]. The dataset was transformed into 28 × 28 pixel binary
images with 8-bit grayscale resolution that match the structure of the MNIST dataset. The
conversion process involves applying a Gaussian blur filter, extracting the area around the
digit, centering the digit in a square box while maintaining the aspect ratio, adding padding,
and finally downsampling the image to 28 × 28 pixels using bi-cubic interpolation.

The EMNIST dataset includes two labeling schemata, which have been ported from
the NIST SD 19 to the EMNIST dataset: the By_Class and By_Merge datasets, which,
respectively, have 62 and 47 classes. Additionally, EMNIST generated four other datasets:
the EMNIST Balanced dataset, which balances the number of instances per class, the
EMNIST Letters dataset, which contains only letters, the EMNIST Digits dataset, and the
EMNIST MNIST dataset, which contains only digits and has the same classes as the original
MNIST dataset. Table 2 presents the specifications of each EMNIST dataset, including the
total number of instances/images, the training/testing splits, and the number of classes.

Table 2. Specification of the EMNIST classification datasets.

Dataset # Images # Training Images # Test Images # Classes

By_Class 814,255 697,932 116,323 62 (unbalanced)
By_Merge 814,255 697,932 116,323 47 (unbalanced)
Balanced 131,600 112,800 18,800 47 (balanced)
Letters 145,600 124,800 20,800 26 (balanced)
Digits 280,000 240,000 40,000 10 (balanced)

MNIST 70,000 60,000 10,000 10 (balanced)
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5.2. Experimental Setup

The proposed approach was designed, trained, and validated in Python 3.7 using
Keras running on top of TensorFlow. We used a Dell desktop workstation with an Intel (R)
Core (TM) i77800X CPU @ 3.50GHz, 32GB DDR4 RAM, and an 8GB Nvidia Quadro P4000
GPU for experimentation. The CSA algorithm was used to generate a successful CNN
architecture, which took approximately 3.63 h. We selected EMNIST Digits, which contains
240,000 images as a training set and 40,000 images as a test set, to evaluate the ability of
the proposed method to discover the optimal CNN architecture. Once the architecture was
found, we reused it for the other five EMNIST datasets, except for the last layer (softmax
layer), which was modified to have the same number of neurons as the number of classes
in the dataset. The architecture was then trained from scratch to learn new weights and
biases for each individual dataset. Our hypothesis was that the obtained architecture
from EMNIST Digits would provide accurate classifications since the data structure in the
EMNIST Digits dataset is equivalent, and the domain is quite similar to the other EMNIST
datasets. The categorical cross-entropy was adopted as the loss function. This function is
commonly used in multiclass classification problems.

6. Results

The proposed CSA algorithm successfully discovered an optimal CNN architecture
for the EMNIST Digits dataset, achieving a classification accuracy of 99.74% on the test
set. Table 3 presents the hyperparameters and their corresponding optimal values of the
discovered architecture. We further evaluated the robustness of the optimized architecture
by testing it on the other splits of the EMNIST dataset. As each dataset has a different
number of classes, we adjusted the softmax layer to have the same number of neurons
as the number of classes in each dataset. Figures 6 and 7 provide a plot of accuracy and
loss, respectively, on the training and test sets for each of the six EMNIST datasets. The
figures demonstrate the performance of the proposed CNN models on the six datasets and
provide insights into how the models generalize on unseen data. We implemented the early
stopping method to stop the training of the CNN models as soon as their performance
stopped improving on a specific dataset in the validation set. This strategy saved time, effort,
and computational resources, especially when some datasets (as observed for EMNIST
MNIST and EMNIST By_Class) achieved their best performance in less than six epochs.
The results show that the proposed CNN models achieved high accuracy and low loss on
most of the datasets, and the early stopping method was effective in preventing overfitting.
These results demonstrate the potential of the proposed CSA algorithm in discovering
optimal CNN architectures that can generalize well on a variety of datasets.

Table 4 provides a comprehensive summary of the performance of each dataset’s tuned
architecture in terms of train/test accuracy and train/test loss, as well as the total number
of trainable parameters in the model. The table reveals that the CNN architecture of the
By_Class dataset has more parameters than the other architectures, primarily because it
contains 64 neurons in the last layer, which corresponds to the number of classes in the
By_Class dataset. It is worth noting that the tuned architecture’s performance varies across
the different datasets. The EMNIST Digits dataset has the highest accuracy for both the
train and test sets, with a value of 99.82% and 99.74%, respectively, while the EMNIST
Balanced dataset has the lowest accuracy with a train and test accuracy of 89.95% and
88.12%, respectively. In terms of the number of trainable parameters, the architectures for
all the datasets have a similar number of parameters, ranging from 241,299 to 242,339.
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Table 3. Optimal hyperparameters of the CNN architecture discovered by the proposed CSA method.

Hyperparameter Optimal Value

# Epochs 6
Batch Size 151

# Conv layers 4
# Filters in each conv layer 56

Filters size in each conv layer 5 × 5
Activation function in each conv layer Relu

Max pooling size (if any) after each conv layer True
Pooling size of each max pooling layer 2 × 2

# Dense layers 1
# Neurons for each dense layer 19

Activation function in each dense layer Relu
Optimizer Adam

Learning rate 0.001

Figure 6. Training and test accuracy of the tuned architecture for each dataset.
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Figure 7. Training and test loss of the tuned architecture for each dataset.

Table 4. Performance summary of each dataset.

Dataset Train
Accuracy

Test
Accuracy Train Loss Test Loss # Parameters

Digits 99.82% 99.74% 0.0107 0.0194 241,299
Letters 95.46% 93.95% 0.1344 0.2034 241,619

Balanced 89.95% 88.12% 0.2872 0.3915 242,039
By_Class 87.80% 86.82% 0.3366 0.3624 242,339
By_Merge 91.29% 90.11% 0.2332 0.2769 242,039

MNIST 99.11% 98.91% 0.0305 0.0369 241,299

6.1. Benchmarking with Existing Methods

In Table 5, we compare the state-of-the-art accuracy of our proposed approach (CSA–
CNN) with other methods that have been evaluated on EMNIST datasets. For the Digits
dataset, the best-reported accuracy in the existing literature is 99.62%, achieved using
manually designed parallelized CNN [62]. In contrast, our model achieved an accuracy
of 99.74%. Our CSA–CNN outperformed all other methods on the By_Merge, Balanced,
and Letters datasets, achieving accuracy of 90.11%, 88.12%, and 93.95%, respectively. Given
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that we used the architecture discovered by CSA for the Digits dataset, it is possible to
obtain even better results on the By_Class dataset by searching for an optimal architecture.
Nonetheless, our proposed method still achieved a competitive performance of 86.82%
on the By_Class dataset, with only a 1% decrease compared to manually designed CNN
models [63]. An important advantage of the proposed method is that that our model
achieves high accuracy with a minimal number of network parameters indicating that it
is more efficient and resource-friendly compared to other methods that require a larger
number of parameters to achieve a similar performance. This is particularly important
for real-world applications where computational resources and energy consumption are
important considerations. In addition, having a smaller model size can also improve the
model’s generalization performance, which is the ability to perform well on unseen data.
Therefore, the minimal number of network parameters is an important factor to consider
when evaluating the performance of deep learning models.

Table 5. Comparative accuracy of EMNIST classification methods.

Method By_Class By_Merge Balanced Letters Digits

Our CSA–CNN 86.82% 90.11% 88.12% 93.95% 99.74%
OPIUM [60] 69.71% 72.57% 78.02% 85.15% 95.90%

Linear classifier [60] 51.80% 50.51% 50.93% 55.78% 84.70%
OptConv+Log+Perc [64] – – 87.69% 93.65% 99.43%

OptConv+Perc [64] – – 84.68% 91.92% 98.29%
DWT-DCT-SVM [65] – – – 89.51% 97.74%

Autoencoder [66] – – – 91.27% –
HM2-BP [67] – – 85.57%

CNN [63] 87.10% – – – –
Parallelized CNN [62] – – – – 99.62%

CNN [68] – – 87.18% 93.63% 99.46%
EDEN [69] – – – 88.30% 99.30%

6.2. Discussion

The results presented in this paper demonstrate the effectiveness of the proposed
NAS framework that uses the CSA to automatically design CNN architectures for image
classification problems. Our method outperforms many existing approaches and produces
high-quality CNN architectures that achieve state-of-the-art performance on six benchmark
datasets. One of the advantages of the proposed NAS framework is that it provides a
systematic and automated approach to designing CNN architectures, which can reduce the
amount of manual effort and expert knowledge required for model design. Moreover, the
use of integer vector representation and truncated Gaussian mutation in the CGA algorithm
makes the search process more efficient and effective, as it allows us to explore the search
space more thoroughly and avoid local optima.

The results also highlight the importance of early stopping to prevent overfitting, as
we were able to achieve high accuracy with a low number of epochs on some of the datasets.
This suggests that the proposed method is able to discover optimal architectures quickly,
without the need for extensive training. However, we also observed some limitations of the
proposed NAS framework. For example, the method may generate architectures that are
difficult to interpret or transfer to other applications. Additionally, the proposed method
may not be suitable for problems with limited computational resources or small datasets,
as the search process can be computationally expensive and requires large amounts of
training data.

Therefore, developing more efficient and scalable NAS frameworks may be necessary
to address these limitations. Overall, our findings suggest that the proposed NAS frame-
work is a promising approach to automatically designing high-quality CNN architectures
for image classification problems. However, more work is needed to address the limitations
of the proposed method and explore its full potential. By improving the efficiency and
effectiveness of NAS frameworks, we can accelerate the development of deep learning
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models and facilitate the discovery of novel architectures that can solve complex and
important problems in various domains.

7. Conclusions

In this study, we have presented a novel NAS-based CSA framework to automatically
design CNN architectures for image classification tasks. Our proposed method achieved
state-of-the-art accuracy on six different EMNIST benchmark datasets for handwriting
recognition, outperforming most of the existing approaches. The superiority of our model
comes not only from its high classification accuracy but also from the fact that it has a
minimal number of network parameters, indicating that it is more efficient and resource-
friendly compared to other methods that require a larger number of parameters to achieve
similar performance. Our work has demonstrated the potential of an NAS-based CSA for
automating the process of deep learning model design, which can replace the challenging
and time-consuming process of manual feature engineering. This provides a low-cost,
simple, and reusable architecture that can work with multiple datasets while also providing
cutting-edge and highly competitive performance. In future work, we plan to extend the
proposed NAS-based CSA framework to other computer vision tasks, such as object detec-
tion and semantic segmentation, and evaluate its effectiveness on larger and more complex
datasets. We also aim to evaluate the use of more sophisticated affinity evaluation methods,
such as reinforcement learning or surrogate models, to more accurately and efficiently
evaluate the fitness of each developed architecture. These methods will help to improve
the quality and diversity of the generated architectures and enhance the effectiveness of
the proposed NAS framework.
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