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Abstract: This work presents a new polymorphic, reusable, and comprehensive mathematical model
for COVID-19 epidemic transition cycle dynamics. This model has the following characteristics:
(1) The core SEIR model includes asymptomatic and symptomatic infections; (2) the symptomatic
infection is a multi-variant; (3) the recovery stage provides a partial feed to the symptomatic infection;
and (4) the symptomatic and asymptomatic stages have additional feed streams from the protected
stage. The proposed formalisation template is a canonical way to achieve different models for the
underlying health control environment. This template approach endows the model with polymorphic
and reusable capability across different scenarios. To verify the model’s reliability and validity,
this work utilised two sets of initial conditions: date range and COVID-19 data for Canada and
Saudi Arabia.
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1. Introduction

Epidemic infection growth modelling is an essential tool for establishing which reme-
dies and intercessions are the most efficient for a given epidemic. A tool’s efficiency is
measured in terms of timing, location, and cost-effective procedures to reduce and eradicate
an epidemic. Statistical or mechanistic [1] epidemic cycle modelling tools utilise available
epidemic data as input and apply initial conditions and constraints as needed to provide
the growth forecast as output. As a result, these models contribute to developing practical
and effective public health control plans and policies.

To model multi-variant COVID-19, we need to understand the evolution of its mutant
history across many countries. Hence, this paper includes a brief history of the emergence
of COVID-19 mutants (Section 2). However, the model’s comprehensiveness depends
on the defined COVID-19 epidemic growth rates of the transition stages: susceptible (S),
protected (P), exposed (E), infected (symptomatic (I) and asymptomatic (M)), recovered (R),
quarantine (Q), hospitalised (H), and dead (D). Additionally, it depends on (1) the plausible
mutations of I, and (2) the extent of potential feeds to M and I.

The COVID-19 data published by the WHO do not include such a level of distinction
(e.g., (I) the M’s details and individual I’s mutations, (II) the number of vaccinated indi-
viduals who become infected, and (III) the number of recovered individuals who become
infected again). These are fundamental gaps in the quality of the input data, making it
difficult to verify the model. In such circumstances, computational techniques are needed
to compensate for the lack of field verification and validation data. Hence, we devised
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several use cases to verify the reliability and validity of the model. In this paper, the word
“model” refers to the optimum solution of the customised Com-SEIR system of differential
equations, which includes all growth rates for given restrictions. The stage growth rate
means the number of cases per day or any observation time unit. Coronavirus mutations
include two essential attributes: the mutant’s contribution weight (
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i) and its growth rate
Ii(t), where i ∈ {0, 1, 2, . . . , n} and n is the number of mutants. Ii(t) is the number of
cases per day of individual mutations/variants. In this paper, the word “mutant” is used
interchangeably with the word “variant”.

Compartmental models are supposed to evaluate and predict the number of infected
people, hospitalised people, and people who have died in a community. These models make
it possible to conduct computational case studies on non-pharmaceutical therapies, giving
policymakers a solid foundation to plan to eliminate the risks associated with the epidemic.
As research into the transmission dynamics of SARS-CoV-2 continues, epidemic models
that can characterise the evolution of the COVID-19 respiratory disease are needed [2]. The
researchers of [3] proposed a new model that forecasted the epidemic’s trajectory to aid
the development of an effective control strategy. Their model, SIDARTHE, included eight
stages for the infection life cycle. In principle, the model distinguishes between infected
people based on whether they have been diagnosed and the severity of their symptoms.

The primary purpose of [4] was to develop a fundamental SEIR model using a stochas-
tic solver that recognises a collection of alternative scenarios for projecting epidemic evo-
lution, together with a risk assessment. Furthermore, the mathematical model in [4] was
modified to adequately depict an actual situation to add a time-dependent infection rate.
According to [5], the model in [4] did not distinguish between symptomatic and asymp-
tomatic infection cases. It is essential to highlight that while Italian and Spanish data
were adequately matched to their model, South Korean data fitting needed some help [4].
The authors of [4] noted that this disparity demonstrates how different health policies in
various countries can cause different patterns in disease spread. Hence, the models should
be tweaked to fit various scenarios by adding or removing parameters and relevant initial
conditions.

The authors of [6] proposed a multi-group SIR model to mimic COVID-19’s propa-
gation in an island community. The multi-group feature of the modelling approach was
used to predict virus transmissions between non-vaccinated (exposed) persons within an
age group and between age groups. Fuzzy subsets and aggregation operators were also
used to account for the elevated hazards linked with age and obesity in other groups. The
results demonstrated that if barrier gestures were not respected, a first wave would affect
the elderly, followed by adults and young people, which was consistent with actual data.
To use such a model, a local dataset must be available.

The modelling methodology in [7] was intended to resolve the issue related to the
total number of screening tests performed in France. This approach targeted tested patients
who were not directly accounted for by the number of cases that had been reported and the
infection mortality rate. Consequently, the authors of [7] created a “mechanistic-statistics”
approach, which included a SIR epidemiological model that describes unobserved epidemi-
ological dynamics, a probabilistic model that describes the data collection process, and a
statistical inference method.

In [8], the research team proposed a strategy for anticipating epidemiological health
series over two weeks on regional and interregional scales. The model-order reduction in
parametric compartmental models was the basis for this modelling technique, which was
intended to consider small pieces of hygiene information. The two COVID-19 pandemic
waves in France occurred between approximately February and November 2020. This
approach was shown to be efficient in forecasting the number of infected individuals and
individuals removed from the obtained data due to death or recovery. However, this kind
of model’s data characteristics limits its generality.

The multi-method modelling technique proposed in [9] included interrelated age-
stratified system dynamics models in an agent-based model. This framework allowed
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for a detailed analysis of the scale and severity of disease transmission, including metrics
such as infection (symptomatic and asymptomatic) cases, deaths, hospitalisations, and
ICU utilisation. Using a multi-criteria decision analysis framework, the authors of [9]
demonstrated how the model outcomes’ response could be used to assess the levels of
perception of COVID-19 risk throughout several localities. The main conclusion drawn
from this study is that the model could be used as a virtual laboratory to examine a variety
of what-if situations, and it could be quickly modified for future high-impact public health
risks.

COVID-19 transmission dynamics were simulated with a Monte Carlo model in [10].
The researchers examined various expected performance levels in terms of theoretical
simulation features while considering a variety of arbitrary scenarios. These simulations
were carried out over three months on actual COVID-19 data reported for Australia and
the United Kingdom. The results of the estimated COVID-19 reproduction numbers for a
set of initiatives aligned with the provided information. This simulation model could be
used to manage COVID-19 in the short term and to model any other infectious diseases
that arise in the future.

As an alternative to differential equation-based SIR models, [2] proposed an age-
stratified discrete compartment model. The model in [2] reflects COVID-19’s extremely
age-dependent advancement and may represent an infected person’s day-to-day progress
in a modern healthcare system. According to [2], the fully identified model for Switzerland
was able to forecast the overall history of the number of infected, hospitalised, and dead,
as well as the accompanying age distributions. As a result, the model-based analysis of
the outbreak revealed an average infection mortality ratio of 0.4%, with a pronounced
maximum of 9.5% for people over 80. Predictions for several possibilities of easing the soft
lockdown indicated a low likelihood of hospitals becoming overburdened by the second
wave of infections. However, the model suggested that if schools reopened with inadequate
control measures, there was a concealed risk of a considerable rise in total mortality (up to
200%).

The authors of [11] used a hierarchical Bayesian space-time SEIR model to analyse
the randomness of COVID-19 expansion and mortality in small areas in England per week
for approximately 30 weeks in 2020, taking into account essential determinants, modelled
transmission dynamics, and spatial-temporal random influence. This study also estimated
the number of cases and mortalities in a small geographical area with (1) uncertainty
projected forward in time by high-risk areas, (2) the impact of mobility reductions followed
by the easing of COVID-19 caseloads, and (3) calculations of the impact of critical socio-
demographic risk elements on the COVID-19-related death hazard by risk area. The authors
of [11] noticed that reductions in population mobility during the first lockdown significantly
impacted COVID-19 caseloads across England. The gradual increase in population mobility
that began in late April 2020 slowed caseload reductions by late June and the subsequent
commencement of the second wave. Some small contiguous locations appeared to be at a
significantly greater risk of high COVID-19 transmission, with several seeing higher fatality
rates.

The researchers of [12] explored how the timing and efficiency of control measures
in the UK, Sweden, and Denmark influenced COVID-19 mortality in each nation using a
counterfactual analysis to see what would happen if each government implemented the
policies of the others. While [13] used a convolution model to evaluate health efforts, [12]
employed a semi-mechanistic Bayesian model without making any assumptions about
how interventions work. This study used daily mortality data to calculate the time-varying
reproduction numbers for the United Kingdom, Sweden, and Denmark. Two techniques
were used to assess counterfactuals that transposed the transmission profile from one
country to another. The main conclusion was that although differences between the UK
and Denmark were substantial for one counterfactual approach, Danish policies were the
most successful. On the other hand, the analysis in [12] showed that small changes in the
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timing of intervention effectiveness had disproportionately huge effects on total mortality
in a fast-spreading epidemic.

Using Brazilian data, [14] developed a model and predictions for the early stages of
the COVID-19 epidemic in Brazil from 25 February 2020 to 30 March 2020. In [14], the
researchers employed two versions of the SIR model and a component that accounted for
the effects of social distancing policies. Forecasts for the near and extended future showed
that the government’s social estrangement program could smooth the pattern of COVID-19
infection. The results in [14] also showed that if this policy was applied for a short time,
it would move the infection’s peak into the future while keeping its value close to the
same. Finally, [14] demonstrated that a fraction of asymptomatic persons impacts the peak
amplitude of symptomatic infection, implying that population testing is critical.

In [15], researchers merged COVID-19 case data with mobility data in the United
States to develop a modified susceptible–infected–recovered (SIR) model. However, the
authors of [15] concluded that, unlike a standard SIR model, the incidence of COVID-
19 dissemination is concave in terms of the number of infectious people, just as one
would predict if people have interconnected social networks. Hence, the concave shape
substantially impacts the COVID-19 instances predicted in the future. The model in [15]
indicated that the number of COVID-19 instances would exponentially expand for a short
time at the start of the infection event or soon after a reopening but would then settle
down to a protracted period of stable, slightly diminishing disease spread. This pattern
is consistent with COVID-19 cases recorded in the United States, though not with typical
SIR modelling, according to the research in [15]. Additionally, [15] predicted rates of new
COVID-19 infections under various social distancing norms and discovered that if social
distancing was removed, the number of COVID-19 instances would skyrocket.

The authors of [16] provided a new stochastic model to account for COVID-19’s
distinctive spread dynamics and capture the effects of intervention efforts implemented in
Mainland China. The authors of [16] discovered that (1) instead of being an outlier, there
were a surprising number of asymptomatic virus carriers; (2) a virus carrier with symptoms
was roughly twice as likely as an asymptomatic virus carrier to spread the disease to others;
(3) since the introduction of control measures in Mainland China, the expansion rate has
decreased dramatically; and (4) the epidemic outbreak in China’s designated provinces
and cities was predicted to be confined by early March 2021.

According to [17], the prediction error of an LSTM model could increase over time
with insufficient data, and for medium- and long-term forecasting, such a model is inclined
to severe bias. To address this issue, the study authors developed an LSTM–Markov model
that employed the Markov model to improve the LSTM model’s prediction level. The
authors of Ref. [17] computed the LSTM training errors and created a probability transfer
matrix of the Markov model using errors based on confirmed case data from the United
States, the United Kingdom, Brazil, and Russia. Finally, the prediction results in [17] were
achieved by integrating the LSTM model’s output data with the Markov model’s prediction
errors. The results revealed that: (1) compared with the traditional LSTM model’s prediction
outcomes, the average prediction error of the LSTM–Markov model was decreased by more
than 75%; (2) the RMSE was lowered by more than 60%;, and (3) the mean R2 of the
LSTM–Markov model was more significant than 0.96. These model performance attributes
showed that the suggested LSTM–Markov model’s prediction accuracy was higher than
that of an LSTM model, resulting in a precise forecast.

Regarding infection category analysis, the researchers of [10,12,13,15,17] only cov-
ered the symptomatic infection category, while the authors of [2,9,11,14,16,18] included
symptomatic and asymptomatic infection cases. None of these models included infection
variants or any possible additional indirect feed streams to the infection stage from the
protected (i.e., vaccinated) and recovered stages. The currently presented work addressed
these two critical gaps in the epidemic mathematical model. Additionally, this study used
several procedures to verify and validate the newly proposed model. Such verification and
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validation were essential due to the absence of published COVID-19 data [19] that could be
used to support statistical evidence for more comprehensive real scenarios.

In this paper, Section 2 is a synopsis of COVID-19’s mutant history. Section 3 presents
the foundation pillars (framework, epidemic lifecycle stages, feeding streams, system of
differential equations, and binding constraints) that define the comprehensive Com-SEIR
model. Section 3 also explains the formulation rules. Section 4 explores the implementation
tasks of Com-SEIR model computation based on a set of use cases that covers two target
countries (Canada and Saudi Arabia), two sets of initial conditions (ICs), and two date
ranges. Section 5 exhibits the results and examines the outputs of 24 artefacts associated
with the use cases. Section 6 concludes the primary outcomes, proposes two simplification
approaches, and suggests future work.

2. Brief History of COVID-19 Mutants

COVID-19 is a global pandemic of coronavirus 2019 caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). It is a member of the Coronaviridae family, and it
comprises a positive-polarity, single-stranded RNA genome that infects amphibians, birds,
and mammals [1]. This RNA genome causes lethal respiratory infections such as MERS-
CoV, a viral respiratory infection generated by a coronavirus (Middle East respiratory
syndrome coronavirus) that was initially recognised in Saudi Arabia in 2012 [20]. The
novel COVID-19 initially broke out in December 2019 in Wuhan, China, where the etiologic
agent was identified as a new coronavirus. From a historical perspective, the first case
of SARS-CoV-2 was declared in 2003 [21–23]. MERS-CoV was detected [24] on 11 March
2020, and based on further assessments, the World Health Organization (WHO) declared
that COVID-19 could be categorised as a pandemic with significant human, societal, and
economic consequences [25].

By 16 March 2020, the virus had rapidly spread worldwide due to its high transmission
rate, and the outbreak outside China drastically increased in many countries [26,27]. By 15
October 2020, there were 1,189,261 deaths and 39,899,901 confirmed cases worldwide [27],
with 341,062 confirmed cases in Saudi Arabia and 138,803 confirmed cases in Canada; there
were 5127 and 33,125 deaths in Saudi Arabia and Canada, respectively [27]. The exponential
rise in infected people, particularly critically ill patients, put public health systems under
stress worldwide. Furthermore, severe cases of the condition were manifested by breathing
difficulties and chest pain, necessitating treatment in intensive care units (ICUs) [24].

Similar to all other viruses, the coronavirus mutates over time. Mutant viruses are
known as strains, and a mutation is defined as any permanent change in the virus’s
RNA [24]. This virus has mutated thousands of times since its inception. Most of these
changes have had little or no effect on the virus’s properties and have faded over time.
However, the virus has occasionally mutated in a way that enhanced its survival and
spread. Additionally, as the number of infections increased, the chances of the emergence
of new mutations also rose. In other words, when the virus is transmitted from one person
to another, it can mutate, and these mutations can multiply as the virus spreads faster.
Some mutations may lead to the emergence of new species. Experts and specialists have
monitored how the coronavirus has spread worldwide so that governments can respond to
its significant changes and control it [27]. The WHO classifies coronavirus mutations into
Variants of Interest (VOIs) and Variants of Concern (VOCs) based on their severity. The
VOC category is used when a virus increases transmissibility, presents changes in clinical
manifestations, or can decrease the effectiveness of public and social health measures,
such as available diagnoses, vaccines, and treatments. The VOI category involves genetic
sequence mutations that are expected or renowned for influencing the features of the
virus, such as transmission, illness seriousness or severity, diagnostics, and therapeutic or
immune escape [28].
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The VOC category includes four mutants so far: B.1.1.7 (Alpha), B.1.351 (Beta), P1
(Gamma), and B.1.617 (Delta). In September 2020, the B.1.1.7 mutant was first reported
in the UK, and the WHO assigned it the Alpha label. It demonstrated the ability to
spread faster than the initial strain, and within a short period, it had become the leading
cause of infection in Europe [1]. It has a higher transmission rate and is associated with
increased incidence, hospitalisations, and healthcare costs [29–31]. According to research,
the variant is associated with a 35% increased risk of death. Epidemiological reports and
modelling proposed that it spreads 56% quicker than other lineages. However, no more
severe disorders in children and adolescents have been reported [30,32]. Twenty-three
mutations have been accumulated in the Alpha variant; fourteen are non-synonymous, six
are synonymous, and three are deletions.

In May 2020, a new Beta mutant [28] was reported in South Africa. The most notable
characteristic of the variant was its remarkably faster transmissibility [33,34]. Compared
with the Wuhan reference strain, the Beta variant was reported to possess 12 mutations and
one deletion. It was also reported that Beta variant mutations might escape neutralising
antibodies, limiting vaccination effectiveness [31,33,35–37].

In November 2020, the P.1 (Gamma) mutation emerged in Brazil; it had the same
characteristics as the Beta mutation, including the ability to evade some antibodies [28].
There are 17 mutations and one deletion in the P.1 variant. The N501Y mutation is specified
in three variants, whereas the L18F, K417T, E484K, and D614G mutations are found in
the Beta variants [30,35,38,39]. This category of mutations has significant implications for
antibody-mediated immunity evasion. A reduction in the efficiency of serum neutralisation
against this virus mutation was reported [31,40,41] for both vaccination and convalescent
sera.

In October 2020, the Delta B.1.617.2 mutant was first discovered in India, and it is now
the primary variant in the UK. This mutant has led to concern among health officials in
several countries worldwide because it can transmit faster than the Alpha mutant. This
mutant was reclassified as a VOC on 11 May 2021, after being categorised as a VOI on 4
April 2021 [28]. It appears that it is approximately 60% more transmissible than the Alpha
variant, which is already highly infectious [42]. The Delta genome has 17 mutations [43].
The Delta variations expanded from India to several countries. The L452R, T478K, D614G,
and P681R mutations are of the most concern, which could be related to the virus’s enhanced
transmissibility [43,44].

There are currently two types of mutations in the VOI category: the Lambda C.37
mutation, which was discovered in Peru in December 2020, and the B.1.621 mutant, which
was found in Colombia in January 2021 and given the name “Mu” [28]. The Lambda
variation contains 19 mutations, making it more transmissible or resistant to antibodies
generated by vaccination or past viral infection [45–47].

In November 2020, the B.1.466.2 mutant was recognised for the first time in Indone-
sia [28]. In March 2020, the B.1.427 and B.1.429 mutants first appeared in the USA, and they
were labelled as Epsilon, and the L452R and D614G mutants were identified as spike muta-
tions in September 2020 [43]. The Epsilon mutant has demonstrated resistance to antibodies
produced by RNA vaccines (such as Pfizer and Moderna) and antibodies produced by a
previous coronavirus infection. On 5 March 2021, the WHO declared the Epsilon mutant a
VOI, and on 6 July 2021, it was designated as a Variant under Monitoring (VUM) [28].

In May 2021, the C.1.2 mutant was recognised for the first time in South Africa, and in
October 2020, the B.1.617.1 mutant was recognised in India; it was given the name Kappa.
The WHO designated it a VOI on 4 April 2021, and a VUM on 20 September 2021. The
Kappa has the L452R, E484Q, D614G, and P681R spike mutations [43]. The E484Q mutation
has been linked to partial immunological escape following infection and immunisation,
and it is also responsible for monoclonal antibody resistance [16]. The B.1.526 mutant was
discovered for the first time in the USA in November 2020, and it was given the name Iota,
with the E484K, D614G, and A701V spike mutations affecting antibody neutralisation [43].



Mathematics 2023, 11, 1119 7 of 27

On 24 March 2021, the WHO identified it as a VOI, and on 20 September 2021, it was
designated as a VUM [28].

In December 2020, the B.1.525 (Eta) mutant arose in many countries after first being
identified in Nigeria [43,44]. On 17 March 2021, it was declared a VOI, and on 20 September
2021, it was reported as a VUM. Its mutations that cause spikes comprise E484K, D614G,
and Q677H, which affect antibody neutralisation and transmission [43].

In April 2021, the P.2 mutant first appeared in Brazil; in January 2021, the P.3 mutant
first appeared in the Philippines. They were named Zeta and Theta, respectively [28].
Spike mutations (E484K, N501Y, D614G, and P681H) affect antibody neutralisation and
transmission in the Theta variant. In addition, the Zeta mutant has spike mutations (E484K
and D614G) that affect antibody neutralisation.

3. Comprehensive SEIR (PCom–SEIR) Model Definition

With expanded knowledge of the COVID-19 life cycle, many versions of the System
of Differential Equations (SoDE) have been published for SEIR model equations. These
variations include the foundation equations, parameters, and alternative computational
fitting approaches used to ensure that such a model accurately represents reality [27,38,48].

Our new detailed COVID-19 infection model is principally based on the SEIR model [4].
Figure 1 shows the foundation framework of our proposed modelling system. To ease
reading the discussions in this paper, we use the following notations:

(1) The infection stage’s population time-dependent variable is Z(t), where the Z(t) ∈ {S(t),
P(t), E(t), I(t), Ii(t), M(t), H(t), Q(t), D(t), R(t)}. Table 1 shows the definitions of these
time-dependent variables. For the rest of the paper, we drop the time-independent
notation for stage rate variables to ease reading except when necessary.

(2) The stage parameter variable ψ is defined as ψ ∈ {α, β, ε,
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, δi, ηi, λi, µ, χ, σ, ρ,
ϕ}. Table 2 shows the definitions of these parameters as contribution levels from
the feeding stage to the target stage. The authors of [3,13] noticed that ψ are time-
dependent parameters.

(3) i ∈ {0, 1, 2, . . . , n}, where n is defined as the total number of variants, including the
mainstream I0(t).

Table 1. Equation Time-Dependent Variable Descriptions.

Variable (Z(t)) Description

1 S(t) The population of the susceptible stage.

2 P(t) The population of the protected stage.

3 E(t) The population for the exposed stage.

4 I(t) The infection population of the symptomatic infection stage.

5 Ii(t), i ∈ {0, 1, 2, . . . , n} The population of the ith symptomatic infection variant.

6 M(t) The population of the asymptomatic infection.

7 Q(t) The population of the quarantined stage.

8 H(t) The population of the hospitalisation stage.

9 D(t) The population of the death stage.

10 N Country’s population.
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Table 2. Equation Parameter Feed Descriptions.

Parameter (ψ)
Feeding Parameter

From Stage To Stage

1 α
Susceptible (S)

Protected (P)

2 B Exposed (E)

3 Φ Protected (P)

4 Φe Protected Pe = P ∗ Φe component Symptomatic infection (I)

5 Φm Protected Pm = P ∗ Φm component Asymptomatic infection (M)

6
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Exposed (E)
Symptomatic infection (I)

7 ε Asymptomatic infection (M)

8 Ii Symptomatic infection (I) Symptomatic infection variant i
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i Exposed component Symptomatic infection variant (Ii)
10 Φei Protected component

11 ∆i
Symptomatic variant with (Ii)

Hospitalisation (H)

12 ηi Quarantine (Q)

13 λi Death (D)

14 T Asymptomatic (M) Recovered (R)

15 X
Hospitalisation (H)

Recovered (R)

16 P Death (D)

17 M

Quarantine (Q)

Recovered (R)

18 Σ Death (D)

19 Φ Hospitalisation (H)

20 ri Recovered component Symptomatic infection variant i

Based on the above definitions, we can now specify the foundations of the model
framework:

(A) Differential Equation System: The relationships from Equations (1)–(10) form the
structure of the differential equation set that governs the dynamics of the transitions
between the COVID-19 life cycle stages (Figure 1).

dS(t)
dt

= −
(

α + β
I
N

)
S(t) (1)

dP(t)
dt

= α S(t)− ( Φe + Φm ) P(t) (2)

where (Φe + Φm) = Φ
dE(t)

dt
= β S(t)

I
N
− ε E(t) + γ E(t) (3)

dM(t)
dt

= ε E(t)−ΦmP(t) (4)

dIi(t)
dt

= −(δi + ηi + λi) Ii(t) + γi E(t) + ΦeiP(t) + riR(t) (5)

where i ∈ {0, 1, 2, . . . , n}
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dH(t)
dt

= ∑n
i=1 δi Ii(t)− ( X + ρ)H(t)+ϕ Q(t) (6)

dQ(t)
dt

= ∑n
i=1 ηi Ii(t)− (µ + σ+ ϕ) Q(t) (7)

dD(t)
dt

= ∑n
i=1 λi Ii(t) + ρ H(t) + σ Q(t) (8)

dR(t)
dt

= X H(t) + µ Q(t) − r R(t) (9)

where i ∈ {0, 1, 2, . . . , n} and n represents the maximum number of variants. The following
constraints govern Equation (5):

γ = ∑n
1 γi (10a)

Φe =
n

∑
1

Φei (10b)

and
I = ∑n

1 Ii (10c)

Equation (10) must be satisfied at any given point in time over the entire period
of observation. The factoring of I(t) in Equation (5) and its impact on Equations (6)–(9)
does not mean that we can separately group the equations for each ith variant and then
individually find its solution. This statement is based on the fact that the transformation
of populations between the proposed stages is not linear; instead, it is an accumulated
convolutional relationship [13]. Additionally, the conditions shown in Equation (10) mean
that the solutions for each individual stage rate cannot be independently reached. In
other words, individual variant optimisation does not guarantee the overall SoDE solution
optimisation that constitutes the COVID-19 model. This paper uses the word “model”
equivalent to the SoDE “optimum solution”. The word optimum here means that the
solution for the {Z(t)} set is not necessarily the best for each individual stage rate but
collectively comprises an excellent overall solution.

(B) Stage Population Transition:

Equations (1)–(9) cover the transitions between the listed stage populations in Table 1
and associated transition controlling parameters in Table 2.

(C) Extended Feed Streams:

(C-I) Equations (2), (4) and (5) show that the model accounts for the possibility that
some vaccinated (protected (P)) individuals might be infected in the form of symptomatic
or asymptomatic infection.

(C-II) Equations (5) and (9) show that the model accounts for the possibility that some
recovered (R) individuals might be infected in the form of symptomatic infection.

(D) Infection Categories:

(D-I) The PCom–SEIR framework accounts for the following infection categories: (a)
asymptomatic infection M in Equation (4) and (b) symptomatic multi-variant Ii. in Equation
(5), which represent a set of equations that describe all Ii variants. In this manner, the new
model is not limited to any specific number of variants.

(D-II) Additionally, in Equation (5), the {γi}, {Φei}, and {ri} parameter sets indicate that
the individual contribution levels from the exposed stage (E), the protected stage (P), and
the recovered (R) stage, respectively, to each ith infection variant (Ii) cannot be guaranteed
to be the same.
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(E) Health Efforts: It is vitally important to point out that the infection stage’s population
Z and the cumulative influencing probability parameter ψ on the infection life cycle
govern the transitions’ influx and outflux, as shown in Figure 1. The controlling
efforts regulated and imposed by the health authorities are typically the most dom-
inant element within the cumulative parameter due to the state-wide law support.
The PCom–SEIR model’s equation parameters map those factors across all stages.
Additionally, each of these parameters is a random variable along the time axis. Conse-
quently, the PCom–SEIR model simulates the convoluted impact of the manipulating
efforts on each stage population Z. Indeed, this was the basis of the convolution model
(CPM) proposed in [13]. Hence, we can write the following:

Zout(t) = ψ(t)*Zin(t) (11)

where * denotes the convolution operation and Zin(t) and Zout(t) are the underlying stages
of feeding and receiving populations, respectively. Consequently, health authority leaders
should be able to drill down each element that influences each Z, providing an opportunity
to propose more effective measures.

(F) In and Out Stages’ Population Feeds: The PCom–SEIR model accounts for detailed
population feeds for the H, Q, D, and R stages. Such formatting enables the drill-down
analysis that many other models lack [2–12,14–17,49,50].

The feed channels for the H stage, expressed in Equation (6), are:

I. symptomatic infection variants ∑n
i=1 δi(t) Ii(t);

II. Q.

The feed channel for the Q stage, expressed in Equation (7), is:

I. Symptomatic infection variants ∑n
i=1 ηi(t) Ii(t).

The feed channels for the D stage, expressed in Equation (8), are:

I. symptomatic infection variants ∑n
i=1 λi (t) Ii(t);

II. H;
III. Q.

The feed channels for the R stage, expressed in Equation (9), are:

I. H;
II. Q;
III. M.

(G) Equations’ Constraints:

I. Equation (10) indicates the governing constraints that ensure the equilibrium
between the in and out stage populations within the COVID-19 infection
cycle defined from Equations (3)–(9). Equation (10) reflects the fact that all
symptomatic infection data I(t) include all variant types without any variant-
specific information. This means we could not use published COVID-19 data
to verify the derived model. Hence, we needed to use a different approach to
validate the derived model, as explained in Section 4.

II. In Equation (10b), γi(t) reflects the fact that the effective growth rates Ii(t) of
each variant are independent of each other, so there is no guarantee they will
have the same rate on a given day. Additionally, this Equation is necessary to
ensure the conservation of the total population N. However, there is no well-
defined data-based knowledge about the level of impedance of multi-variant
infection to vaccination.
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4. PCom–SEIR Model Computation

While the PCom–SEIR foundations provide model comprehensiveness, they increase
the number of system parameters to 17 + 3 * n (where n is the number of variants) and
push the numerical processing time to five hours compared with nine parameters without
variants (i.e., n = 1) and two hours of numerical processing [13]. The difference in processing
power depends on the Z(t) profile and sizable distracting discontinuity. In our view, the
limitations in Equation (10) coupled with the proliferation of equation parameters lead
to the narrowing of the solution space, thus reducing error variance and improving the
model’s validity. This work used a computing platform based on an Intel i7 CPU @ 2.60 GHz
12 cores with 32 GB of physical memory and a Windows 11 Pro operating system.

To execute the numerical computation to establish a reliable and optimum solution
model for the stage rates {Z(t)} in the SoDE (Equations (1)–(9)) and associated conditions
in Equation (10) and initial conditions in Table 3, we needed to define the sets of the
SoDE use cases. The PCom–SEIR solution describes the rate trends of (a) asymptomatic
infection M, (b) interdependent symptomatic infection variants Ii, and (c) the cascading
interdependencies between these streams and the Q, H, and R stages. The mapping of
the numerical implementation output artefacts to the underlying use cases is exhibited in
Table 4. The following are the details of four groups of use cases.
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4.1. The Country Use Cases

The COVID-19 data published by the WHO [19,50] for member countries carry the
footprint of each country’s health efforts and adopted statistical procedures. Hence, exam-
ining the COVID-19 model for more than one country was deemed critical for at least two
different use cases: one for Canada and another for Saudi Arabia. The use case for Canada
reflects the inherent impact of combining federal and different provincial health controls
and district statistical procedures. In contrast, the use case for Saudi Arabia represents one
central health system with one set of statistical procedures.

4.2. The Initial Condition Use Cases

Using the two groups of initial conditions (ICs) shown in Table 3 helped verify the
model’s responsiveness. Additionally, these ICs assisted our exploration of the impact
of vaccination on the model stage profiles. We should point out that the contribution
parameters α and β play significant roles in controlling the population feed into the
protected (P) and exposed (E) stages, respectively. Consequently, the optimum values
of these parameters over the time axis are indirectly determined by the proposed initial
conditions, which influence the trend of the solution. The first IC is the actual zero position
value of each stage population from the collected data from [19]. The second IC is a
hypothetical condition, and its purpose is to introduce a perturbation to the model and
observe the model response. This induced response helps detect the solution (model) agility
for the underlying scenario.

Table 3. Initial Condition Sets.

Initial Condition I

S0 P0 E0 I0 M0 H0 Q0 R0

N 0.1 * N 0.9 * N I[0] M[0] H[0] Q[0] R[0]

Initial Condition II

S0 P0 E0 I0 M0 H0 Q0 R0

N 0.7 * N 0.3 * N 1.0 0.0 0.0 0.0 0.0

4.3. Vaccination Representation Use Cases

This work utilised the initial conditions to examine the impact level of vaccination
on the model and prediction profile. In Table 3, P0 for IC-I was set at 10% of N (the entire
country’s population), while for IC-II, P0 was set at 70% of N (the vaccination campaign at
the near-completion level). The wide gap of P0 values was deliberately chosen to enable
the scrutinization of the trend of the model profile. The same approach was applied to the
infection rate I0. IC-I was based on actual COVID-19 data, and IC-II was a hypothetical
condition used to verify that the solution of the SoDE (i.e., the model) was not the same for
all scenarios.

4.4. The Date Range Use Cases

According to Section 2, (1) all COVID-19 variants coexist in addition to the main
infection variant, and (2) the variants were not detected until a few months after the
emergence of the COVID-19 epidemic. Hence, it is expected that the extent of the date range,
in terms of the number of days/points and the range limits, reflects specific behaviour
or outline dominance, which would ultimately influence the overall model profile. We
devised two date ranges based on this observation to examine the model profile’s changes.
In Table 4, these ranges are defined: (1) the first date range spanned from the 0th day to the
560th day, and (2) the second range spans from the 100th day to the 660th day (i.e., island
range).

The output of the use cases described the SoDE solution model using 24 artefacts
(Figures 2–4). These artefacts were organised by country use cases; each group included
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two sets of ICs and two date ranges that included four diagrams: (I) model stage rates
{Z(t)} vs. days, (II) model predictions, (III) equation parameters {ψ} vs. days, and (IV)
convergence ratios vs. days. These sets were grouped per each date range use case and for
each country use case (Table 4).

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 28 
 

 

The output of the use cases described the SoDE solution model using 24 artefacts 

(Figures 2–4). These artefacts were organised by country use cases; each group included 

two sets of ICs and two date ranges that included four diagrams: (I) model stage rates 

{Z(t)} vs. days, (II) model predictions, (III) equation parameters {ψ} vs. days, and (IV) con-

vergence ratios vs. days. These sets were grouped per each date range use case and for each 

country use case (Table 4). 

 
(A) 

Figure 2. Cont.



Mathematics 2023, 11, 1119 14 of 27Mathematics 2023, 11, x FOR PEER REVIEW 14 of 28 
 

 

 
(B) 

Figure 2. Cont.



Mathematics 2023, 11, 1119 15 of 27Mathematics 2023, 11, x FOR PEER REVIEW 15 of 28 
 

 

 
(C) 

Figure 2. (A) PCom–SEIR Model and Prediction Components—Canada. (B) PCom–SEIR Model 

and Prediction Components—Canada. (C) PCom–SEIR Model Parameters—Canada. Figure 2. (A) PCom–SEIR Model and Prediction Components—Canada. (B) PCom–SEIR Model and
Prediction Components—Canada. (C) PCom–SEIR Model Parameters—Canada.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 28 
 

 

 
(A) 

Figure 3. Cont.



Mathematics 2023, 11, 1119 16 of 27
Mathematics 2023, 11, x FOR PEER REVIEW 17 of 28 
 

 

 
(B) 

Figure 3. Cont.



Mathematics 2023, 11, 1119 17 of 27Mathematics 2023, 11, x FOR PEER REVIEW 18 of 28 
 

 

 
(C) 

Figure 3. (A) PCom–SEIR Model and Prediction Components—Saudi Arabia. (B) PCom–SEIR 

Model and Prediction Components—Saudi Arabia. (C) PCom–SEIR Model Parameters—Saudi 

Arabia. 

 

Figure 4. Solution Convergence Ratios. 

Table 4. Model Implementation Use Cases. 

 Date Range 1 Date Range 2 (Island Range) 

560 Points (Days) 23 January 2020, to 5 August 2021 23 April 2020, to 4 November 2021 

Initial Conditions (ICs) I, II I, II I, II I, II I, II I, II 

Context 
Models and 

Predictions 
Parameters 

Convergence 

Ratio 

Models and 

Predictions 
Parameters 

Convergence 

Ratio 

Canada 
Figure 2A(a,b) 

Figure 2B(a,b) 
Figure 2C(a) Figure 4a 

Figure 2A(c,d) 

Figure 2B(c,d) 
Figure 2C(d) Figure 4a 

Saudi Arabia Figure 3A(a,b)  Figure 3C(a) Figure 4b Figure 3A(c,d) Figure 3C(d) Figure 4b 

Figure 3. (A) PCom–SEIR Model and Prediction Components—Saudi Arabia. (B) PCom–SEIR Model
and Prediction Components—Saudi Arabia. (C) PCom–SEIR Model Parameters—Saudi Arabia.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 28 
 

 

 
(C) 

Figure 3. (A) PCom–SEIR Model and Prediction Components—Saudi Arabia. (B) PCom–SEIR 

Model and Prediction Components—Saudi Arabia. (C) PCom–SEIR Model Parameters—Saudi 

Arabia. 

 

Figure 4. Solution Convergence Ratios. 

Table 4. Model Implementation Use Cases. 

 Date Range 1 Date Range 2 (Island Range) 

560 Points (Days) 23 January 2020, to 5 August 2021 23 April 2020, to 4 November 2021 

Initial Conditions (ICs) I, II I, II I, II I, II I, II I, II 

Context 
Models and 

Predictions 
Parameters 

Convergence 

Ratio 

Models and 

Predictions 
Parameters 

Convergence 

Ratio 

Canada 
Figure 2A(a,b) 

Figure 2B(a,b) 
Figure 2C(a) Figure 4a 

Figure 2A(c,d) 

Figure 2B(c,d) 
Figure 2C(d) Figure 4a 

Saudi Arabia Figure 3A(a,b)  Figure 3C(a) Figure 4b Figure 3A(c,d) Figure 3C(d) Figure 4b 

Figure 4. Solution Convergence Ratios.

Table 4. Model Implementation Use Cases.

Date Range 1 Date Range 2 (Island Range)

560 Points (Days) 23 January 2020, to 5 August 2021 23 April 2020, to 4 November 2021

Initial
Conditions (ICs) I, II I, II I, II I, II I, II I, II

Context Models and
Predictions Parameters Convergence

Ratio
Models and
Predictions Parameters Convergence

Ratio

Canada Figure 2A(a,b)
Figure 2B(a,b) Figure 2C(a) Figure 4a Figure 2A(c,d)

Figure 2B(c,d) Figure 2C(d) Figure 4a

Saudi Arabia Figure 3A(a,b)
Figure 3B(a,b) Figure 3C(a) Figure 4b Figure 3A(c,d)

Figure 3B(c,d) Figure 3C(d) Figure 4b
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4.5. Implementation Steps

As we indicated in our previous work [13], to determine the optima in a 2D space, most
classical optimisation strategies rely on evaluating the first derivative Z′(t) and the second
derivative Z”(t). There is no certainty that the first or second derivative exists, so finding
the optimal solution for many rough and discontinuous surfaces is risky. Many numerical
computation libraries start by smoothing the input data and then finding the solution in
response to such a challenge. This approach has an inherent risk of increasing the RMSE
for most data grid points due to the expansion of the solution surface, and it might mask
some behaviours of interest. As a result, one must employ a derivative-free optimisation
strategy such as an intelligent search problem [51]. For a core optimisation problem,
one or more computational agents are used to find the optima in a real-value search
space with its embedded set of initial conditions [19]. The particle swarm optimisation
(PSO) approach [49] and the differential evolution (DE) method [51] are two of the most
prominent algorithms. The DE method is a type of differential operator that may be readily
invoked and implemented by adjusting model parameters [19]. In this study, the Python
DE library [52] provided the opportunity to collect the optimum equation parameters,
listed in Table 2, at each solution point Z(t) via a user-defined callback function of a defined
signature. This callback signature included two global static arrays. The first array was
used to calculate the 17 + 3 parameters, where each was associated with a corresponding
solution point Z(t). The second array was used to calculate the solution convergence ratio at
each solution point Z(t). The Python DE library’s main optimisation call takes a pointer to
the callback function as one of its call attributes, and this callback function then populates
the global/static m-dimensional array and one-dimensional convergence array, where
m = 20. Here, the DE library optimisation call also let us choose one of three optimum
search algorithms; we chose “best1bin”.

To ensure the restriction of the optimum solution surface to minimise the RMSE values
for each parameter, we had to define the relevant value limitations in Equations (1)–(9)
to guarantee the good conservation of the overall country’s population N and to satisfy
the definition of the parameters’ weighting role. To deploy such a mechanism into the DE
optimisation Python call, we introduced 0.0 to 1.0 limits to each parameter. We used these
parameters’ limits in an array and passed them to the DE call as one of its parameters. The
DE library used these limits as guidance rather than imposed limits. The DE package has a
built-in curve smoothing at the final stage of its computation, which usually uses the entire
length of the data grid as a smoothing window. As a result of this intrinsic feature, a model
profile has one peak and lacks incremental behaviour [13].

5. Results and Discussion

The mappings of Canadian and Saudi Arabian use cases to the results’ artefacts are
illustrated in Table 4. Sections 5.1 and 5.2 exhibit and review the results for Date Range
1 and Date Range 2 (Table 4) for Canada and Saudi Arabia, respectively, for each initial
condition in Table 3. These sections also include the model validity and reliability indicators.
The issue of solution discontinuity and convergence is assessed for all use cases concerning
Figure 4.

5.1. PCom–SEIR Model and 30-Day Prediction for Canada

The artefacts in Figure 2A(a,b),B(a,b) show the convergence weakness of the solution
over the first 50 points. This means that the Python DE package required a finer mesh (i.e.,
a quarter or half-day point set) of data to build up the search intelligence to find a suitable
solution point. In other words, the starting points of the COVID-19 data grid truly had no
first and second derivatives. The root causes of such “dirty” data were: (1) the data needed
to be collected more than once per day, and (2) the data were not statistically appropriately
collected. This statement is based on the fact that the Canadian data had significantly more
convergence issues (Figure 2A(a,b),B(c,d)) than the Saudi Arabian data (Figure 3A(a,b)).
The discontinuity issue manifested the low convergence ratio shown in Figure 4a.
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Figures 2C and 3C show that extracted equation parameters {ψ} (see Section 4.5) had
a time-dependency. The figures also show the minimum and maximum values of the
corresponding {ψ} set members.

The rates of the asymptomatic infection M, hospitalised H, and recovered R exhibited
different profiles for both sets of initial conditions and over the date ranges. Here, we focus
on the symptomatic infection variants’ {Ii} rate curves’ behaviour as they showed broad
changes that are reviewed in Tables 5 and 6. Comparing the decline slope in Tables 5 and 6
and observing the diagrams in Figure 2A(a–d) for IC-I and Figure 2B(a–d) for IC-II reveals
that induced protection (P0 = 70%) in IC-II produced the expected increase in the decline
slope of the symptomatic infection variants {Ii}.

Table 5. Summary Discussion for Initial Conditions I—Canada.

Date Range 1 (Start Date: 0 Days). Date Range 2 (Start Date: 100 Days).

Figure Model—Figure 2A(a) Prediction—
Figure 2A(b) Model—Figure 2A(c) Prediction—

Figure 2A(d)

Curve discontinuity Not stable over the first 50+ days.

The {Ii} curves showed
an improvement, but
we still needed to
truncate the curve’s
start by 20 points.

The prediction curves
for {I1, I2} did not show
discontinuity, but I0
(main stream) did.

Peak position

The first peaks located before the 100 days were
due to solution discontinuity. The peak on the
120th day was within the range of the actual stable
solution.

The curves for {Ii} had
nearly the same peak
on the 200th day after
the start date.

The {Ii} curves shared
the same peak on the
110th day after the start
date.

Curve profiles
The {Ii} curves showed
the same profile with a
limited plateau.

The {Ii} curves showed
different individual
profiles but all had
small plateaus.

The {Ii} curves showed
the same profile with a
noticeable plateau.

The {Ii} curves showed
the same profile but
differed from the
models.

Decline rate The predicted declines of the infection growth rate
were relatively slower than those of the model.

The predicted infection growth rate declines were
slower than those of the models.

Decline slope 2.15/4 2.0/4 2.2/4 1.9/4

Table 6. Summary Discussion for Initial Conditions II—Canada.

Date Range 1 (Start Date: 0 Days). Date Range 2 (Start Date: 100 Days).

Figure Model—Figure 2B(a) Prediction—
Figure 2B(b) Model—Figure 2B(c) Prediction—

Figure 2B(d)

Curve discontinuity Relatively stable over the first 50 days. The {I1, I2} curves did not show a realistic solution,
but I0 (main stream) did.

Peak position The peak appeared on
the 110th day.

The peak appeared on
the 100th day.

The I0 curve peaked at
the 150th day (i.e.,
250th day) after the
start date.

The I0 curve showed
no peak.

Curve profiles
The {Ii} curves showed
the same profile with a
limited plateau.

The {Ii} curves showed
different individual
profiles with a limited
plateau.

The I0 curve showed
nearly the exact profile
of Date Range 1 with a
finite plateau.

The I0 curve showed a
different profile than
the model without a
plateau.

Decline rate

The predicted infection growth decline was at
nearly the same rate as that of the model.
However, it showed a steeper decline than that of
IC-I.

The predicted infection growth decline rate was
slower than that of the model.

Decline slope 2.5/4 2.5/4 2.4/4 2.1/4
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5.1.1. Initial Conditions I—Canada

Initial Conditions I was based on actual COVID-19 data. It assumed the zero positions
of the stage growth rates {Z(t)} (Table 3). It is vitally important to mention that the solutions
in Figure 2A(a) and the corresponding 30-day prediction in Figure 2A(b) were unstable over
the first 50+ days. This discontinuity caused the appearance of early peaks. The peaks for
the actual solutions (for the model prediction curves) appeared on the 120th day. Figure 4a
shows that the solution convergence ratio was very low and even negative over some early
points. Over these early points, the DE algorithm needed help establishing a safe solution.
To partially overcome this challenge, we truncated the beginning of the curve. We utilised
external curve smoothing with a small smoothing window to overcome this aberration
and preserve the actual curve behaviour. The observed discontinuity was much less in the
island range.

5.1.2. Initial Conditions II—Canada

In this section, we discuss the impact of IC-II on the model and prediction curves
over the two date ranges (Table 4). While IC-I was based on actual values, IC-II was an
artificial initial condition that was mainly used to examine the model behaviour under
induced conditions (Table 3). In this manner, we tested the sensitivity of the solution
beyond its intended data scope to show the validity of the model framework approach. The
model and prediction curves’ steeper decline shown in Figure 2B(a,c) and in Figure 2B(b,d),
respectively, was induced by the 70% P0 in IC-II. In other words, vaccination slowed down
the infection growth rate. This observation is one of the model formulation’s validation
indicators. Additionally, Figure 2B(c,d) show significant discontinuity issues for the {I1, I2}
solutions. This discontinuity reflects the low convergence ratio shown in Figure 4a. We can
observe that the solution convergence ratio was more than 0.25 for IC-II. This is a good
validity and reliability indicator for the PCom–SEIR formulation; different initial conditions
led to different solution spaces with different levels of point convergence.

5.2. PCom–SEIR Model and 30-Day Prediction for Saudi Arabia

Reviewing the artefacts in Figure 3A(a,b),B(a–d) and Figure 4b indicates that the
solution convergence issue was mild, as shown in Figure 2A(a,b),B(a–d) and Figure 4a over
the first 50 points. This could be attributed to the fact that the collected COVID-19 data
for Saudi Arabia were more statistically coherent than those for Canada. The better data
quality could be attributed to Saudi Arabia’s unified health controls, as Canada’s are a
mixture of federal and several local health control systems.

Figure 4b indicates that the solution’s convergence was weak over the first 50 points
but less severe than that of Range 1. Comparing the PCom–SEIR model’s curves for {Ii} in
Figure 3A(c,d),B(c,d) (for Range 2) with the corresponding curves in Figure 3A(a,b),B(a,b)
reveals that the model’s curves showed a sharper decline over Range 2. This result indi-
cates that Range 2 had more health controls (i.e., more vaccinations) than Range 1. This
is significant evidence that indicates the high reliability of the new PCom–SEIR model.
Sections 5.2.1 and 5.2.2 provide detailed discussions in this regard.

The rates for asymptomatic infection M, hospitalised H, and recovered R showed
different profiles for both sets of the initial conditions over both date ranges. In this section,
we focus on the symptomatic infection variant {Ii} rate curves’ behaviour, as they showed
broad changes that are summarised in Tables 7 and 8. Comparing the decline slopes in
Tables 7 and 8 and observing the diagrams in Figure 3A(a–d) for IC-I and Figure 3B(a–d) for
IC-II reveals that the induced protection (P0 = 70%) in IC-II produced the expected increase
in the decline slope of the symptomatic infection variants {Ii}.
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Table 7. Summary Discussion for Initial Conditions I—Saudi Arabia.

Date Range 1 (Start Date: 0 Days). Date Range 2 (Start Date: 100 Days).

Figure Model—Figure 3A(a) Prediction—
Figure 3A(b) Model—Figure 3A(c) Prediction—

Figure 3A(d)

Curve discontinuity

The {Ii} curves showed
an improvement, but
we still needed to
truncate the curve’s
start by 50 points.

The {Ii} curves showed
good improvement
without the need to
truncate the curve’s
start.

The {Ii} curves showed
an improvement, but
we still needed to
truncate the curve’s
start by 50 points.

The prediction curves
for {Ii} did not show a
discontinuity.

Peak position The peaks appeared on
the 110th day.

The peaks appeared on
the 90th day.

The curves for {Ii} had
nearly the same peak
on the 120th day after
the start date.

The {I1, I2} curves
shared the same peak
on the 30th day after
the start date. I0
showed no peak.

Curve profiles
The {Ii} curves showed
the same profile with a
noticeable plateau.

The {Ii} curves showed
the same profile with a
noticeable plateau. The
prediction profile was
different from the
model curve profiles.

The {Ii} curves showed
the same profile with a
small plateau.

The {I1, I2} curves
showed the same
profile, while I0
showed a distinct
profile. This indicates
that there was a
different level of
infection dominance.

Decline rate The predicted and model infection growth decline
rates were the same.

The predicted infection growth decline rates were
slower than those of the model.

Decline slope 3.1/4 3.1/4 3.1/4 2.2, 2.2, 2.5/4

Table 8. Summary Discussion for Initial Conditions II—Saudi Arabia.

Date Range 1 (Start Date: 0 Days). Date Range 2 (Start Date: 100 Days).

Figure Model—Figure 3B(a) Prediction—
Figure 3B(b) Model—Figure 3B(c) Prediction—

Figure 3B(d)

Curve discontinuity
The {Ii} curves showed an improvement, but we
still needed to truncate the curve’s start by 50
points.

The {Ii} curves showed
improvement with the
need to truncate the
curve’s start.

The {Ii} curves showed
an improvement, but
we still needed to
truncate the curve’s
start by 50 points.

Peak position The peaks appeared on the 100th day. The peaks appeared on
the 95th day.

The {I1, I2} curves had
different maxima, with
the same peak on the
120th day after the start
date.

Curve profiles
The {Ii} curves showed
the same profile with a
noticeable plateau.

The {Ii} curves showed
the same profile with a
noticeable plateau. The
prediction profile was
different from the
model curve profiles.

The {Ii} curves showed
practically the same
profile without a
plateau.

The {I1, I2} curves
showed the same
profile, while I0
showed a distinct
profile. This indicates
that there was a
different level of
infection dominance.

Decline rate The predicted infection growth decline rates were
slightly slower than those of the model.

The rate of infection growth decline was relatively
slower than that of the model.

Decline slope 3.3/4 3.3/4 3.3/4 3.2, 3.3, 3.4/4
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5.2.1. Initial Conditions I—Saudi Arabia

The model’s curves for Saudi Arabia are shown in Figure 3A(a,b) under IC-I. These
curves had different profiles than those in Figure 3A(c,d). Since the convergence was not
severe in this use case, no external curve smoothing was utilised. As in Figure 2A(c,d)
and Figure 3A(c,d) shows that the equation parameters {ψ} had time-dependency. In
Figure 3A(a) for IC-I, the three symptomatic infection variants {Ii}, where i ∈ {0, 1, 2},
exhibit their peaks at the same point and the same curve profile. In Figure 3B(b) for IC-II,
the I0 curve shows an early narrow peak and sharp decline, while I1 and I2 show different
profiles, which could indicate instability in the solution curves. In Figure 3A(a,b), the M
curves for asymptomatic infection for IC-I and IC-II display different profiles but share
the same declining trends at the end of the date period. Additionally, Figure 3A(b) shows
that the induced 70% protection bias embedded in IC-II (which represents the vaccination)
clearly impacted I0 because it had an earlier peak and a steeper decline than I0 for IC-I in
Figure 3A(a). The profiles of symptomatic infection variants I1 and I2 shown in Figure 3A(b)
exhibit different behaviours than those in Figure 3A(a) for IC-I, which is attributed to a
different level of dominance for I1 and I2 in Date Range 2 than in Date Range 1.

5.2.2. Initial Conditions II—Saudi Arabia

In this section, we discuss the impact of IC-II on the model and 30-day prediction
curves over the two date ranges (Table 4). The sensitivity of the solution beyond its intended
data space is explored to show the validity of the model framework approach. The model
and prediction curves’ steeper decline shown in Figure 3B(a,c) and in Figure 3B(b,d),
respectively, was induced by the 70% P0 in IC-II. In other words, vaccination slowed down
the infection growth rate. This observation is one of the model formulation’s validation
indicators. The level of discontinuity for Saudi Arabia was reflected by the better low
convergence ratio shown in Figure 4b. This result is a good validity and reliability indicator
for the PCom–SEIR formulation; different data sources led to different solution spaces with
different levels of convergence.

6. Conclusions

The formulation of the published SEIR models was based on a framework that includes
the typical COVID-19 transition stages and their direct feeding streams. However, such
foundations do not include indirect feeding streams that influence the infection stage.
Additionally, these models do not consider multiple variants for symptomatic infection.
Such exclusions resulted in a skewed model of the published data. These models are
still valid and logical, though strictly under their assumptions. Additionally, the model
validation could be mapped 1:1 to the published data schema.

In reality, published COVID-19 data mask indirect feeding streams and multi-variant
infections. The decomposition mask is due to the limited testing capacity of health authori-
ties. Our new, comprehensive polymorphic SEIR model (PCom–SEIR) considers indirect
feeding streams and multi-variant infections. This means that the PCom–SEIR framework
data object instance inherits a schema as a concrete data class from the published data. In
addition to the inherited data schema, the PCom–SEIR data class includes the new model
schema specifics (i.e., extra feeding streams and multi-variant infections). Consequently, we
were not able to 1:1 map the new data model with the published data schema. Hence, we
were not able to use COVID-19 data for model validation. To facilitate the validation of the
new model, we had to deploy an X-ray examination by designing a set of use cases (scenar-
ios) to cover a broad scope of model examinations. Additionally, we needed to verify the
generality of the PCom–SEIR model. Such a task is not required for other models because
they are specific to the minimum of feeding streams and do not consider multi-variant
infections.

The new PCom–SEIR model validation and reliability examination steps were based
on: (I) devising a diverse set of use cases for (a) two sets of initial conditions, (b) two sets
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of the data range, and (c) two different health authorities (Canada and Saudi Arabia); (II)
generality testing by reducing the scope of PCom–SEIR to a typical, simple SEIR model.

6.1. Validity and Reliability Use Cases

The results shown in Figures 2–4 indicate the reliability of the new PCom–SEIR model
in terms of the prominent rate model trends for {Ii}, M, Q, and R over a broad scope of use
cases involving (a) two different sets of initial conditions, (b) different date range sets with
different events’ dominance, and (c) two countries’ COVID-19 data under two different
health system controls. The summary of the models’ behaviours in Tables 5 and 6 for
Canada and Tables 7 and 8 for Saudi Arabia exhibits many indicators that the model is
valid and reliable. These indicators support the finding that the new PCom–SEIR model
had no fixed profile for all scenarios. This observation is a good indicator of the model’s
credibility.

6.2. Model Generality

The SoDE (Equations (1)–(10)) represents the general and comprehensive model format.
The new PCom–SEIR model could also be validated by reducing its SoDE to a particular
case by eliminating some of the stage feed elements (Figure 1 and Table 2), namely: (I) the
3rd, 4th, 5th, and the 10th streams, which controlled the direct feed from the protected
stage (P) to the symptomatic infection stage (I); (II) the 14th stream, which controlled the
feed from the asymptomatic (M) feed to the recorded stage (R); and (III) the 20th stream,
which controlled the feed from the recovered stage (R) to the symptomatic infection stage
(I). Such simplifications led to the production of the models shown in Figure 5A for Canada
and Figure 5B for Saudi Arabia. This model’s simplification showed that (I) the extended
stage feeds had a considerable impact on the general profiles of the model’s curve, and (II)
reducing the number of parameters helped improve the solution stability over the initial
period.
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The main conclusion of Sections 6.1 and 6.2 is that the new PCom–SEIR model is
polymorphic and reusable across many scenarios.

6.3. Future Work—Hybrid Approach

We are going to adopt a hybrid approach to deduce the profiles for symptomatic
infection variants {Ii}. The first step in this approach is to collapse the set of Equation (5)
for {Ii} into a unified equation for the symptomatic infection I. The methodology we are
now researching will be used to determine the set {Ii} outside the model’s equations.
Then, we will analyse the computed unified I into its assumed infection variants {Ii}
using the Gaussian Mixture Model (GMM) algorithm [53,54], which is a typical machine
learning algorithm for clustering. This hybrid approach will be the topic of our subsequent
publication.
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