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Abstract: This study introduces a unique flexible family of discrete probability distributions for
modeling extreme count and zero-inflated count data with different failure rates. Certain significant
mathematical properties, such as the cumulant generating function, moment generating function,
dispersion index, L-moments, ordinary moments, and central moment are derived. The new failure
rate function offers a wide range of flexibility, including “upside down”, “monotonically decreas-
ing”, “bathtub”, “monotonically increasing” and “decreasing-constant failure rate” and “constant”.
Moreover, the new probability mass function accommodates many useful shapes including the
“right skewed function with no peak”, “symmetric”, “right skewed with one peak” and “left skewed
with one peak”. To obtain significant characterization findings, the hazard function and the con-
ditional expectation of certain function of the random variable are both employed. Both Bayesian
and non-Bayesian estimate methodologies are considered when estimating, assessing, and com-
paring inferential efficacy. The Bayesian estimation approach for the squared error loss function is
suggested, and it is explained. Markov chain Monte Carlo simulation studies are performed using
the Metropolis Hastings algorithm and the Gibbs sampler to compare non-Bayesian vs. Bayesian
results. Four real-world applications of count data sets are used to evaluate the Bayesian versus
non-Bayesian techniques. Four more real count data applications are used to illustrate the significance
and versatility of the new discrete class.

Keywords: discretization; Bayesian estimation; metropolis-hastings; maximum likelihood; Cramér-
von-Mises; Markov chain Monte Carlo; squared error loss function; zero-inflated engineering
count data

MSC: 62E15; 62E99

1. Introduction and Genesis

Discrete distributions are important in statistics because they model count data, which
arise frequently in many fields, including biology, medicine, social sciences, and engi-
neering. Discrete distributions are also used to model binary data, where the outcome is
either zero or one. The importance of discrete distributions can be summarized as follows:
Modeling count data: Discrete distributions, such as Poisson and negative binomial, allow
us to model count data, which is common in many applications, such as the number of
people who visit a website, the number of hospital admissions, or the number of species in
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a habitat. Modeling binary data: Discrete distributions, such as the binomial and the beta-
binomial distributions, allow us to model binary data, which is common in many fields,
such as medical trials, social sciences, and marketing. Probabilistic modeling: Discrete
distributions provide a probabilistic model for count and binary data, which allows us to
make predictions about future events and to assess the uncertainty in these predictions.
Estimation and inference: Discrete distributions allow us to estimate parameters of interest,
such as the mean and variance, and to make inferences about the population from sample
data. In conclusion, discrete distributions play a crucial role in modeling count and binary
data and are essential tools for making probabilistic predictions and inferences in many
fields of study.

Discretization is the process of converting a continuous variable into a discrete (or
categorical) variable by dividing it into intervals. This is an important step in many
data analysis and modeling applications for several reasons: Simplification: Discretizing
continuous variables can simplify the data and make it easier to understand and interpret.
Modeling limitations: Some statistical models, such as linear regression, assume that
the variables are continuous, while others, such as logistic regression, assume that the
variables are categorical. Discretization can help overcome these limitations. Handling non-
linear relationships: Discretization can be used to capture non-linear relationships between
variables. For example, if the relationship between two variables is not linear, discretizing
one or both of the variables can reveal a relationship that is easier to model. Dimension
reduction: Discretization can help reduce the dimensionality of the data, making it easier
to visualize and analyze. Handling outliers: Discretization can help handle outliers by
transforming them into a smaller number of intervals.

Discretization is an important step in the data pre-processing phase and must be
performed carefully to ensure that it does not introduce bias or lose important informa-
tion. The choice of the number of intervals and the method of discretization can greatly
affect the results of the analysis. The discretization of well-known continuous probability
distributions has drawn a lot of interest recently. Many researchers have studied a lot of
continuous distributions but by discretizing them. This direction was the dominant trend in
statistical literature, despite the lack of works in this important field of distribution theory.
The importance of discretization of the continuous distributions derives its importance
from the presence of a lot of good, engineering, and actuarial data that cannot be dealt
with using continuous distributions. This urgent need is the main reason that motivated
researchers to move in this direction.

In this context, many discrete type extensions of the continuous models have been
presented and studied such as the well-known generalization of the Poisson model (see
Consul et al. [1], the discrete type extension of the Weibull distribution (D-W) (see Nak-
agawa and Osaki [2]), the discrete version of the Rayleigh model (DR) (see Roy [3]), the
discrete version of the half-normal model (see Kemp [4] and Kemp [5]), a discrete version of
the Pareto distribution (D-Pa) (see Krishna and Pundir Kemp [6]), a novel discrete version
of the geometric model (DGc) (see Gómez -Déniz [7] and), a discrete version of the Lindley
distribution (D-Li) (see Gómez -Déniz and Calderin-Ojeda [8]), a discrete version of the
inverse-Weibull distribution (D-IW) (see Jazi et al. [9]), a discrete version of the exponen-
tiated Weibull distribution (ED-W) (Nekoukhou and Bidram [10]), a discrete version of
the generalized exponentiated type II distribution (DGE-II) (see Nekoukhou et al. [11]), a
discrete version of the inverse Rayleigh distribution (DIR) (see Hussain and Ahmad [12]),
a discrete version of the Lindley type II model (D-Li-II) (Hussain et al. [13]), a discrete
version of the Lomax distribution (D-Lx) (Para and Jan [14]), a discrete version of the
log-logistic model (DLL) (Para and Jan [15]), a discrete version of the Burr type XII model
(D-BXII) (see Para and Jan [15]), a discrete version of the exponentiated Lindley distri-
bution (ED-Li) (see El-Morshedy et al. [16]), a discrete version of the Burr–Hatke model
(see El-Morshedy et al. [17]), a discrete version of the generalized Burr–Hatke model (see
Yousof et al. [18]), a discrete version of the inverse Burr (DIB) model (see Chesneau et al. [19]),
among others.
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The distributions above were related to the first trend, as for the second trend, many
researchers started to present families of discrete distributions. These families of discrete
distributions are not so numerous in the statistical literature that we can exhaustively
enumerate them. Therefore, we can limit these families to the following: the discrete
Gompertz G family of distributions by Eliwa et al. [20], the discrete Weibull G family by
Ibrahim et al. [21], the discrete Rayleigh G by Aboraya et al. [22].

This paper presents and studies a novel discrete family. The continuous generalized
Rayleigh family of distributions is the foundation from which the new family is derived.
Among the important mathematical elements that are calculated and examined are the
ordinary moments, the central moment, the moment generating function, the cumulant gen-
erating function, the probability generating function, and the dispersion index (Fano factor).
The well-known Weibull model is given particular focus. Some of the traditional (non-
Bayesian) estimation techniques that are taken into consideration and researched include
the Cramér-von-Mises estimation (CVME), the ordinary least squared estimation (OLSE),
the maximum likelihood estimation (MLE), and the weighted least squared estimation
(WLSE).

Since there are no conventional ways to obtain the conditional posteriors of the pa-
rameters, it is advised to gather samples from the joint posterior of the parameters using
a hybrid Markov chain Monte Carlo technique. For the Bayesian estimating approach,
the squared error loss function is taken into consideration. Bayesian and non-Bayesian
estimates are compared using Markov chain Monte Carlo simulations. The Gibbs sampler
and the Metropolis Hastings algorithms are employed. Four genuine data sets are used to
illustrate the new family’s adaptability and significance. Compared to the sixteen feuding
families, the new family provides a better fit.

Different member distributions could be the subject of future study and discussion.
Future research might consider the bivariate and multivariate expansions of this novel
family. A RV X is said to have Rayleigh if its cumulative distribution function (CDF) is
given by

Fα(x) = 1− exp[−(αx)2]|(x≥0 and α>0).

The CDF of the continuous generalized Rayleigh G (GzRG) family can be expressed as

Fα,σ,V(x) = 1− exp
{
−[αWσ1,σ2,V(x)]

2
}
|(x∈R,σ>0).

The function Wσ1,σ2,V(x) refers to a new odds ratio function, where

Wσ1,σ2,V(·) =
Gσ1

V (·)
1− Gσ2

V (·)
,

and GV(·) refers to the CDF of the baseline model. Therefore, Gσ1
V (·) refers to the exponenti-

ated CDF of the baseline model with power parameter σ1 and baseline parameter vector V,
and Gσ2

V (·) refers to the exponentiated CDF of the baseline model with power parameter σ2

and baseline parameter vector V. Let α2 = − log(q) then, CDF of the discrete generalized
Rayleigh G family (DGzR-G) can be expressed as

Fq,σ1,σ2,V(x) = 1− qW
2
σ1,σ2,V(x+1)|(q∈(0,1) and x∈N•=N∪ {0}). (1)

The corresponding survival function (SF) is

Sq,σ,V(x) = qW
2
σ1,σ2,V(x+1)|(q∈(0,1) and x∈N•). (2)
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to (2)
may be written, thanks to Kemp [5] to obtain the new PMF, as fq,σ1,σ2,V(x) = Sq,σ1,σ2,V(x− 1)−
Sq,σ1,σ2,V(x). Therefore, the PMF can be expressed as

fq,σ1,σ2,V(x) = qW
2
σ1,σ2,V(x) − qW

2
σ1,σ2,V(x+1)|(q∈(0,1) and x∈N•), (3)

where Wσ1,σ2,V(.) refers to the generated odd ratio function of any discrete non-negative
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is
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q,σ1,σ2,V(x) = 1− qW
2
σ1,σ2,V(x+1)−W2

σ1,σ2,V(x). (4)

Even though there are a lot of discrete distributions in the statistical literature, discrete
G families are still rare (where G = GV(·) refers to CDF of any baseline model); this is
because there are not a lot of discrete G families in the literature. The reasons for our
introduction the DGzR-G family are as follows:

1. Creating new probability mass functions that can be, among other helpful forms such
as “right skewed probability mass function with no peak”, “symmetric probability
mass function”, “right probability mass function skewed with one peak” and “left
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable
probability mass function to examine a range of count environmental data. Intro-
ducing some new models that have various hazard rate shapes including “upside
down failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”,
“monotonically increasing failure rate” and “decreasing-constant failure rate” and
“constant failure rate with one value”. The diversity in the failure rate function gives
the probability distribution a great advantage and a high superiority in the statistical
and mathematical modeling processes. This feature is enjoyed by the new family,
which makes it qualified to model many count data.

2. The new distribution’s flexibility is really influenced by a number of factors, including
the size of the skew coefficient, kurtosis coefficient, failure rate function, and variations
of the PMF and failure rate function. In this case, it is equally important to apply
and effectively use the probability distribution in mathematical analysis. We found
that the novel probability mass function was highly adaptable in these and other
areas when we examined more closely. This inspired us to thoroughly investigate this
probability distribution.

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dispersed,”
some new discrete models are presented. No matter how symmetric or asymmetric
the data are or whether they contain outliers, it is obvious that the DGzR-G family
has demonstrated to be more economical at modelling many types of data.

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is a
zero-inflated probability distribution, or distribution that allows multiple zero-valued
observations. For instance, the number of insurance claims within a community
for a specific type of risk would be zero-inflated if people who are unable to file a
claim because they have not acquired insurance against the risk. In this work, we
are inspired to utilize the novel family instead of the zero-inflated Poisson regression
model, which is frequently used to model and forecast zero-inflated count data.

5. Compare the estimating techniques for both simulated and real-count/zero-inflated
data for suggesting and recommending the most appropriate method in each situation.

6. Since the novel family produced satisfactory results in the statistical modelling of
the data, it is recommended for use in analyzing the bathtub hazard rate count data
(under the Weibull baseline model). The data displaying a monotonically increasing
failure rate count may also be adequately explained by the same fundamental concept.
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7. The new family can be considered as a suitable statistical alternative for handling the
zero-inflated and count medical data with a decreasing failure rate and certain some
outlier observations.

8. The new class was a suitable choice for modeling zero-inflated agricultural data that
has a decreasing–increasing–decreasing failure rate and contains some outliers.

9. In fact, we experimentally show that the proposed G family of distributions matches
more closely four real data sets than the other sixteen extended competitive distribu-
tions with three and four parameters.

10. For the estimate and statistical inference side, other traditional (non-Bayesian) esti-
mating techniques are taken into account. This would include weighted-least squares
estimation, ordinary least squares estimation, and maximum likelihood estimation.
Additionally considered is the Bayesian estimate under the squared error loss func-
tion. The common Markov chain Monte Carlo simulations are used to compare the
Bayesian and traditional methods. Using four actual data sets, the applicability of
the DGzR-G family is shown and explained. Due to the consistency of the Akaike in-
formation criteria, Chi-square, Kolmogorov–Smirnov, and its associated P-value(PV),
the DGzR-G family under the Weibull model environment provided a better fit than
many competing models.

The rest of this paper is structured as follows. A few mathematical traits of the DGzR-G
family are inferred and studied in Section 2. Several characterization findings are reported
in Section 3 of the paper. Techniques for estimate and inference are presented in Section 4.
Bayesian and non-Bayesian estimate methods are contrasted using Markov chain Monte
Carlo simulations in Section 5. Four data examples are presented in Section 6 to compare
Bayesian and non-Bayesian estimation methods. In Section 7, two count applications for
contrasting the competing discrete models are considered. In Section 8, two Zero-inflated
applications for contrasting the competing discrete models are considered. Section 9 gives
some concluding remarks.
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 

(
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=

∞
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∞
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The Fano factor (FF) or the variance to mean ratio (VMR) of the DGzR-G family can be
derived as

FF(X) =
∑∞

x=1(2x− 1)qW
2
σ1,σ2,V(x)

∑∞
x=1 qW

2
σ1,σ2,V(x)

−
∞

∑
x=1

qW
2
σ1,σ2,V(x)|(x∈N• and q∈(0,1)).

The index of dispersion, also known as the FF, coefficient of dispersion, relative
variance, or variance-to-mean ratio (VMR), is a normalized measure of the dispersion of
a probability distribution that is used in probability theory and statistics to determine
whether a set of observed occurrences is clustered or dispersed in comparison to a common
statistical model. When describing the distribution of events or objects in time or space,
the VMR is utilized and provides us some useful information. The FF is approximately
1 if the distribution is random, that is, if it can be represented by the Poisson process or
one of its multidimensional counterparts. Greater results (FF > 1) indicate the presence
of geographical or temporal clusters or “clumps”. Smaller values of the FF (1 > FF) repre-
sent a distribution that is more equal or uniform than random, or mutual “avoidance” of
occurrences or objects in time or space. The essential characteristic of the Poisson distri-
bution, that the variance and mean are equal, gives rise to these characteristics of FF. The
Variance/Mean Ratio test makes use of the FF.

2.3. The Moment Generating Function (MGF) and Cumulant Generating Function (CGF)

Theorem 2. Let X be DNNRV, where X ∼ DGzR-G (q, σ1, σ2, V) family, then the MGF of X can
be obtained as

MX(t) = 1 +
∞

∑
x=1
{exp(tX)− exp[t(X− 1)]}qW

2
σ1,σ2,V(x)|(x∈N• ,q∈(0,1) and
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Proof. The MGF of our DNNRV X can be derived from

MX(t) =
∞

∑
x=0

exp(tX)Sq,σ1,σ2,V(x).

Using (3) we have

MX(t) =
∞

∑
x=0

exp(tX)

[
qW

2
σ1,σ2,V(x) − qW

2
σ1,σ2,V(x+1)

]
,

then
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∑
x=1
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2nd cumulant (U2,X) is the same as the variance (Var(X)). Regarding the 3rd cumulant:
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end Proof.   □ 
Then, using (5), the mean (𝐸(𝑋)  =  𝜇 , ), and 𝐸(𝑋 )  =  𝜇 ,  can be, respectively, 
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7. The new family can be considered as a suitable statistical alternative for handling the 
zero-inflated and count medical data with a decreasing failure rate and certain some 
outlier observations. 

8. The new class was a suitable choice for modeling zero-inflated agricultural data that 
has a decreasing–increasing–decreasing failure rate and contains some outliers. 

9. In fact, we experimentally show that the proposed G family of distributions matches 
more closely four real data sets than the other sixteen extended competitive distribu-
tions with three and four parameters. 

10. For the estimate and statistical inference side, other traditional (non-Bayesian) esti-
mating techniques are taken into account. This would include weighted-least squares 
estimation, ordinary least squares estimation, and maximum likelihood estimation. 
Additionally considered is the Bayesian estimate under the squared error loss func-
tion. The common Markov chain Monte Carlo simulations are used to compare the 
Bayesian and traditional methods. Using four actual data sets, the applicability of the 
DGzR-G family is shown and explained. Due to the consistency of the Akaike infor-
mation criteria, Chi-square, Kolmogorov–Smirnov, and its associated P-value(PV), 
the DGzR-G family under the Weibull model environment provided a better fit than 
many competing models. 
The rest of this paper is structured as follows. A few mathematical traits of the DGzR-

G family are inferred and studied in Section 2. Several characterization findings are re-
ported in Section 3 of the paper. Techniques for estimate and inference are presented in 
Section 4. Bayesian and non-Bayesian estimate methods are contrasted using Markov 
chain Monte Carlo simulations in Section 5. Four data examples are presented in Section 
6 to compare Bayesian and non-Bayesian estimation methods. In Section 7, two count ap-
plications for contrasting the competing discrete models are considered. In Section 8, two 
Zero-inflated applications for contrasting the competing discrete models are considered. 
Section 9 gives some concluding remarks. 

2. Properties 
2.1. Raw Moments 

In order to deal with the mathematical and statistical characteristics of the new fam-
ily, we will present some sub-sections for each property separately. 
Theorem 1. Let 𝑋 be DNNRV, where 𝑋 ∼ DGzR-G (𝒒, 𝜎 , 𝜎 , 𝙑) family, then the 𝓈  moment 
of 𝑋 can be expressed as 𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍)|(𝓍∈𝙉•,𝒒∈( , ) and 𝓈  , , ,...). (5) 
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Then, 

𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝑆𝒒, , ,𝙑(𝓍 − 1). 
Then, 

𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍)|(𝓍∈𝙉•,𝒒∈( , ) and 𝓈  , , ,...), 
end Proof.   □ 
Then, using (5), the mean (𝐸(𝑋)  =  𝜇 , ), and 𝐸(𝑋 )  =  𝜇 ,  can be, respectively, 

written as 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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7. The new family can be considered as a suitable statistical alternative for handling the 
zero-inflated and count medical data with a decreasing failure rate and certain some 
outlier observations. 

8. The new class was a suitable choice for modeling zero-inflated agricultural data that 
has a decreasing–increasing–decreasing failure rate and contains some outliers. 

9. In fact, we experimentally show that the proposed G family of distributions matches 
more closely four real data sets than the other sixteen extended competitive distribu-
tions with three and four parameters. 

10. For the estimate and statistical inference side, other traditional (non-Bayesian) esti-
mating techniques are taken into account. This would include weighted-least squares 
estimation, ordinary least squares estimation, and maximum likelihood estimation. 
Additionally considered is the Bayesian estimate under the squared error loss func-
tion. The common Markov chain Monte Carlo simulations are used to compare the 
Bayesian and traditional methods. Using four actual data sets, the applicability of the 
DGzR-G family is shown and explained. Due to the consistency of the Akaike infor-
mation criteria, Chi-square, Kolmogorov–Smirnov, and its associated P-value(PV), 
the DGzR-G family under the Weibull model environment provided a better fit than 
many competing models. 
The rest of this paper is structured as follows. A few mathematical traits of the DGzR-

G family are inferred and studied in Section 2. Several characterization findings are re-
ported in Section 3 of the paper. Techniques for estimate and inference are presented in 
Section 4. Bayesian and non-Bayesian estimate methods are contrasted using Markov 
chain Monte Carlo simulations in Section 5. Four data examples are presented in Section 
6 to compare Bayesian and non-Bayesian estimation methods. In Section 7, two count ap-
plications for contrasting the competing discrete models are considered. In Section 8, two 
Zero-inflated applications for contrasting the competing discrete models are considered. 
Section 9 gives some concluding remarks. 

2. Properties 
2.1. Raw Moments 

In order to deal with the mathematical and statistical characteristics of the new fam-
ily, we will present some sub-sections for each property separately. 
Theorem 1. Let 𝑋 be DNNRV, where 𝑋 ∼ DGzR-G (𝒒, 𝜎 , 𝜎 , 𝙑) family, then the 𝓈  moment 
of 𝑋 can be expressed as 𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍)|(𝓍∈𝙉•,𝒒∈( , ) and 𝓈  , , ,...). (5) 

Proof: Since 

𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈𝓍  𝑆𝒒, , ,𝙑(𝓍). 
Then, 

𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝑆𝒒, , ,𝙑(𝓍 − 1). 
Then, 

𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍)|(𝓍∈𝙉•,𝒒∈( , ) and 𝓈  , , ,...), 
end Proof.   □ 
Then, using (5), the mean (𝐸(𝑋)  =  𝜇 , ), and 𝐸(𝑋 )  =  𝜇 ,  can be, respectively, 

written as 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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7. The new family can be considered as a suitable statistical alternative for handling the 
zero-inflated and count medical data with a decreasing failure rate and certain some 
outlier observations. 

8. The new class was a suitable choice for modeling zero-inflated agricultural data that 
has a decreasing–increasing–decreasing failure rate and contains some outliers. 

9. In fact, we experimentally show that the proposed G family of distributions matches 
more closely four real data sets than the other sixteen extended competitive distribu-
tions with three and four parameters. 

10. For the estimate and statistical inference side, other traditional (non-Bayesian) esti-
mating techniques are taken into account. This would include weighted-least squares 
estimation, ordinary least squares estimation, and maximum likelihood estimation. 
Additionally considered is the Bayesian estimate under the squared error loss func-
tion. The common Markov chain Monte Carlo simulations are used to compare the 
Bayesian and traditional methods. Using four actual data sets, the applicability of the 
DGzR-G family is shown and explained. Due to the consistency of the Akaike infor-
mation criteria, Chi-square, Kolmogorov–Smirnov, and its associated P-value(PV), 
the DGzR-G family under the Weibull model environment provided a better fit than 
many competing models. 
The rest of this paper is structured as follows. A few mathematical traits of the DGzR-

G family are inferred and studied in Section 2. Several characterization findings are re-
ported in Section 3 of the paper. Techniques for estimate and inference are presented in 
Section 4. Bayesian and non-Bayesian estimate methods are contrasted using Markov 
chain Monte Carlo simulations in Section 5. Four data examples are presented in Section 
6 to compare Bayesian and non-Bayesian estimation methods. In Section 7, two count ap-
plications for contrasting the competing discrete models are considered. In Section 8, two 
Zero-inflated applications for contrasting the competing discrete models are considered. 
Section 9 gives some concluding remarks. 

2. Properties 
2.1. Raw Moments 

In order to deal with the mathematical and statistical characteristics of the new fam-
ily, we will present some sub-sections for each property separately. 
Theorem 1. Let 𝑋 be DNNRV, where 𝑋 ∼ DGzR-G (𝒒, 𝜎 , 𝜎 , 𝙑) family, then the 𝓈  moment 
of 𝑋 can be expressed as 𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍)|(𝓍∈𝙉•,𝒒∈( , ) and 𝓈  , , ,...). (5) 

Proof: Since 

𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈𝓍  𝑆𝒒, , ,𝙑(𝓍). 
Then, 

𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝑆𝒒, , ,𝙑(𝓍 − 1). 
Then, 

𝐸(𝑋𝓈)  =  𝜇𝓈,  =  𝓍𝓈 − (𝓍 − 1)𝓈𝓍  𝒒𝓦 , ,𝙑(𝓍)|(𝓍∈𝙉•,𝒒∈( , ) and 𝓈  , , ,...), 
end Proof.   □ 
Then, using (5), the mean (𝐸(𝑋)  =  𝜇 , ), and 𝐸(𝑋 )  =  𝜇 ,  can be, respectively, 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 
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Numerous fields, including computer science, information theory, quantum informa-
tion, survival analysis, and econometrics, have used the probability generating function. In
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a separate article, it is feasible to construct and conduct research on the measure of variation
of the uncertainty of the random variable X.

2.4. The L-moments

L-moments can be derived and used in a similar way to how ordinary moments are.
To estimate the L-moments, one alternative is to combine the order statistics linearly. Every
time the distribution’s mean is present, the L-moments exist. There are an endless number
of weighted linear combinations of the means of the relevant DGzR-G order statistics that
may be used to create explicit formulae for the L-moments. As a linear function of the
L-moments, the expected order statistics may be stated as follows:

LM
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LM1,X = E
(

X(1:1)(q, σ1, σ2, V)
)
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LM2,X =
1
2

E
(

X(2:2)(q, σ1, σ2, V)− X(1:2)(q, σ1, σ2, V)
)

,

LM3,X = M3(X) =
1
3

E
(

X(3:3)(q, σ1, σ2, V) + X(1:3)(q, σ1, σ2, V)− 2X(2:3)(q, σ1, σ2, V)
)

,

and

LM4,X = M4(X) =
1
4

E
(

X(4:4)(q, σ1, σ2, V)− 3X(3:4)(q, σ1, σ2, V)− X(1:4)(q, σ1, σ2, V) + 3X(2:4)(q, σ1, σ2, V)
)

.

2.5. A Special Case

For the standard Weibull baseline model, it is seen that Wσ1,σ2, θ(x)

=
[1−exp(−xθ)]

σ1

1−[1−exp(−xθ)]
σ2 |x∈N• ,q∈(0,1),θ>0. Then based on (3), the PMF of the discrete generalized

Rayleigh Weibull (DGzR-W) model can be expressed as fq,σ1,σ2,θ(x) = qW
2
σ1,σ2, θ(x)

− qW
2
σ1,σ2, θ(x+1) |(x∈N• ,q∈(0,1) and σ1,σ2,θ>0), W2

σ1,σ2, θ(x) =

{
[1−exp(−xθ)]

σ1

1−[1−exp(−xθ)]
σ2

}−2
and

W2
σ1,σ2, θ(x + 1) =

{ {
1−exp

[
−(x+1)θ

]}σ1

1−
{

1−exp
[
−(x+1)θ

]}σ2

}2

. Clearly, when θ = 1, the DGzR-W model

reduced to the DGzR-exponential model. The PMF of the DGzR-W model is plotted in
Figure 1 for some parameter values. Figure 2 displays some plots of the DGzR-W model’s
HRF for selected parameter values. Based on Figure 1, we note that the PMF of the
DGzR-W can be “symmetric probability mass function”, “right skewed probability mass
function with no peak”, “right probability mass function skewed with one peak” and “left
skewed with one peak”. Based on Figure 2, we note that the HRF of the DGzR-W can be
“upside down hazard rate function”, “monotonically decreasing hazard rate function“,
“decreasing-constant-increasing (U-hazard rate function)”, “monotonically increasing haz-
ard rate function“ and “decreasing-constant” and “constant with one value”.
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The size of the skew coefficient, kurtosis coefficient, failure rate function, and variety
of the PMF and failure rate functions are some of the aspects that affect how flexible the
new distribution is. The usefulness and effectiveness of the probability distribution in
statistical modeling are also crucial in this situation. When we looked more closely, we
discovered that the novel probability mass function was quite flexible in these and other
areas. This motivated us to analyze this probability distribution in great depth.

3. Characterizations Results
3.1. Characterization Results Based on Conditional Expectation

Proposition 1. Let X : Ω→ N• be a random variable. The PMF of X is (3) if and only if

E
{[

qW
2
σ1,σ2,V(X)

+ qW
2
σ1,σ2,V(X+1)

]
| X >
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which is the hazard function corresponding to the PMF (3) so X has PMF (3). �

3.2. Characterizations of Distributions Based on Hazard Function

This subsection is devoted to the characterization of DGzR-G in terms of the hazard
function,
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 

F(x).

Proposition 2. Let X : Ω→ N• be a random variable. The PMF of X is (3) if and only if its
hazard function satisfies the difference equation
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introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
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6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
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6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
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makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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which is the hazard function corresponding to the PMF (3). �

4. Estimation and Inference

This section will discuss different estimating methods, such as classical and Bayesian
methods. Classical approaches come in a wide variety of forms, some of which are based
on maximization theory and others on minimization theory. In any case, the traditional
techniques typically differ from the Bayes method in origin and estimating methodology,
as will be extensively proven in practice and theory. The two subsections of this section
cover Bayesian and non-Bayesian estimation techniques. Eight non-Bayesian estimating
techniques, including the MLE, OLSE, and WLSE methods, are taken into consideration in
the opening sentence. The well-known squared error loss function is then considered in
the second section utilizing the Bayesian estimating approach (SELF).

4.1. Non-Bayesian Estimation Methods
4.1.1. The MLE Method

Maximum likelihood estimation (MLE), a statistical technique, is used to estimate the
unknown parameters of a probability distribution that has been presumed in light of certain
observed data. To do this, the probability of the observed data under the assumed statistical
model is increased by maximizing a likelihood function. The maximum likelihood estimate
is the location in the parameter space where the likelihood function is greatest. Maximum
likelihood is a popular technique for deriving statistical inferences due to its flexible and
clear reasoning. If the likelihood function is differentiable, maxima can be discovered
using the derivative test. By increasing the likelihood of the linear regression model, for
instance, the ordinary least squares estimator can sometimes directly solve the first-order
constraints of the likelihood function. However, it will frequently be essential to calculate
the probability function’s maximum using numerical techniques. MLE is frequently iden-
tical to maximum of a posteriori (MAP) estimates under a uniform prior distribution on
the parameters from the viewpoint of Bayesian inference. The MLE is a specific instance of
an extremum estimator where likelihood is the aim function in frequentist inference. Let
X1, X2, . . . , Xn be a random sample (RS) from the DGzR-G distribution. The log-likelihood
function is given by
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where the score vector components are
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, 0 =

∂

∂Vj
`
(

q, σ1, σ2, Vj

)
,

and simultaneously solving them produces the MLEs for the DGzR-G family’s parame-
ter values. In these situations, the Newton–Raphson techniques are used to derive the
numerical solutions.
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4.1.2. The CVME Method

The CVME of the parameters q, σ1, σ2, Vj are obtained via minimizing the following
expression with respect to q, σ1, σ2 and Vj, respectively, where

CVM(q,σ1,σ2,Vj)
=

1
12

n−1 +
n

∑
i=1

[
Fq,σ1,σ2,Vj(xi:n)−O

[1]
(i,n)

]2
|(q∈(0,1) and xi:n∈N•),

and where O[1]
(i,n) =

2i−1
2n and

CVM(q,σ1,σ2,Vj)
=

n

∑
i=1

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[1]
(i,n)

]2
.

The, CVMEs are obtained by solving the following two non-linear equations

0 =
n

∑
i=1

(
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[1]
(i,n)

)
D(q)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

0 =
n

∑
i=1

(
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[1]
(i,n)

)
D(σ1)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

0 =
n

∑
i=1

(
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[1]
(i,n)

)
D(σ2)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

and

0 =
n

∑
i=1

(
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[1]
(i,n)

)
D(Vj)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

where D(q)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂q, D(σ1)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂σ1, D(σ2)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂σ2 and

D(Vj)

(
1 + xi:n, q, σ, Vj

)
= ∂Fq,σ,Vj(xi:n)/∂Vj are the first partial derivatives of the CDF of

DGzR-G distribution with respect to q, σ1, σ2 and Vj, respectively.

4.1.3. OLSE Method

Let Fq,σ1,σ2,Vj(xi:n) denote the CDF of DGzR-G model and let X1 < X2 < · · · < Xn be
the n ordered RS. The OLSEs are obtained upon minimizing

OLSE(q,σ1,σ2,Vj)
=

n

∑
i=1

[
Fq,σ1,σ2,Vj(xi:n)−O

[2]
(i,n)

]2
,

where O[2]
(i,n) =

i
n+1 . Then, we have

OLSE(q,σ1,σ2,Vj)
=

n

∑
i=1

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]2
,

The LSEs are obtained via solving the following non-linear equations:

0 =
n

∑
i=1

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]
D(q)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

0 =
n

∑
i=1

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]
D(σ1)

(
1 + xi:n, q, σ1, σ2, Vj

)
,
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0 =
n

∑
i=1

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]
D(σ2)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

and

0 =
n

∑
i=1

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]
D(Vj)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

where D(q)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂q, D(σ1)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂σ1, D(σ2)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂σ2 and

D(Vj)

(
1 + xi:n, q, σ, Vj

)
= ∂Fq,σ,Vj(xi:n)/∂Vj are defined above.

4.1.4. WLSE Method

Weighted least squares (WLS), also known as weighted linear regression (WLR), which
integrates information about the variance of the data into the regression, is a generalization
of ordinary least squares and linear regression. WLS is yet another generalized least squares
variant. The WLSE are obtained by minimizing the function WLSE(q,σ1,σ2,Vj)

with respect
to q, σ1, σ2 and Vj.

WLSE(q,σ1,σ2,Vj)
=

n

∑
i=1

c[3]
(i,n)

[
Fq,σ1,σ2,Vj(xi:n)−O

[2]
(i,n)

]2
,

where c[3]
(i,n) =

[
(1 + n)2(2 + n)

]
/[i(1 + n− i)]. The WLSEs are obtained by solving

0 =
n

∑
i=1
O[3]

(i,n)

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]
D(q)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

0 =
n

∑
i=1
O[3]

(i,n)

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]
D(σ1)

1 + xi:n, q, σ1, σ2, Vj),

0 =
n

∑
i=1
O[3]

(i,n)

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]
D(σ2)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

and

0 =
n

∑
i=1
O[3]

(i,n)

[
1− q

W2
σ1,σ2,Vj

(xi:n+1) −O[2]
(i,n)

]
D(Vj)

(
1 + xi:n, q, σ1, σ2, Vj

)
,

where D(q)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂q, D(σ1)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂σ1, D(σ2)

(
1 + xi:n, q, σ1, σ2, Vj

)
= ∂Fq,σ1,σ2,Vj(xi:n)/∂σ2 and

D(Vj)

(
1 + xi:n, q, σ, Vj

)
= ∂Fq,σ,Vj(xi:n)/∂Vj are defined above.

4.2. Bayesian Estimation

Assume the beta (beta(φφφ1, ψψψ1)), gamma (Gamma(φφφ2, ψψψ2) and Gamma(φφφ3, ψψψ3)) and
uniform (Uniform(φφφ4, ψψψ4)) priors for the parameters q, σ1, σ2 and Vj, respectively. Then,

Mathematics 2023, 11, 1125 16 of 30 
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𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

and 
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where  𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝒒 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  = 𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎  and 𝘋 𝙑 (1 +𝓍𝒾:𝓃, 𝒒, 𝜎, 𝙑 )  =  𝜕𝐹𝒒, ,𝙑 (𝓍𝒾:𝓃)/𝜕𝙑  are defined above. 

4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

1,(φφφ1,ψψψ1)
(q) ∼ beta(φφφ1, ψψψ1),

Mathematics 2023, 11, 1125 16 of 30 
 

 

𝑊𝐿𝑆𝐸 𝒒, , ,𝙑  =  𝒸(𝒾,𝓃)𝓃
𝒾  𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃) − 𝒪(𝒾,𝓃) , 
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0 =  𝒪(𝒾,𝓃)𝓃
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4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-
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where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

2,(φφφ2,ψψψ2)(σ1) ∼ Gamma(φφφ2, ψψψ2),
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where 𝒸(𝒾,𝓃)  =  (1 + 𝓃) (2 + 𝓃) / 𝒾(1 + 𝓃 − 𝒾) . The WLSEs are obtained by solving 

0 =  𝒪(𝒾,𝓃)𝓃
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and 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋 𝙑 (1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

where  𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝒒 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  = 𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎  and 𝘋 𝙑 (1 +𝓍𝒾:𝓃, 𝒒, 𝜎, 𝙑 )  =  𝜕𝐹𝒒, ,𝙑 (𝓍𝒾:𝓃)/𝜕𝙑  are defined above. 

4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

3,(φφφ3,ψψψ3)(σ2) ∼ Gamma(φφφ3, ψψψ3),

and
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𝑊𝐿𝑆𝐸 𝒒, , ,𝙑  =  𝒸(𝒾,𝓃)𝓃
𝒾  𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃) − 𝒪(𝒾,𝓃) , 

where 𝒸(𝒾,𝓃)  =  (1 + 𝓃) (2 + 𝓃) / 𝒾(1 + 𝓃 − 𝒾) . The WLSEs are obtained by solving 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

and 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋 𝙑 (1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

where  𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝒒 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  = 𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎  and 𝘋 𝙑 (1 +𝓍𝒾:𝓃, 𝒒, 𝜎, 𝙑 )  =  𝜕𝐹𝒒, ,𝙑 (𝓍𝒾:𝓃)/𝜕𝙑  are defined above. 

4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

4,(φφφ4,ψψψ4)

(
Vj

)
∼ Uniform(φφφ4, ψψψ4).
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Assume that the parameters are independently distributed. Then, the joint prior
distribution
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𝑊𝐿𝑆𝐸 𝒒, , ,𝙑  =  𝒸(𝒾,𝓃)𝓃
𝒾  𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃) − 𝒪(𝒾,𝓃) , 

where 𝒸(𝒾,𝓃)  =  (1 + 𝓃) (2 + 𝓃) / 𝒾(1 + 𝓃 − 𝒾) . The WLSEs are obtained by solving 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

and 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋 𝙑 (1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

where  𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝒒 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  = 𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎  and 𝘋 𝙑 (1 +𝓍𝒾:𝓃, 𝒒, 𝜎, 𝙑 )  =  𝜕𝐹𝒒, ,𝙑 (𝓍𝒾:𝓃)/𝜕𝙑  are defined above. 

4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

(φφφi,ψψψi)

(
q, σ1, σ2, Vj

)
is given by
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𝑊𝐿𝑆𝐸 𝒒, , ,𝙑  =  𝒸(𝒾,𝓃)𝓃
𝒾  𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃) − 𝒪(𝒾,𝓃) , 

where 𝒸(𝒾,𝓃)  =  (1 + 𝓃) (2 + 𝓃) / 𝒾(1 + 𝓃 − 𝒾) . The WLSEs are obtained by solving 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

and 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋 𝙑 (1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

where  𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝒒 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  = 𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎  and 𝘋 𝙑 (1 +𝓍𝒾:𝓃, 𝒒, 𝜎, 𝙑 )  =  𝜕𝐹𝒒, ,𝙑 (𝓍𝒾:𝓃)/𝜕𝙑  are defined above. 

4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

(φφφi,ψψψi)

(
q, σ1, σ2, Vj

)
=

ψψψ2
φφφ2ψψψ3

φφφ3 σ1
φφφ2−1σ2

φφφ3−1

(ψψψ4 −φφφ4)B(φφφ1, ψψψ1)Γ(φφφ2)
exp(−σ1ψψψ2 − σ2ψψψ3) qφφφ1(1− q)ψψψ1 ,

where B (·, ·) is the beta function. The posterior distribution p
(

q, σ, Vj|x
)

of the parameters
is defined as
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𝑊𝐿𝑆𝐸 𝒒, , ,𝙑  =  𝒸(𝒾,𝓃)𝓃
𝒾  𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃) − 𝒪(𝒾,𝓃) , 

where 𝒸(𝒾,𝓃)  =  (1 + 𝓃) (2 + 𝓃) / 𝒾(1 + 𝓃 − 𝒾) . The WLSEs are obtained by solving 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

and 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋 𝙑 (1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

where  𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝒒 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  = 𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎  and 𝘋 𝙑 (1 +𝓍𝒾:𝓃, 𝒒, 𝜎, 𝙑 )  =  𝜕𝐹𝒒, ,𝙑 (𝓍𝒾:𝓃)/𝜕𝙑  are defined above. 

4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

(
q, σ1, σ2, Vj|x

)
∝ likelihood function× p(φφφi,ψψψi)

(
q, σ1, σ2, Vj

)
.

The simulation algorithm is follows:

1. Provide the initial values, say q, σ1, σ2 and Vj; then, at the ith stage,

2. Using M-H algorithm, generate q(i) ∼
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𝑊𝐿𝑆𝐸 𝒒, , ,𝙑  =  𝒸(𝒾,𝓃)𝓃
𝒾  𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃) − 𝒪(𝒾,𝓃) , 

where 𝒸(𝒾,𝓃)  =  (1 + 𝓃) (2 + 𝓃) / 𝒾(1 + 𝓃 − 𝒾) . The WLSEs are obtained by solving 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

and 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋 𝙑 (1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

where  𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝒒 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  = 𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎  and 𝘋 𝙑 (1 +𝓍𝒾:𝓃, 𝒒, 𝜎, 𝙑 )  =  𝜕𝐹𝒒, ,𝙑 (𝓍𝒾:𝓃)/𝜕𝙑  are defined above. 

4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

1

(
q(i)|q(i−1), σ1,(i−1), σ2,(i−1), Vj(i−1), x

)
,

3. Using M-H algorithm, generate σ1,(i) ∼
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𝑊𝐿𝑆𝐸 𝒒, , ,𝙑  =  𝒸(𝒾,𝓃)𝓃
𝒾  𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃) − 𝒪(𝒾,𝓃) , 

where 𝒸(𝒾,𝓃)  =  (1 + 𝓃) (2 + 𝓃) / 𝒾(1 + 𝓃 − 𝒾) . The WLSEs are obtained by solving 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

and 

0 =  𝒪(𝒾,𝓃)𝓃
𝒾  1 − 𝒒𝓦 , ,𝙑 (𝓍𝒾:𝓃 ) − 𝒪(𝒾,𝓃) 𝘋 𝙑 (1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 ), 

where  𝘋(𝒒)(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝒒 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  = 𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎 , 𝘋( )(1 + 𝓍𝒾:𝓃, 𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝜕𝐹𝒒, , ,𝙑 (𝓍𝒾:𝓃)/𝜕𝜎  and 𝘋 𝙑 (1 +𝓍𝒾:𝓃, 𝒒, 𝜎, 𝙑 )  =  𝜕𝐹𝒒, ,𝙑 (𝓍𝒾:𝓃)/𝜕𝙑  are defined above. 

4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
3. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
4. Using M-H algorithm, generate 𝜎 ,(𝒾) ∼ 𝓅 𝜎 ,(𝒾)|𝒒(𝒾), 𝜎 ,(𝒾), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
5. Using M-H algorithm, generate 𝙑 (𝒾) ∼ 𝓅 𝙑 (𝒾)|𝒒(𝒾)𝜎 ,(𝒾), 𝜎 ,(𝒾), 𝙑 (𝒾 ), 𝓍 , 
6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

2

(
σ1,(i)|q(i), σ1,(i−1), σ2,(i−1), Vj(i−1), x

)
,

4. Using M-H algorithm, generate σ2,(i) ∼
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𝑊𝐿𝑆𝐸 𝒒, , ,𝙑  =  𝒸(𝒾,𝓃)𝓃
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4.2. Bayesian Estimation 
Assume the beta (beta(𝝓 , 𝝍 )), gamma (Gamma(𝝓 , 𝝍 ) and Gamma(𝝓 , 𝝍 )) and 

uniform (Uniform(𝝓 , 𝝍 )) priors for the parameters 𝒒, 𝜎 , 𝜎  and 𝙑 , respectively. Then, 𝓅 ,(𝝓 ,𝝍 )(𝒒) ∼ beta(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 𝓅 ,(𝝓 ,𝝍 )(𝜎 ) ∼ Gamma(𝝓 , 𝝍 ), 
and 𝓅 ,(𝝓 ,𝝍 ) 𝙑 ∼ Uniform(𝝓 , 𝝍 ). 
Assume that the parameters are independently distributed. Then, the joint prior dis-

tribution 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ) is given by 𝓅(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 )  =  𝝍 𝝓 𝝍 𝝓 𝜎 𝝓 𝜎 𝝓(𝝍 − 𝝓 )𝐵(𝝓 , 𝝍 )Γ(𝝓 ) 𝑒𝑥𝑝(−𝜎 𝝍 − 𝜎 𝝍 ) 𝒒𝝓 (1 − 𝒒)𝝍 , 
where B(⋅,⋅) is the beta function. The posterior distribution 𝑝 𝒒, 𝜎, 𝙑 |𝓍  of the parameters is defined as 𝓅 𝒒, 𝜎 , 𝜎 , 𝙑 |𝓍 ∝ likelihood function × 𝑝(𝝓𝒾,𝝍𝒾)(𝒒, 𝜎 , 𝜎 , 𝙑 ). 

The simulation algorithm is follows: 
1. Provide the initial values, say 𝒒, 𝜎 , 𝜎  and  𝙑 ; then, at the 𝒾  stage, 
2. Using M-H algorithm, generate 𝒒(𝒾) ∼ 𝓅 𝒒(𝒾)|𝒒(𝒾 ), 𝜎 ,(𝒾 ), 𝜎 ,(𝒾 ), 𝙑 (𝒾 ), 𝓍 , 
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6. Repeat steps 1 − 5, 𝑀 =  100,000 times to obtain the sample of size 𝑀 from the 

corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

3

(
σ2,(i)|q(i), σ1,(i), σ2,(i−1), Vj(i−1), x

)
,

5. Using M-H algorithm, generate Vj(i) ∼
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corresponding posteriors of interest. Obtain the Bayesian estimates of 𝒒, 𝜎 , 𝜎  
and  𝙑  using the following formulae. 

4

(
Vj(i)|q(i)σ1,(i), σ2,(i), Vj(i−1), x

)
,

6. Repeat steps 1 − 5, M = 100, 000 times to obtain the sample of size M from the
corresponding posteriors of interest. Obtain the Bayesian estimates of q, σ1, σ2 and Vj
using the following formulae.

q̂ =
1

M−M0

M

∑
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 

=1+M0

q[
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G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 
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Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 

=1+M0

Vj
[

Mathematics 2023, 11, 1125 4 of 30 
 

 

Then, the probability mass function (PMF) of the DGzR-G family corresponding to 
(2) may be written, thanks to Kemp [5] to obtain the new PMF, as 𝑓𝒒, , ,𝙑(𝓍)  = 𝑆𝒒, , ,𝙑(𝓍 − 1) − 𝑆𝒒, , ,𝙑(𝓍). Therefore, the PMF can be expressed as 𝑓𝒒, , ,𝙑(𝓍)  =  𝒒𝓦 , ,𝙑(𝓍) − 𝒒𝓦 , ,𝙑(𝓍 )   |(𝒒∈( , ) and 𝓍∈𝙉•), (3)

where 𝓦 , ,𝙑(. ) refers to the generated odd ratio function of any discrete non-negative 
random variable (DNNRV). The DGzR-G family’s hazard rate function (HRF) is 𝓱𝒒, , ,𝙑(𝓍)  =  𝑓𝒒, , ,𝙑(𝓍)/𝑆𝒒, , ,𝙑(𝓍 − 1), or 𝓱 (𝓍)  =  𝓱𝒒, , ,𝙑(𝓍)  =  1 − 𝒒𝓦 , ,𝙑(𝓍 ) 𝓦 , ,𝙑(𝓍). (4)

Even though there are a lot of discrete distributions in the statistical literature, dis-
crete G families are still rare (where G = 𝐺𝙑 (⋅) refers to CDF of any baseline model); this 
is because there are not a lot of discrete G families in the literature. The reasons for our 
introduction the DGzR-G family are as follows: 
1. Creating new probability mass functions that can be, among other helpful forms such 

as “right skewed probability mass function with no peak”, “symmetric probability 
mass function”, “right probability mass function skewed with one peak” and “left 
skewed with one peak”. We may utilize the innovative DGzR-G family’s variable 
probability mass function to examine a range of count environmental data. Introduc-
ing some new models that have various hazard rate shapes including “upside down 
failure rate”, “monotonically decreasing failure rate”, “bathtub failure rate”, “mono-
tonically increasing failure rate” and “decreasing-constant failure rate” and “con-
stant failure rate with one value”. The diversity in the failure rate function gives the 
probability distribution a great advantage and a high superiority in the statistical and 
mathematical modeling processes. This feature is enjoyed by the new family, which 
makes it qualified to model many count data. 

2. The new distribution’s flexibility is really influenced by a number of factors, includ-
ing the size of the skew coefficient, kurtosis coefficient, failure rate function, and var-
iations of the PMF and failure rate function. In this case, it is equally important to 
apply and effectively use the probability distribution in mathematical analysis. We 
found that the novel probability mass function was highly adaptable in these and 
other areas when we examined more closely. This inspired us to thoroughly investi-
gate this probability distribution. 

3. To represent real data that is “over-dispersed,” “equal-dispersed,” and “under-dis-
persed,” some new discrete models are presented. No matter how symmetric or 
asymmetric the data are or whether they contain outliers, it is obvious that the DGzR-
G family has demonstrated to be more economical at modelling many types of data. 

4. The cornerstone of a statistical model known as a zero-inflated model in statistics is 
a zero-inflated probability distribution, or distribution that allows multiple zero-val-
ued observations. For instance, the number of insurance claims within a community 
for a specific type of risk would be zero-inflated if people who are unable to file a 
claim because they have not acquired insurance against the risk. In this work, we are 
inspired to utilize the novel family instead of the zero-inflated Poisson regression 
model, which is frequently used to model and forecast zero-inflated count data. 

5. Compare the estimating techniques for both simulated and real-count/zero-inflated 
data for suggesting and recommending the most appropriate method in each situa-
tion. 

6. Since the novel family produced satisfactory results in the statistical modelling of the 
data, it is recommended for use in analyzing the bathtub hazard rate count data (un-
der the Weibull baseline model). The data displaying a monotonically increasing fail-
ure rate count may also be adequately explained by the same fundamental concept. 

],

respectively, where M0(≈ 50, 000) is the burn-in period of the generated MCMC.

5. Simulations for Comparing Non-Bayesian and Bayesian Estimation Methods

The DGzR-W model is used as a special example in this Section’s MCMC simulation
research to compare the performance of non-Bayesian and Bayesian estimates. The nu-
merical evaluation of each estimating technique is completed using the well-known mean
squared errors (MSEs). Using different sample sizes (n = 50, 150, 300, and 500), we pro-
duced N = 1000 samples of the DGzR-W model. Although there are, of course, differences
between the classical methods and Bayes’ method (and between classical methods and
some other methods as well), these differences appear to be minor and immaterial and do
not greatly help in the absolute weighting of the methods. That is why we said that all the
roads are efficient and sufficient. This does not preclude trying to make some weightings
for the differentiation between the methods. Despite the fact that the Bayesian method
is advantageous in some situations, all estimation methods perform well as n increases.
Despite their variety and abundance, the MLE technique is still the most efficient and
reliable of the surviving traditional approaches. It is commonly acknowledged that the
MLE and the Bayesian approaches are suggested for statistical modeling and applications
since the majority of the other traditional methods are not as effective or reliable as the MLE
method. This Section will employ the simulation studies to evaluate different estimating
methodologies rather than to compare them, although doing so does not exclude using
simulation to do so. However, actual data is routinely used to assess different estimating
approaches; therefore, we will specifically discuss four instances for this purpose. There
are four additional applications to count and zero-inflated data to compare the competing
models. In summary, and by examining the results of the three tables, we can say that
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some methods are superior to others at certain sample sizes and some other methods are
superior to others at other sample sizes, and this is what made us confirm that all methods
work well in the estimation process. Due to Table 1, we do believe that the large MSEs for
σ2 resulted from the large values of the variance for this parameter only. Since the MSE
depends on the variance and bias, the MSEs are large due to the large variances. These
values, though large, are limited only when q = 0.15, σ1 = 0.6, σ2 = 75 and θ = 0.5. However,
for q = 0.5, σ1 = 5, σ2 = 0.5 and θ = 0.3 (see Table 2) and for q = 0.75, σ1 = 3.5, σ2 = 3.5 and
θ = 0.1 (see Table 3), the MSEs for all parameters are accepted values and very close to 0 as
n increases.

Table 1. MSEs for q = 0.15, σ1 = 0.6, σ2 = 75 and θ = 0.5.

n MLE OLS WLS Bayesian

50 q 0.00173 0.00195 0.00180 0.00404
σ1 0.02836 0.00646 0.09407 0.01045
σ2 206.9189 353.1251 381.7083 1.1426
θ 0.00034 0.01158 0.00896 0.00104

150 q 0.00055 0.00088 0.00081 0.00089
σ1 0.00972 0.00100 0.04194 0.00551
σ2 58.50171 115.9399 104.1537 1.4997
θ 0.00009 0.00080 0.00027 0.00061

300 q 0.00030 0.00054 0.00053 0.00023
σ1 0.00476 0.00026 0.02908 0.00196
σ2 29.29820 66.0827 57.7364 0.90796
θ 0.00004 0.00030 0.00009 0.00051

Table 2. MSEs for q = 0.5, σ1 = 5, σ2 = 0.5 and θ = 0.3.

n MLE OLS WLS Bayesian

50 q 0.00313 0.06725 0.05206 0.01238
σ1 0.06284 0.85334 0.72781 0.01782
σ2 0.00189 0.02570 0.02045 0.01082
θ 0.00043 0.00605 0.00902 0.00786

150 q 0.00090 0.06522 0.05092 0.00107
σ1 0.01745 0.84542 0.70743 0.01309
σ2 0.00054 0.02519 0.02026 0.00121
θ 0.00012 0.00613 0.00888 0.00105

300 q 0.00044 0.06374 0.04956 0.00061
σ1 0.00895 0.83734 0.62251 0.00067
σ2 0.00027 0.02475 0.01988 0.00023
θ 0.00006 0.00598 0.00845 0.00020

Table 3. MSEs for q = 0.75, σ1 = 3.5, σ2 = 3.5 and θ = 0.1.

n MLE OLS WLS Bayesian

50 q 0.00097 0.00124 0.00113 0.00178
σ1 0.29297 0.34505 0.33276 0.00494
σ2 0.08560 0.12670 0.10706 0.00539
θ 0.00001 0.00001 0.00001 0.00104

150 q 0.00034 0.00041 0.00034 0.00036
σ1 0.10151 0.11673 0.10336 0.00353
σ2 0.03051 0.04269 0.03191 0.00125
θ 0.000003 0.000004 0.000003 0.00026
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Table 3. Cont.

n MLE OLS WLS Bayesian

300 q 0.00015 0.00020 0.00017 0.00014
σ1 0.04501 0.05645 0.05239 0.00353
σ2 0.01430 0.02101 0.01614 0.00092
θ 0.000001 0.000002 0.000001 0.00021

6. Count and Zero Inflated Data Modeling

Modeling zero-inflated data refers to the statistical method of fitting a model to data
sets that contain many zero values compared to what would be expected based on the
underlying distribution. This type of data arises in many applications, such as count data
or binary data with excess zeros. There are several models that can be used to model
zero-inflated data, including: Zero-inflated Poisson (ZIP) model: This model is used for
count data where some observations are zero and some are positive. The ZIP model is a
combination of a Poisson regression model and a logistic regression model. Zero-inflated
negative binomial (ZINB) model: This model is like the ZIP model but is used for count
data that exhibit over-dispersion, meaning that the variance of the data is larger than the
mean. Zero-inflated beta regression (ZIB) model: This model is used for data that are
proportionally zero-inflated, such as binary data where the proportion of zeros is much
higher than what would be expected from a normal distribution. The choice of which
model to use depends on the specific characteristics of the data and the research question
being addressed. Four actual count and zero-inflated data set examples are provided in
this section to compare the Bayesian and non-Bayesian estimation methodologies. The
Kolmogorov-Smirnov (ks) test and its associated PV are taken into consideration when
comparing Bayesian versus non-Bayesian estimation methodologies.

6.1. Failure Times Data of 50 Devices

According to Bebbington et al. [23], we consider the failure rates of 50 devices sub-
mitted to a specific life test (in weeks). Table 4 lists the estimators for the ks and PV
statistics, Bayesian and non-Bayesian estimate techniques. Based on Table 4, the Bayesian
method is the best method with ks = 0.11479 and PV = 0.52521, then the MLE method with
ks = 0.12424 and PV = 0.42307. However, the OLS and WLS methods do not perform well
where their ks are 0.22111 and 0.23496 with PVs 0.01506 and 0.00801 < 0.01.

Table 4. Estimations, ks and PV statistics for 50 device failure rates’ data.

Method q̂ σ̂1 σ̂2 θ̂ ks PV

MLE 0.60354 2.83557 373.94464 0.41734 0.12424 0.42307
OLS 0.90654 1.46390 2.94911 0.20505 0.22111 0.01506
WLS 0.96247 0.08474 4.33044 0.28576 0.23496 0.00801

Bayesian 0.63152 2.78245 372.64565 0.41708 0.11479 0.52521

Due to Table 4, the σ̂2 seems to be large estimated values for all estimation methods
(especially MLE (373.94464) and Bayesian method (372.64565)). This large estimated value
may have resulted in the nature of this parameter. There are some parameters that take
large values, no matter how the estimation method changes, and there are other parameters
that take very small values, no matter how the estimation method changes. This is generally
due to the nature of the parameter and the nature of its role in the probability distribution.

6.2. Failure Times of 15 Electronic Components

In an acceleration lifetime test, this lifetime data provides the failure durations for
15 electrical components (see Lawless [24]). For the fifteen electrical components’ failure
rates data, Table 5 lists the estimators for the Bayesian and non-Bayesian estimating tech-
niques, ks and PV statistics. Based on Table 4, the WLS method is the best method with
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ks = 0.09861 and PV = 0.99861, then the OLS method with ks = 0.10016 and PV = 0.99822.
However, the MLE method performs well where its ks = 0.12238 and PVs = 0.97820. The
Bayesian method provided the worst result among all competitive models.

Table 5. Estimations, ks and PV statistics for the fifteen electrical components’ failure rates data.

Method q̂ σ̂1 σ̂2 θ̂ ks PV

MLE 0.31875 6.11878 51.81317 0.34137 0.12238 0.97820
OLS 0.90312 1.94874 2.36325 0.22195 0.10016 0.99822
WLS 0.90802 1.83952 2.53163 0.23147 0.09861 0.99861

Bayesian 0.16731 6.02815 52.21229 0.33028 0.19354 0.62789

Due to Table 5, the σ̂2 seems to be large estimated values for all estimation methods
methods (especially MLE (51.81317) and Bayesian method (52.21229)). This large estimated
value may have resulted in the nature of this parameter. There are some parameters that
take large values, no matter how the estimation method changes, and there are other
parameters that take very small values, no matter how the estimation method changes.
This is generally due to the nature of the parameter and the nature of its role in the
probability distribution.

6.3. Counts of Cysts of Kidneys

This count data set shows the numbers of cysts in kidney dysmorphogenetic caused
by corticosteroids and linked to uncontrolled production of Indian hedgehog and other
recognized cytogenic molecules (see Chan et al. [25]). Table 6 gives the estimators under
Bayesian and non-Bayesian estimation methods, ks and PV statistics for numbers of kidney
cysts. Based on Table 6, the MLE method is the best method with ks = 0.14815 and
PV = 0.70031. However, the OLS (ks = 3.55957 and PV = 0.05920), WLS (ks = 3.08690 and
PV = 0.07893 < 0.1) and Bayesian (ks = 4.05913 and PV = 0.04393 < 0.1) methods does not
perform well.

Table 6. Estimations, ks and PV statistics for numbers of kidney cysts.

Method q̂ σ̂1 σ̂2 θ̂ ks PV

MLE 0.22174 0.81715 4.84092 0.28249 0.14815 0.70031
OLS 0.45536 1.19569 1.51326 0.150057 3.55957 0.05920
WLS 0.38251 0.94744 2.12248 0.19280 3.08690 0.07893

Bayesian 0.15789 0.84126 7.41283 0.26625 4.05913 0.04393

6.4. Number of European Corn-Borer Larvae Parasites

According to Bodhisuwan and Sangpoom [26], this data reflects the quantity of para-
sitic European corn-borer larvae in the field. Bodhisuwan and Sangpoom [26] randomly
chose 8 hills from 15 replications for their stochastic biological experiment and counted
the number of corn borers on each hill. Table 7 gives the estimators under Bayesian and
non-Bayesian estimation methods, ks and PV statistics for number of European corn-borer
larvae parasites data. Based on Table 7, the MLE method is the best method with ks = 0.6850
and PV = 0.40800, then the Bayesian method with ks = 2.66196 and PV = 0.10277. How-
ever, the OLS (ks = 11.1466 and PV = 0.00084 < 0.01) and the WLS (ks = 11.77512 and
PV = 0.00060 < 0.01) method does not perform well.

Table 7. Estimations, ks and PV statistics for number of European corn-borer larvae parasites data.

Method q̂ σ̂1 σ̂2 θ̂ ks PV

MLE 0.02467 4.28487 1.10447 0.16146 0.6850 0.40800
OLS 0.35235 2.11913 1.34863 0.19548 11.1466 0.00084
WLS 0.54829 1.57732 1.28698 0.22148 11.77512 0.00060

Bayesian 0.02158 4.01044 1.39147 0.15873 2.66196 0.10277
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7. Zero-Inflated Data Modeling

We use four real data applications to show the usefulness and adaptability of the
DGzR-W distributions. The log-likelihood function, AIC, CAIC, Chi-square (χ2

V) with
degree of freedom (d.f) and its PV, and ks and its PV are used to examine and compare the
fitted distributions (see Table 8). The competing models are listed in Table 8 below.

Table 8. The competitive models.

N. Model Abbreviation

1 Discrete Pareto distribution D-Pa
2 Dis. Lomax distribution D-Lx
3 Dis. Lindley distribution D-Li
4 Dis. Weibull distribution D-W
5 Dis. Rayleigh distribution DR
6 Dis. Log-logistic distribution DLL
7 Dis. Exponential distribution DE
8 Dis. Burr type XII distribution D-BXII
9 Dis. Lindley type II distribution D-Li-II
10 Dis. Inverse Rayleigh distribution DIR
11 Poisson distribution (Poisson [27]) Poi
12 Dis. Inverse Weibull distribution D-IW
13 Dis. Exponentiated Weibull distribution ED-W
14 Discrete Exponentiated Lindley distribution ED-Li
15 Dis. Generalized Exponentiated type II distribution DGE-II
16 Negative Binomial distribution (Dougherty [28]) NgB

7.1. Failure Times Data of 50 Devices

The fits of the D-W, ED-W, D-IW, ED-Li, D-Pa, D-Li-II, and DLL models are contrasted
with those of the DGzR-W model. Tables 9 and 10, respectively, provide the goodness of
fit (GOF) test statistics, the MLEs, and the associated standard errors (SEs). Statisticians
have developed a powerful set of techniques for the examination of data having a regularly
dispersed distribution. The most popular is the “normal quantile-quantile (Q-Q) plot.” If
the data distribution exactly followed the normal distribution, all of the quantile points
would lie between the two blue lines. For data on 50 device failure rates, the Q-Q plot
is displayed in Figure 3 (left plot). A box in Figure 3’s right graph shows statistics on
failure rates. The model utilized for an application may depend on the HRF’s form. This
is accomplished by using the total time on test (TTT) plot. In order to “monotonically
decrease HRF,” it has a “convex form,” and in order to “monotonically increase HRF,” it
has a “concave shape.” The HRF of the data is said to be “continuous” when the solid line
and dashed line coincide. Figure 4 shows the TTT plot (left graph) and estimated HRF
for the DGzR-W model with 50 device failure rates (EHRF). The DGzR-W offers the finest
fits versus all competing models, according to Table 10 with −` = 222.31, AIC = 452.62,
CAIC = 453.51, ks = 0.12424, PV = 0.42307.

Table 9. MLEs (SEs) for 50 device failure rates’ data.

Model q̂ σ̂1 σ̂2 θ̂

DGzR-W 0.60354 2.83557 373.94464 0.41734
(0.07441) (0.64459) (211.2593) (0.02106)

ED-W 0.98932 1.13883 0.784344
(0.1643) (3.2271) (3.05356)

D-W 0.98122 1.02333
(0.0114) (0.1311)

D-IW 0.0183 0.5824
(0.0132) (0.0631)

D-Li-II 0.96931 0.05852
(0.0055) (0.0272)
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Table 9. Cont.

Model q̂ σ̂1 σ̂2 θ̂

ED-Li 0.97233 0.48033
(0.0053) (0.08710)

DLLc 1.00033 0.43921
(0.3213) (0.0622)

D-Pa 0.7393
(0.0323)

Table 10. The GOF statistics for 50 device failure rates’ data.

Model↓ −`−`−` AIC CAIC K-S PV

DGZR-W 222.31 452.62 453.51 0.12424 0.42307
ED-W 240.19 486.78 487.21 0.1955 0.0453
D-W 241.66 487.22 487.53 0.1877 0.0614
D-IW 261.88 527.85 528.15 0.2585 0.0035

D-Li-II 240.64 485.23 485.39 0.1863 0.0645
ED-Li 240.33 484.67 484.80 0.1954 0.0451
DLLc 294.93 593.77 594.04 0.5357 <0.0011
D-Pa 275.87 553.66 553.81 0.3354 <0.0013
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7.2. Failure Times of 15 Electronic Components

For this application, we compare the fits of the DGzR-W model to those of the DGE-II,
D-Lx, DEx, DIR, DR, D-IW, D-Pa, and D-BXII competing models. The MLEs with their
SEs and the GOF data are detailed in Tables 11 and 12, respectively. Figure 5 displays the
Q-Q plot and box for the failure times data. The DGzR-W model’s EHRF and TTT plots
for the data on the failure rates of fifteen electrical components are shown in Figure 6. The
DGzR-W offers the finest fits versus all competing models, according to Table 12 with
−` = 63.535, AIC = 135.071, CAIC = 139.071, ks = 0.12238, PV = 0.97820.

Table 11. MLEs (SEs) for fifteen electrical components’ failure rates.

Model q̂ σ̂1 σ̂2 θ̂

DGzR-W 0.31875 6.11878 51.81317 0.34137
(0.26513) (3.09225) (80.36565) (0.08077)

DGE-II 0.95632 1.49133
(0.01333) (0.535)

D-IW 2.222 × 10−4 0.8754
(7.8 × 10−4) (0.164)

D-Lx 0.01243 104.506
(0.03932) (84.409)

D-BXII 0.97533 13.3675
(0.05135) (27.785)

DR 0.999134
(2.6 × 10−4)

DIR 1.8 × 10−7

(0.0552)
D-Pa 0.72023

(0.0617)
DE 0.96532

(0.00922)
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Table 12. The GOF statistics for fifteen electrical components’ failure rates.

Model↓ −`−`−` AIC CAIC K-S PV

DGzR-W 63.535 135.071 139.071 0.12238 0.97820
D-Lx 65.888 135.666 136.729 0.2052 0.4911
DE 65.032 134.024 136.355 0.1777 0.6735

D-Pa 77.424 156.777 157.149 0.4051 0.0099
DB-XII 75.767 155.568 156.533 0.3888 0.0155
D-IW 68.744 141.390 142.438 0.2096 0.4829

DR 66.432 134.848 136.144 0.2156 0.4332
DIR 89.115 180.191 180.531 0.6989 <0.0001

DGE-II 64.398 134.837 135.831 0.1288 0.9374
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8. Zero-Inflated Data Modeling
8.1. Counts of Cysts of Kidneys

For this zero-inflated real data set, we compare the fits of the D-W, DR, D-IW, DE, D-Lx,
D-Li-II, D-Li, and Poisson distributions to those of the proposed DGzR-W distribution in
this subsection. A list of the MLEs and their SEs may be found in Table 13. Table 14 displays
the GOF data. Figure 7 shows the TTT plot, Q-Q plot, and Box plot vs. the EHRFs for the
quantity of kidney cysts. Figure 8 displays the fitted PMFs and EHRF for the number of
renal cysts. The DGzR-W offers the finest fits versus all competing models, according to
Table 14 with –` = 166.85, AIC = 341.7, CAIC = 342.081 χ2 = 0.14815 and PV = 0.70031.

Table 13. MLEs (SEs) for numbers of kidney cysts.

Model q̂ σ̂1 σ̂2 θ̂

DGzR-W 0.22174 0.81715 4.84092 0.28249
(0.50727) (1.04662) (5.71319) (0.0772)

D-W 0.75031 0.43142
(0.0841) (0.3401)

D-IW 0.58143 1.049431
(0.0481) (0.14643)
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Table 13. Cont.

Model q̂ σ̂1 σ̂2 θ̂

D-Li-II 0.58132 0.00132
(0.0455) (0.0581)

D-Lx 0.15032 1.83011
(0.0981) (0.9511)

DR 0.90144
(0.0094)

DE 0.58142
(0.0301)

D-Li 0.43651
(0.0262)

Poisson 1.390331
(0.11222)

Table 14. The GOF statistics for fifteen electrical components’ failure rates.

Z OF DGzR-W D-W D-IW DR DEx D-Li D-Li-II D-Lx Poi

0 65 65.085 59.01 63.91 11.00 46.091 40.25 46.03 61.89 27.42
1 14 13.989 19.84 20.70 26.83 26.78 29.83 26.77 21.01 38.08
2 10 8.879 10.78 8.055 29.55 15.56 18.36 15.57 9.654 26.47
3 6 6.1960 6.263 4.233 22.23 9.042 10.35 9.053 5.239 12.26
4 4 4.4641 4.195 2.601 12.49 5.252 5.534 5.274 3.178 4.261
5 2 3.243 2.014 1.754 5.422 3.052 2.864 3.064 2.066 1.178
6 2 2.360 1.993 1.263 1.854 1.772 1.443 1.785 1.421 0.270
7 2 1.711 1.323 0.955 0.524 1.033 0.713 1.044 1.023 0.052
8 1 1.232 0.994 0.739 0.111 0.613 0.353 0.601 0.766 0.011
9 1 0.880 0.862 0.588 0.021 0.355 0.199 0.354 0.578 0.000

10 1 0.622 0.7610 0.488 0.000 0.203 0.088 0.202 0.463 0.000
11 2 0.435 1.9940 4.752 0.000 0.277 0.067 0.283 2.743 0.000

−` 166.85 170.14 172.93 277.78 178.77 189.1 178.80 170.48 246.22
AIC 341.70 344.28 349.88 557.57 359.53 380.2 361.50 344.96 494.43

CAIC 342.081 344.39 349.98 557.58 359.56 380.2 361.60 345.07 494.47
χ2 0.14815 3.125 6.4631 321.07 22.88 43.47 22.880 3.316 294.11
d.f 1 3 3 4 4 4 3 3 4
PV 0.70031 0.373 0.091 <0.0001 0.0001 <0.0001 <0.0001 0.345 <0.0001
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8.2. Number of European Corn-Borer Larvae Parasites

Table 15 below gives the MLEs together with the matching SEs. The GOF data are
shown in Table 16. For the number of European corn-borer larvae parasites, Figure 9
displays the TTT plot, Q-Q plot, and box plot vs. the EHRFs. The fitted PMFs and EHRF
for number of European corn-borer larvae parasites are shown in Figure 10. The DGzR-W
offers the finest fits versus all competing models, according to Table 16 with −` = 200.248,
AIC = 408.496, CAIC = 408.844 χ2 = 0.685 and PV = 0.408.

Table 15. MLEs (SEs) for number of European corn-borer larvae parasites.

Model q̂ σ̂1 σ̂2 θ̂

DGzR-W 0.02467 4.28487 1.10447 0.16146
(0.10014) (2.42807) (1.40413) (0.07621)

DGW 0.04503 2.53943 2.15991 0.479321
(0.4290) (4.7033) (2.6983) (0.46629)

D-IW 0.34544 1.54142
(0.0433) (0.1565)

D-BXII 0.51933 2.35881
(0.0512) (0.3665)

NgB 0.87032 9.95612
(0.0366) (0.0955)

DIR 0.31933
(0.0420)

DR 0.86747
(0.0129)

D-Pa 0.32933
(0.0343)

Poisson 1.483611
(0.02531)

Table 16. The GOF statistics for number of European corn-borer larvae parasites.

Z OF DGZR-W D-IW D-BXII DIR DR NgB D-Pa Poi

0 43 44.248 41.38 43.85 38.27 15.932 30.123 64.48 27.27
1 35 31.357 41.85 39.61 51.90 36.17 38.87 20.15 40.38
2 17 19.012 15.42 15.62 15.51 34.58 27.61 9.698 29.95
3 11 11.088 7.175 7.257 6.044 21.03 14.26 5.655 14.81
4 5 6.3314 3.943 3.912 2.953 8.894 5.999 3.684 5.490
5 4 3.5642 2.425 2.375 1.641 2.701 2.178 2.584 1.633
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Table 16. Cont.

Z OF DGZR-W D-IW D-BXII DIR DR NgB D-Pa Poi

6 1 1.9862 1.621 1.573 0.982 0.601 0.702 1.902 0.405
7 2 1.0973 1.130 1.095 0.653 0.093 0.223 1.464 0.098
8 2 0.6020 5.099 4.831 2.144 0.028 0.063 10.44 0.023

−` 200.248 204.810 204.293 208.440 235.23 211.52 220.63 219.19
AIC 408.496 413.621 412.587 418.881 472.45 427.05 443.24 440.38

CAIC 408.844 413.723 412.689 418.915 472.45 427.14 443.27 440.41
χ2 0.685 5.511 4.664 14.2744 70.688 20.367 32.462 38.478
d.f 1 3 3 4 4 3 4 4
PV 0.408 0.138 0.198 <0.0001 <0.0001 0.0001 <0.0001 <0.0001
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9. Concluding Remarks

In this work, we introduced and analyzed a new discrete analogue class for the tra-
ditional continuous Rayleigh model called the discrete generated Rayleigh-G (DGzR-G)
family of distributions. Some of its statistical properties that are derived include moments,
cumulant generating function, L-moments, moment generating function, probability gener-
ating function, central moment, and dispersion index. It is shown how a discrete variation of
the DGzR-G family corresponds to a Weibull distribution. A particular case is investigated
and visually examined. The new hazard rate function offers a broad range of flexibilities, in-
cluding “upside”, “monotonically decreasing”, “decreasing-constant-increasing (U-hazard
rate function)”, “monotonically increasing “ and “decreasing-constant” and “constant”.
Moreover, the new probability mass function accommodates many useful forms in the
field of modeling, including the “symmetric probability mass function”, “right skewed
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probability mass function with no peak”, “right probability mass function skewed with
one peak” and “left skewed with one peak”. Some characterizations results are generated
and provided. Additionally, the Bayesian process under the SELF is shown in detail, it is
suggested to take samples from the joint posterior of the parameters as the conditional
posteriors of the parameters cannot be obtained in any conventional forms. To compare
non-Bayesian versus Bayesian estimates, MCMC simulations are run. Gibbs sampling and
the M-H method are used. The Bayesian approach offers the lowest mean squared errors
across all sample sizes. The non-Bayesian estimating techniques work admirably but fall
short of the Bayesian approach, the performance for all estimation methods (Bayesian and
non-Bayesian) improves as n increases.

Four real data sets are applied to compare the Bayesian versus non-Bayesian tech-
niques. The importance and versatility of the new discrete class are highlighted using four
real data applications. In the future, independent studies may be conducted to consider
and examine various unique member distributions. The bivariate and multivariate expan-
sions of the DGzR-G family may be considered in future studies. The DGzR-G family is
expected to be used in engineering, dependability, and other academic disciplines. More
frequently, the statistical testing of hypotheses and validation, whether in the case of com-
plete data or in the case of censored data, discrete distributions still require more research
and applications.
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