
Citation: Parker, J.; Ibarra, D.; Ober,

D. Logarithm-Based Methods for

Interpolating Quaternion Time Series.

Mathematics 2023, 11, 1131. https://

doi.org/10.3390/math11051131

Academic Editors: Idelfonso B. R.

Nogueira and Jozef Husar

Received: 29 December 2022

Revised: 17 February 2023

Accepted: 20 February 2023

Published: 24 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Communication

Logarithm-Based Methods for Interpolating Quaternion
Time Series
Joshua Parker 1,*,†, Dionne Ibarra 2 and David Ober 1,3,†

1 Geospatial Research Lab, US Army Corps of Engineers, 7701 Telegraph Rd, Alexandria, VA 22307, USA
2 School of Mathematics, Clayton Campus, Monash University, Melbourne, VIC 3800, Australia
3 Department of Civil Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
* Correspondence: joshua.m.parker@usace.army.mil
† These authors contributed equally to this work.

Abstract: In this paper, we discuss a modified quaternion interpolation method based on interpola-
tions performed on the logarithmic form. This builds on prior work that demonstrated this approach
maintains C2 continuity for prescriptive rotation. However, we develop and extend this method to
descriptive interpolation, i.e., interpolating an arbitrary quaternion time series. To accomplish this, we
provide a robust method of taking the logarithm of a quaternion time series such that the variables
θ and n̂ have a consistent and continuous axis-angle representation. We then demonstrate how
logarithmic quaternion interpolation out-performs Renormalized Quaternion Bezier interpolation by
orders of magnitude.

Keywords: quaternions; interpolation; rotations

MSC: 37M05; 65D05; 65D18

1. Introduction

Whether you are interested in modeling human kinetics [1], creating control strategies
for satellites [2], or designing the next hit augmented reality app for smart phones [3],
you need the most accurate understanding of the rotational measurements that inertial
sensors will provide you. Simulating these complex engineering systems require sequential
child/parent frame-of-reference transformations to keep track of position and rotations. A
specific application of this is simulating airborne Light Detection and Ranging (LIDAR)
sensors. A LIDAR sensor is comprised of a coordinated optical system of a pulsed laser
and a fast framing detector that use time-of-flight measurements to estimate the range of an
object near the ground (see Figure 1a). Utilizing this range along with the physical position
and orientation of the aircraft, that point can then be geolocated. Over numerous optical
scans to build up the signal, a 3D point cloud can be developed that estimates the physical
dimensions of an entire ground scene spanning large distances.

To produce ground scene with high spatial resolution, significant care must be taken
to track the angular and linear position, velocity, and accelerations of all of the components
of the sensor, as well as systematic errors associated. As is detailed in Figure 1b, the
Kinematically Linked Model Framework (KLMF) utilizes an incredibly complex sensor
model to track all of these components to demonstrate the full propagation of all possible
sources of error in the LIDAR sensor system [4]. Each component in the model framework
is given its own coordinate system to track its position an orientation, which is allowed to
vary in time. This system operates over huge orders of timing magnitude—a Geiger-mode
LIDAR camera operates in the 10 s of kilohertz range [5] while GPS measurements occur
only a few times per second [6]. Rotational velocity and linear acceleration are measured
by an Inertial Measurement Unit (IMU), which generally outputs data in the 100–300 Hz
range [7].

Mathematics 2023, 11, 1131. https://doi.org/10.3390/math11051131 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051131
https://doi.org/10.3390/math11051131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2472-2089
https://doi.org/10.3390/math11051131
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051131?type=check_update&version=1

Mathematics 2023, 11, 1131 2 of 13

Figure 1. The Kinematically Linked Model Framework (KLMF) [4] incorporates an incredibly complex
model of all of the components of a LIDAR system to investigate all the ways that the position and
timing of each contribute to the final resolution of derived point clouds. Each component of the
sensor has its own frame of reference to enable detailed tracking of its position and orientation.

1.1. Relating Rotations across Parent/Child Pairs

A child’s orientation can be specified relative to its parent reference frame intuitively
with Euler angles via composite rotations, R({φ, θ, ψ}). If we chose a 313 convention,
meaning a rotation around the z axis, the x axis, then the transformed z′ axis, then the
matrix is written as

~x′ = R({φ, θ, ψ})~x0

= Rz(φ)Rx(θ)Rz(ψ)~x0
(1)

This means that the angular velocity of the child is a function of six variables—the
three angles and their first derivatives. Further, the angular acceleration is a function of nine
variables, all for just the behavior one child/parent relationship. So even simple systems
of interconnected elements that each can rotate relative to each other can quickly become
cumbersome to the point of intractable. Euler angles also can have inherent degeneracies
due to a choice of angles that cause two of the rotation axes to become parallel (referred to
as “Gimbal Lock” [8]).

Mathematics 2023, 11, 1131 3 of 13

1.2. A Brief Introduction to Quaternions

A robust alternative, then, is to perform rotations via “quaternions”. Very simply, a
quaternion is a extension of complex numbers (for a thorough introduction to quaternions
and rotations, see [9]). If we define the basis elements (i, j, k) to have the properties that
i2 = j2 = k2 = ijk = −1, and that i 6= j 6= k, then a quaternion q is given by

q = q0 + q1i + q2j + q3k (2)

where qi are real numbers. In this work, we will denote quaternions q in bold to distinguish
them from vectors. A common way of writing a quaternion is as a composite of a “scaler”
portion and “vector” portion. For a real scaler u and a real vector v, we can write q = [u,~v]
where u = q0 and~v = 〈q1, q2, q3〉. This identifies u as the “scalar portion” of the quaternion,
where ~v is the “vector portion”. If we have two arbitrary quaternions q = [u,~v] and
p = [k,~s], the product of q and p is given by

q ◦ p = [uk−~v ·~s, u~s + k~v +~v×~s] (3)

where ◦ is used to denote quaternion multiplication. In general, quaternion products do
not commute. Taking the conjugate of a quaternion q involves merely negating the vector
component, i.e., q∗ = [u,−~v]. The magnitude of a quaternion is given by the root sum

square of the components, ‖q‖ = q ◦ q∗ =
√

q2
0 + q2

1 + q2
2 + q2

3. If ‖q‖ = 1, the q is a unit
vector. For a choice of θ and n̂, any unit quaternion can be written as

q = [cos(θ/2), sin(θ/2)n̂] (4)

A candidate (θ, n̂) pair can be calculated as

θ = 2 arctan
(
‖~v‖

u

)
= 2 arctan


√

q2
1 + q2

2 + q2
3

q0

 (5)

n̂ =
〈q1, q2, q3〉√
q2

1 + q2
2 + q2

3

(6)

We say “candidate” (θ, n̂) as it is not hard to prove that q(θ, n̂) = q(−θ,−n̂). To
perform a rotation, you first write a vector ~x as quaternion x = [0,~x] and then perform the
rotation as

x′ = q ◦ x ◦ q∗ (7)

More complex rotations are accomplished via sequential simple rotations, with a
composited quaternion representing the sum total of all applied rotations. There is no need
to keep track of the angles of each different rotation, merely the composite. This means
that calculating the orientation of any given element in a large interconnected system is a
matter of interpolation of the product of quaternion multiplication. For a rotating object,
the angular velocity and angular acceleration are given by the relations

ω = [0, ~ω] = 2q̇ ◦ q∗ (8)

α = [0,~α] = 2q̈ ◦ q∗ (9)

Finally, if one looks at Equation (4), there is a resemblance to the Euler equation exp iθ =
cos(θ) + i sin(θ). Inspired by this, the logarithm of a quaternion is defined as

log(q(θ, n̂)) = [0, θn̂] (10)

Thus taking the logarithm of a quaternion is mathematically similar to moving into an
axis-angle representation.

Mathematics 2023, 11, 1131 4 of 13

1.3. Slerp and Squad

In almost all cases either by design or necessity, we deal with discrete time series
of quaternions {qi}. For simulating LIDAR, this comes from integrating the angular
velocity as sampled by the IMU. This means we must first interpolate the quaternion
functions and then perform differentiation. The simplest form of quaternion interpolation
is Spherical Linear Interpolation (SLERP) [10], which involves a spherical blending between
two elements of a time series (often referred to as “key frames”). For a time ti < t < ti+1,
the interpolation is given by

SLERP(qi, qi+1, h) =
qi sin(Ω(1− h)) + qi+1 sin(Ωh)

sin(Ω)
(11)

h =
t− ti

ti+1 − ti
(12)

Ω = Angle
(
qi ◦ q∗i+1

)
(13)

where Angle(·) is the minimum angle of the quaternion argument. This formulation
ensures C0 continuity, but will have discontinuities in the derivatives. Similar in kind,
if the quaternions are evenly spaced, there is a Spherical and Quadrangle Interpolation
(SQUAD) [11] that is formulated by

SQUAD(qi, qi+1, Si, Si+1, h) = SLERP(SLERP(qi, qi+1, h), SLERP(Si, Si+1, 2h(1− h))) (14)

Si = qi exp

(
−

ln(qi
∗ ◦ qi−1) + ln

(
q∗i ◦ qi+1

)
4

)
(15)

1.4. Renormalized Quaternion Bezier (Rqbez) Interpolation

An easy shortcut to C2 continuity is to ignore the mathematics of quaternions and
treat the quaternion series as a 4-vector of independent variables {~qi}, whose elements are
then interpolated independently. Afterwards, the interpolated elements are renormalized
to ensure that ‖q‖ = 1. This method then is as continuous as the interpolation method
implemented, most commonly cubic Bezier—thus the name, Renormalized Quaternion
Bezier or RQBez [12]. Though this method does have continuous 1st and 2nd derivatives,
the quaternion-as-vector assignment means that the derivatives are not physically related
to the rotation. So, if used to calculate quantities such as angular moment or angular
acceleration, the algorithm introduces phantom forces and torques [9].

1.5. Logarithmic Quaternion Interpolation (Lqi)

As previously discussed, we can write any quaternion as q(θ, n̂) = exp(θn̂). In work
aimed at better robotic steering, Pu et al. [13] utilized this notation to write log(q) = [0,~r]
where ~r = |θ|n̂ ∈ R3 and performed standard Euclidean interpolation on the vector
~r = 〈x, y, z〉. This cast the problem as interpolating a 3D trajectory in Euclidean space
where the components 〈x, y, z〉 are orthogonal and therefore independent. This allowed for
1D methods of interpolation of arbitrarily high continuity while avoiding the complications
of spherical interpolation. Once the variables were interpolated, the resulting quaternion
was calculated via the equations

Mathematics 2023, 11, 1131 5 of 13

q0 = cos

(√
x2 + y2 + z2

2

)

q1 = sin

(√
x2 + y2 + z2

2

)
x√

x2 + y2 + z2

q2 = sin

(√
x2 + y2 + z2

2

)
y√

x2 + y2 + z2

q3 = sin

(√
x2 + y2 + z2

2

)
z√

x2 + y2 + z2

(16)

Using this approach, which we here refer to as Logarithmic Quaternion Interpolation
method (LQI), they demonstrated their method was able to achieve the long-sought-after
C2 continuity for quaternions for prescribed rotational motion of a robotic arm.

1.6. The Ambiguity of the Quaternion Logarithm

Quaternions have an inherent ambiguity akin to axis-angle representations, i.e., a
rotation of θ around n̂ is equivalent to a rotation around −θ around −n̂. There is also, of
course, ambiguity with θ, as cos(θ) = cos(θ + 2mπ) where m is any integer (m ∈ Z). As
Pu et al.’s application was prescriptive, they were defining a rotational path for a robotic
arm to take, they had a priori knowledge about the variables θ and n̂ that were used to
prescribe the path. Thus, the variables can be pre-prepared to avoid discontinuities around
θ = 0. We are interested in descriptive interpolation where we are merely given the set of
quaternions to calculate (θ, n̂) in a consistent way for interpolation. We achieve this by the
following process Algorithm 1.

Algorithm 1: Recovering a C2 axis-angle series for logarithmic interpolation
Data: A discrete time-ordered set of unit quaternions,

{Qi} = {[cos(θi/2), sin(θi/2)n̂i]}
Result: A C2 continuous set of axis-angles, {Ai} ≡ {[θi, n̂i]}
Calculate:
N ←− number of rotational quaternions, ‖{Qi}‖
for i ∈ [1, N] do

θi ←− 2 arccos (q(i,0))
~vi = 〈q(i,1), q(i,2), q(i,3)〉
if ‖~vi‖ 6= 0 then

n̂i ←− 〈q(i,1), q(i,2), q(i,3)〉/‖〈q(i,1), q(i,2), q(i,3)〉‖]
Ai ←− [θi, n̂]

else
Flag Ai for modification

end
end
for i ∈ [2, N] do

Evaluate if Q(−θ,−n̂) is more appropriate
if ‖n̂i−1 − n̂i‖ > ‖n̂i−1 + n̂i‖ then

θi ←− −θi, reverse the angle
n̂i ←− −n̂, reverse the axis
Ai ←− [θi, n̂i], replace the axis-angle in the set for us in next iteration

end
end
θi ←− unwrap(θi), unwrap the phase angle around ±2π

Mathematics 2023, 11, 1131 6 of 13

Obviously, care must be taken for when qi or qi−1 is the unit quaternion 1 = [1, 〈0, 0, 0〉]
as the unit vector is indeterminate. As our spline choice does not require equal spacing
between key frames, our process was to remove them from the interpolation process.
Another solution would be to replace the θi with the nearest odd multiple of π and assign
n̂i as the average of the previous and next unit vector, appropriately normalized, to be
utilized in the interpolation.

1.7. Modified Logarithmic Quaternion Interpolation (Mlqi)

In Pu et al.’s approach, q(t) = exp(|θ|n̂) = exp(~r) means that in logarithmic space,
the quaternions is a trajectory on a growing and shrinking sphere. The angle θ is always
positive, as it is the norm of the vector~r. When θ and n̂ are known variables and we are
interested in prescribing, this does not introduce problems. However, if we are calculating
θ and n̂ via taking the logarithm of a quaternion time series, numerical errors compound
near θ = 0 (or even multiples of π). We explored a modified Logarithmic Quaternion
Interpolation method (mLQI) of this method by writing the equations for n̂(t) and θ(t) as
defined in the quaternion

q0 = cos
(

θ

2

)
, q1 = sin

(
θ

2

)
X, q2 = sin

(
θ

2

)
Y, q3 = sin

(
θ

2

)
Z (17)

X2 + Y2 + Z2 = 1 (18)

We then perform interpolation on (θ, X, Y, Z), the angle and the axis components. This
approach decouples the changing size of θ and the unit vector components. Obviously, this
introduces an additional complexity as the variables 〈X, Y, Z〉 are elements of a unit vector and
are thus coupled. We explored the performance effects of treating them as an unnormalized
unit vector as well as renormalizing the results after interpolating (akin to RQBez).

2. Results and Discussion

We picked several examples of continuous quaternion trajectories to interpolate. Ex-
amples and algorithms were scripted in MATLAB to take advantage of vectorization. For
all interpolations, we utilized MATLAB’s built-in “interp1” function [14] to calculate the
functions and their derivatives, using the “spline” option for C-2 continuity. (For access
to source code, please contact the corresponding author). We evaluated the error in the
angle θ, the angular momentum ~ω, and angular acceleration~α for a broad choice of key
time spaces, ∆T. (For the functional forms of the quaternion derivatives in each method,
see Appendix A). The quaternion trajectories we used to evaluate different interpolation
methods use the following generic model equation

q(t) =
[

sin
(

θ

2

)
, cos

(
θ

2

)
n̂
]

(19)

n̂ = cos(φ(t)) sin(ψ(t))x̂ + sin(φ(t)) sin(ψ(t))ŷ + cos(ψ(t))ẑ (20)

The construction of the unit vector n̂ is the standard spherical coordinates, where
φ ∈ (−∞, ∞) and ψ ∈ [0, π].

2.1. Example 1: Simple Rotation in the Angle

Our first example is the simplest rotation possible, where the unit vector is constant
(φ = const., ψ = const.) and the rotation angle θ linearly increases, i.e., ωθ = const. We
applied this quaternion trajectory to the ẑ unit vector and plotted it in Figure 2a. As can be
seen, the line sweeps out a standard circle around n̂ = [111]/

√
3. As θ varies constantly,

the components qi are sinusoidal (see Figure 2b). Looking at the error performance in
Figure 2c, we can see that both LQI and mLQI outperform RQBez by a factor of 100. In the
lower figures, we can see the percent improvement over RQBez is comparable between
LQI and mLQI.

Mathematics 2023, 11, 1131 7 of 13

Figure 2. (a) The rotational motion of r̂0 = ẑ as a result of constant rotation in the quaternion angle.
Here, ωθ = 2 rad

s , n̂ = 1
2 〈1, 1,

√
2〉. (b) What the quaternion elements themselves look like as a function

of time. Simple rotation means sinuisodal variation (c) Error in the angle θ and the magnitude of
angular momentum ‖~ω‖ (α = 0), both in absolute magnitude and relative to RQBez. Both LQI and
mLQI outperform RQBez by over three orders of magnitude.

2.2. Example 2: Simple Mixed Rotation

We now consider a case where both the angle and unit vector are rotating. This
can be thought of using the simple rotational system Example 1 as the unit vector for a
quaternion, which will then rotate about at a constant rate. The trajectory is visualized in
Figure 3a. This is a moderately more complex quaternion trajectory (Figure 3b), where the
composited sinusoidal variations lead to constructive and destructive interference patterns
in the individual components. Looking at the error performance in Figure 2c, we have
separations of multiple orders of magnitude between RQBez, LQI, and mLQI, with mLQI
performing a factor of 100 better than LQI.

Mathematics 2023, 11, 1131 8 of 13

Figure 3. (a) The rotational motion of r̂0 = ẑ as a result of constant rotation in the quaternion angle
as well as a constantly rotating unit vector. (b) What the quaternion elements themselves look
like. Here, ωθ = ωφ = 2 rad

s . The compounding of two simple rotations results in more complex
behavior than example one (c) Error in the angle θ, the magnitude of angular momentum ‖~ω‖, and
magnitude of the angular acceleration α, both in absolute magnitude and relative to RQBez. LQI
outperform RQBez by over two orders of magnitude, and mLQI provides an additional two orders of
magnitude improvement.

2.3. Example 3: Complex Mixed Rotation

Now we consider the system in Example 2, but where the angle has an oscillatory
motion, i.e., θ = ω0 sin(ω0t). This is not unlike a scanning mirror system in a LIDAR, albeit
somewhat exaggerated. The trajectory in Figure 2a is visibly much more complex, and
the quaternion components vary wildly Figure 4. These fast fluctuations are a particular
difficulty for interpolating. As can be seen in Figure 4c, similar to Example 2, we had
separations of multiple orders of magnitude between RQBez, LQI, and mLQI, with our
modified method performing the best overall.

Mathematics 2023, 11, 1131 9 of 13

Figure 4. (a) The rotational motion of r̂0 = ẑ as a result of constant rotation in the quaternion angle as
well as an oscillating unit vector. (b) What the quaternion themselves look like. Here, ωφ = 0.2 rad

s ,
ωθ = ω0 sin(ω0t), and ω0 = π rad

s . Here the combination of a constantly rotating angle and an
oscillating unit vector creates extremely varying elements. (c) Error in the angle θ, the magnitude of
angular momentum ‖~ω‖, and magnitude of the angular acceleration α, both in absolute magnitude
and relative to RQBez. For the majority of keyframe spacings, LQI and mLQI outperform RQBez by
over two orders and four orders of magnitude, respectively. For small enough keyframe spacings, the
methods converge.

2.4. Execution Time Comparison

Finally, we also investigated the execution times for all the algorithms over a broad
range of key frame spacings. Using the quaternion system from Example 3, we compared
time of execution for RQBez, LQI, and two version of mLQI—one where the unit vector
was interpolated unnormalized and one where it was renormalized after interpolation.
The results are seen in Figure 5. As can be seen, the timing performance seems to follow
the same power law relationship for each method (y ∼ x−1 is shown for reference). The
largest difference between methods is the function evaluation of the equations involved,
particularly the derivatives. As we show in Appendix A, the equations for the quaternions
and their derivatives of RQBez and LQI are complex, owing to the normalization factor.
Additionally, when the interpolation in mLQI is constrained to be normalized, the method
is slower than the same method unnormalized. This is reflective of the simpler equations
of an unnormalized mLQI algorithm is compared to RQBez and LQI saving number-of-
operation times.

Mathematics 2023, 11, 1131 10 of 13

Figure 5. Execution timing in milliseconds for RQBez, LQI, and two forms of mLQI.The line y ∼ x−1

is provided for visual reference. As can be seen, the unnormalized mLQI performing the fastest out
of all methods over widely varying keyframe spacing.

3. Discussion and Conclusions

In this work, we found that interpolating quaternion time series in the logarithmic
space is numerically robust across several orders of magnitude of key frame spacing. With
our contribution of a time-series-aware method of taking the logarithm, we find that the
original LQI method performs up to two orders of magnitude x better than the method of
RQBez. Because of our concerns with errors near θ = 0, we also demonstrated a method
mLQI for interpolating the full set of quaternion variables and found it to behave even
better, outperforming RQBez by an additional two orders of magnitude. Additionally, the
simpler formulation of equations of mLQI resulted in smaller execution times than either
RQBez or LQI. Further refinements can be made on magnitude-preserving interpolation of
the unit vector via projection methods. Additionally, we want to investigate these methods
when tasked with interpolating noisy rotational time-series.

Author Contributions: Conceptualization, J.P., D.O. and D.I.; methodology, J.P. and D.O.; software,
J.P., D.I. and D.O.; validation, D.I. and D.O.; formal analysis, J.P., D.I. and D.O.; writing—original
draft preparation, J.P.; writing—review and editing, J.P., D.I. and D.O.; visualization, J.P.; supervision,
D.O.; project administration, D.O.; funding acquisition, D.O. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was primarily funded by the Engineer Research Development Center, US
Army Corps of Engineers. Additionally, this research was partially supported in part by an appoint-
ment with the National Science Foundation (NSF) Mathematical Sciences Graduate Internship (MSGI)
Program sponsored by the NSF Division of Mathematical Sciences. This program is administered
by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement
between the U.S. Department of Energy (DOE) and NSF. ORISE is managed for DOE by ORAU. All
opinions expressed in this paper are the author’s and do not necessarily reflect the policies and views
of NSF, ORAU/ORISE, or DOE.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the three reviewers for their considerate com-
ments and suggestions during the review process. The authors would also like to thank the other
members of the Airborne LIDAR team at Geospatial Research Lab for their ongoing support.

Mathematics 2023, 11, 1131 11 of 13

Conflicts of Interest: The authors declare no conflict of interest

Abbreviations
The following abbreviations are used in this manuscript:

SLERP Spherical Linear interpolation
SQUAD Spherical and Quadrangle interpolation
RQBez Renormalized Quaternion Bezier interpolation
LQI Logarithmic Quaternion Interpolation
mLQI modified Logarithmic Quaternion Interpolation
KLMF Kinematically Linked Model Framework
IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
GPS Global Positioning System

Appendix A. Derivative Equations

For completeness, we provide the first derivatives for LQI, mLQI, and RQBez to
support our arguments about complexity differences. The second derivative equations for
all can be accomplished by subsequent differentiation

Appendix A.1. RQBez

We presume we have a continuous time-varying vector ~d(t) whose norm ‖d(t)‖ >
0 otherwise is a sufficiently continuous function of time. A single element of an RQBez
interpolation vector can be written as

qi =
di

‖~d‖
(A1)

Taking the first derivative with respect to time

q̇i =
ḋi

‖~d‖
− di~d · ~̇d
‖~d‖3

(A2)

and arrive at our result.

Appendix A.2. LQI

We presume that we have a continuous time-varying vector~r(t) = 〈x(t), y(t), z(t)〉
whose norm ‖~r(t)‖ > 0 otherwise is a sufficiently continuous function of time. The
interpolation method writes

q0(t) = cos
(
‖~r(t)‖

2

)
q1(t) = sin

(
‖~r(t)‖

2

)
x(t)
‖~r(t)‖

q2(t) = sin
(
‖~r(t)‖

2

)
y(t)
‖~r(t)‖

q3(t) = sin
(
‖~r(t)‖

2

)
z(t)
‖~r(t)‖

(A3)

For conciseness, we will drop the (t) notation. Focusing first on the component q0, the
first derivative is directly calculable

q̇0 = − sin
(
‖~r‖
2

)
~̇r ·~r (A4)

Mathematics 2023, 11, 1131 12 of 13

where~̇r = 〈ẋ, ẏ, ż〉. Taking a similar approach to q1

q̇1 = cos
(
‖~r‖
2

)
~̇r ·~r + sin

(
‖~r‖
2

)
x
‖~r‖

(
ẋ− x

~r ·~̇r
‖~r‖

)
(A5)

The other components q2(t) and q3(t) are similarly calculable.

Appendix A.3. mLQI

We presume that we have a continuous time-varying unit vector n̂(t) = 〈X(t), Y(t), Z(t)〉
whose norm n̂ = 1 as well a continuous time-varying rotation angle θ(t). The mLQI method
writes the calculated quaternion as

q0(t) = cos
(

θ(t)
2

)
q1(t) = sin

(
θ(t)

2

)
X(t)

q2(t) = sin
(

θ(t)
2

)
Y(t)

q3(t) = sin
(

θ(t)
2

)
Z(t)

(A6)

Dropping the (t) notation, we can calculate the derivative q̇0 simply

q̇0 = − θ̇

2
sin
(

θ

2

)
(A7)

For the component q1, we calculate the derivative q̇1 as so

q̇1 =
θ̇

2
cos
(

θ

2

)
+ sin

(
θ

2

)
Ẋ (A8)

The other components q2(t) and q3(t) are similarly calculable.

References
1. Beange, K.H.; Chan, A.D.; Graham, R.B. Evaluation of wearable IMU performance for orientation estimation and motion tracking.

In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy,
11–13 June 2018; pp. 1–6.

2. Blanke, M.; Larsen, M.B. Satellite dynamics and control in a quaternion formulation. Technical University of Denmark, Department
of Electrical Engineering; Tech. Rep; 2010. Available online: https://www.researchgate.net/profile/Mogens-Blanke/post/How-
can-I-introduce-faults-to-Reaction-Wheel-unit/attachment/59d61fe479197b807797e581/AS%3A287324580663296%401445514
926471/download/Satdyn_mb_2010f.pdf (accessed on 29 December 2022).

3. Himberg, H.; Motai, Y. Head orientation prediction: Delta quaternions versus quaternions. IEEE Trans. Syst. Man Cybern. Part B
(Cybern.) 2009, 39, 1382–1392. [CrossRef] [PubMed]

4. Ober, D.B. Impact of rigorous modeling for a Geiger-mode light detection and ranging system on identifying uncalibrated
component error sources and total propagated uncertainty. In Proceedings of the Laser Radar Technology and Applications
XXVIII, SPIE, Orlando, FL, USA, 3–4 May 2023.

5. Ullrich, A.; Pfennigbauer, M. Linear LIDAR versus Geiger-mode LIDAR: Impact on data properties and data quality. In
Proceedings of the Laser Radar Technology and Applications XXI. SPIE, Baltimore, MD, USA, 19–20 April 2016; Volume 9832,
pp. 29–45.

6. Ranacher, P.; Brunauer, R.; Van der Spek, S.; Reich, S. What is an appropriate temporal sampling rate to record floating car data
with a GPS? ISPRS Int. J. Geo-Inf. 2016, 5, 1. [CrossRef]

7. Young, A.D.; Ling, M.J.; Arvind, D.K. IMUSim: A simulation environment for inertial sensing algorithm design and evaluation.
In Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks, Chicago, IL,
USA, 12–14 April 2011; pp. 199–210.

https://www.researchgate.net/profile/Mogens-Blanke/post/How-can-I-introduce-faults-to-Reaction-Wheel-unit/attachment/59d61fe479197b807797e581/AS%3A287324580663296%401445514926471/download/Satdyn_mb_2010f.pdf
https://www.researchgate.net/profile/Mogens-Blanke/post/How-can-I-introduce-faults-to-Reaction-Wheel-unit/attachment/59d61fe479197b807797e581/AS%3A287324580663296%401445514926471/download/Satdyn_mb_2010f.pdf
https://www.researchgate.net/profile/Mogens-Blanke/post/How-can-I-introduce-faults-to-Reaction-Wheel-unit/attachment/59d61fe479197b807797e581/AS%3A287324580663296%401445514926471/download/Satdyn_mb_2010f.pdf
http://doi.org/10.1109/TSMCB.2009.2016571
http://www.ncbi.nlm.nih.gov/pubmed/19493852
http://dx.doi.org/10.3390/ijgi5010001

Mathematics 2023, 11, 1131 13 of 13

8. Alaimo, A.; Artale, V.; Milazzo, C.; Ricciardello, A. Comparison between Euler and quaternion parametrization in UAV dynamics.
In Proceedings of the AIP Conference Proceedings. American Institute of Physics, Antalya, Turkey, 24–28 April 2013; Volume 1558,
pp. 1228–1231.

9. Dam, E.B.; Koch, M.; Lillholm, M. Quaternions, Interpolation and Animation; Citeseer: University Park, PA, USA, 1998; Volume 2.
10. Shoemake, K. Animating rotation with quaternion curves. In Proceedings of the 12th Annual Conference on Computer Graphics

and Interactive Techniques, San Francisco, CA, USA, 22–26 July 1985; pp. 245–254.
11. Shoemake, K. Quaternion Calculus and Fast Animation, Computer Animation: 3-D Motion Specification and Control; Siggraph:

Los Angeles, CA, USA, 1987.
12. Haarbach, A.; Birdal, T.; Ilic, S. Survey of higher order rigid body motion interpolation methods for keyframe animation and

continuous-time trajectory estimation. In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8
September 2018; pp. 381–389.

13. Pu, Y.; Shi, Y.; Lin, X.; Hu, Y.; Li, Z. C2-Continuous Orientation Planning for Robot End-Effector with B-Spline Curve Based on
Logarithmic Quaternion. Math. Probl. Eng. 2020, 2020, 2543824. [CrossRef]

14. MATLAB. Version R2022a; The MathWorks Inc.: Natick, MA, USA, 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2020/2543824

	Introduction
	Relating Rotations across Parent/Child Pairs
	A Brief Introduction to Quaternions
	Slerp and Squad
	Renormalized Quaternion Bezier (Rqbez) Interpolation
	Logarithmic Quaternion Interpolation (Lqi)
	The Ambiguity of the Quaternion Logarithm
	Modified Logarithmic Quaternion Interpolation (Mlqi)

	Results and Discussion
	Example 1: Simple Rotation in the Angle
	Example 2: Simple Mixed Rotation
	Example 3: Complex Mixed Rotation
	Execution Time Comparison

	Discussion and Conclusions
	Appendix A. Derivative Equations
	Appendix A.1. RQBez
	Appendix A.2. LQI
	Appendix A.3. mLQI

	References

