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Abstract: The dynamics of non-Newtonian Jeffrey fluid in conjunction with a spinning disk surface
can be problematic in heating systems, polymer technology, microelectronics, advanced technology,
and substantive disciplines. Therefore, the significance of the Hall current and Coriolis forces in terms
of the dynamics of Jeffrey fluid flowing across a gyrating disk subject to non-Fourier heat flux was
investigated in this study. A temperature-related heat source (TRHS) and exponential-related heat
source (ERHS) were incorporated into the model to improve the thermal characteristics. Thermal
radiation and multiple slip effects were employed in the flow system. The connected non-linear PDEs
governing the transport were transmuted into non-linear ODEs and solved using the Runge–Kutta
shooting technique (RKST). The results of the RKST were substantiated in previous studies and found
to have adequate reliability. The numerical values of the coefficient of friction and the Nusselt number
were simulated. The non-Fourier heat flux was found to have a higher rate of heat transfer (HTR)
than with traditional Fourier heat flux. Furthermore, both TRHS and ERHS phenomena support
the progression of HTR. The swelling effects of the Hall current influence the velocities, whilst the
temperature of the Jeffrey fluid shows the opposite tendency. Furthermore, asymptotic variances
were detected for larger Hall parameter values.

Keywords: Jeffrey fluid; rotating disk; thermal radiation; Hall current; exponential dependent heat
source; Cattaneo–Christov heat flux
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1. Introduction

The rotational flow problems created by spinning discs are of considerable interest
because of their relevance to industry and technology. The von Kármán problem [1]
concerns the dynamics of viscous fluid associated with infinite revolving disks. The
von Kármán problem can be applied to gas turbine rotors, electronic devices, rotating
machines, medical devices, crystal growth processes, rotating heat exchangers, storage
devices, etc. Relevant applications and studies of disk flows have been reported by Brady
and Durlofsky [2], Cobb and Saunders [3], Benton [4], and Tribollet and Newman [5].
Turkyilmazoglu [6] extended [1] by exploring heat transfer using a nanoliquid as the test
fluid and stated that more torque is needed to ensure stable rotation of the disc. Considering
an oscillating extensible disk, Ellahi [7] examined the effect of a rotating disk on the
dynamics of a nano-ferroliquid. The consequences of slip conditions at the revolving disk
surface in terms of the flow of magnetized nanofluid were studied by Hayat et al. [8], who
reported that slip conditions control the growth of disk surface layer width. Aziz et al. [9]
investigated the effects of internal thermal source/sink on nanoliquid transition, and they
concluded that an internal thermal source causes an increase in heat transfer inside the
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nanoliquid system. According to Mahanthesh et al. [10], as compared to temperature-
related thermal generation, exponential space-related internal thermal generation has a
greater impact on the surface thermal layer. Mahanthesh et al. also discussed the Lorentz
and Coriolis forces and their effects on the dynamics of magnetized fluid.

Cowling [11] has argued that in order to create a strong enough magnetic force,
Ohm’s law must be considerable for Hall currents. Hall effects are crucial in low-electron-
density and strong magnetism scenarios because it is highly likely that the rheological
behavior of the (ionized) liquid will be modified. The effect of the Hall current on von
Kármán’s rotating flow was analyzed by Aboul-Hassan and Attia [12], who reported that
the Hall effects would allow the rotational flux to stabilize. Acharya et al. [13] performed
numerical treatment of the radiative flux guided by the Hall current and the Coriolis
force. Considering the porous matrix in the disk, Maleque and Sattar [14] discussed the
implications of the Hall current for disk flux. Hall current stimulation and variable fluid
conductivity/viscosity in disk-driven dynamics were examined by Abdel-Wahed and
Akl [15], involving kinetic energy and the effects of non-linear radiation. Shaheen et al. [16]
also examined the characteristics of the Hall current in the flow of Casson material across a
disk. Shehzad et al. [17] investigated stimulation of the Hall current on the surface of an
oscillating disk with varying liquid density. Hayat et al. [18] examined Hall effects on flow
using a non-coaxial spinning disk with unstable effects. Maleque [19] studied the space-
and temperature-related effects of viscosity on flow guided by the Hall current with an
unstable rotating disk. Turkyilmazoglu [20] provided the exact solution to the von Kármán
problem for the Hall current and the nanofluid. Many researchers [21–30] have studied
the relationship between magnetic fields and the dynamics of fluid subjected to various
physical configurations and applications.

It should be noted that the kinetic and thermal properties of non-Newtonian Jef-
frey fluid propelled by a gyrating disk have not been fully defined. Jeffrey fluids can be
used in materials processing, food processing, chemical processing, polymer engineering,
and other fields. A Jeffrey fluid model can provide data on relaxation time and delay.
Qasim [31] exploited the stretching sheet problem for Jeffrey fluid with thermal mass
transport effects under a heat sink. Reddy and Makinde [32] explored the problem of
peristaltic transport of Jeffrey fluid by considering magnetized nanoparticles using an-
alytical tools. Sandeep et al. [33] studied the stagnation flow problem associated with
Jeffrey fluid, considering the induced magnetic field, the stretch sheet, and the chemical
reaction. Mehmood et al. [34] examined the oblique flow problem for Jeffrey fluid car-
rying magnetic nanoparticles, taking into account plate elongation and heat transport.
Saleem et al. [35] studied the rotating cone problem using Jeffrey fluid subject to chem-
ical reactions, magnetic transport, convective heat conditions, and heat source effects.
Khan et al. [36] presented rough, semi-analytical solutions for the revised stagnation flow
problem using an off-center spinning disk with Jeffrey fluid. Farooq et al. [37] reported
the 3D flow of Jeffrey magnetic fluid in an elastic cylinder, with Newtonian heating and
magnetism. Hayat et al. [38] explored the non-linear flow of Jeffrey fluid on two gyrating
disk surfaces subjected to two chemical reactions and radiation. Several investigations have
been conducted into transport of Jeffrey liquid between two revolving disk surfaces, among
others, those by Reddy et al. [39], Hayat et al. [40,41], Muhammad et al. [42], and Kumar
and Kavitha [43]. Studying Jeffrey fluid on the spinning disk surface, Hayat et al. [44]
performed flow analysis with MHD effects, Siddiqui et al. [45] revisited the von Kármán
problem, Qasim et al. [46] performed 2D heat transport with variable conductivity and
radioactive features, Sadiq et al. [47] conducted flow analysis, Imtiaz et al. [48] scrutinized
two varieties of chemical reactions and non-Fourier thermal flux effects, and Sadiq [49]
investigated lubrication effects. However, little is known about the heat transport charac-
teristics of Jeffrey fluid transport caused by the revolving disk.

The studies cited above were restricted to the classical Fourier heat flux model [50],
which disregards thermal relaxation properties. Cattaneo [51] expanded Fourier’s [50]
concept by taking thermal relaxation time properties into account using a hyperbolic
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model. Christov [52] then applied Cattaneo’s model [51], taking the Oldroyd upper con-
vected derivative into account. A comprehensive Cattaneo–Christov thermal-flow model
(CCTFM) has been implemented in numerous experiments. Bissell [53] employed the
Cattaneo–Christov thermal flux model (CCTFM) to examine the thermal convection of
a magnetized fluid. Layek and Pati [54] examined the features of CCTFM in convection
with bifurcation and chaos aspects. Mehmood et al. [55] explored the CCTFM features of
oblique stagnation transport using magnetized Oldroyd-B fluid subjected to a chemical
reaction. Shamshuddin et al. [56] evaluated CCTFM features of swirling thermal convec-
tion between co-axial revolving disks using a perturbation method. Mabood et al. [57]
examined the CCTFM features of the transport of Sutterby fluid on a revolving elongated
disk. Sampath Kumar et al. [58] studied the CCTFM features of Jeffrey nanofluid on a
stretchable plate subjected to quadratic convection and linear radiation numerically. Re-
cently, Hayat et al. [59] explored the CCTFM features of Jeffrey fluid on a revolving disk
with changeable heat conductivity.

Some studies in the literature have observed the CCTFM (Cattaneo–Christov thermal
flux model) features of Jeffrey fluid on a revolving disk, taking into account the effects of
the Hall current, exponential-related thermal source (ERTS), temperature-related thermal
source (TRTS), and multiple slippages. To the best of our knowledge, none of the above-
mentioned research has studied the issue at hand in depth. As a result, the primary goal
of this research was to make use of the CCTFM characteristics of Jeffrey fluid movement
generated by a rotating disk surface subjected to an ERTS and TRTS. The coupled non-
linear PDEs that regulate transport were converted into non-linear ODEs and solved using
the Runge–Kutta shooting approach (RKST). The RKST results were validated using the
findings of prior investigations, and the reliability of the RKST results was confirmed. The
coefficient of friction and the Nusselt number were simulated, tabulated, and analyzed
numerically. The following research questions were investigated in this study:

• What influence do the Deborah number, Hall effect, and magnetic field have on the
hydrodynamics of the Jeffrey fluid surface layer under first-order slip conditions?

• How do CCTFM characteristics affect heat transport features under thermal slip
conditions?

• What effect do the ERTS and TRTS parameters have on the temperature and the
Nusselt number?

• What effect does the Deborah number have on the friction factors?

2. Formulation of the Problem

Transmission of the Jeffrey fluid occurred across an infinite revolving disk at z = 0,
rotating with angular velocity Ω (see Figure 1). The density (ρ), electrical conductivity (σ),
thermal conductivity (k), specific heat (ρCp), kinematic viscosity (υ), and dynamic viscosity
(µ) were non-altering properties. The Hall current was subject to a solid magnetic field
along the z direction, as modeled by [11]:

J +
ωeτe

B0
(J× B) = σ

(
E + V× B +

∇Pe

eηe

)
, (1)

where ωe is the electron frequency, V is the velocity vector, τe is the electron collision time, J
is the current density, Pe is the electron pressure, B is the magnetic field (0, 0, B0), B0 is the
intensity of the magnetic field, e is the electron charge, E is the electric field, and ηe is the
electron number density. The following assumptions were made in the analysis:

• The flow is laminar, steady, and axisymmetric.
• The fluid is incompressible, meaning that the density of the fluid is taken to be constant.
• Fluid properties are kept constant.
• The first-order velocity slip and temperature jump conditions are incorporated on

the disk surface, whereas the velocity and temperature are kept constant in an ambi-
ent state.
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• The Cattaneo–Christov heat flux (CCHF) model for temperature is used.
• The electric field, ion slip, and polarization effects are ignored.
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Let us assume Rosseland’s radiative heat flux qr (see [15]), as follows:

qr = −
4σ∗

3k∗
∇T4, (2)

where T is the temperature, σ∗ is the Stefan–Boltzmann factor, and k∗ is Rosseland’s mean
absorption. Since the Jeffrey fluid is optically thick, Rosseland’s radiation approximation is
well suited. The Jeffrey fluid’s constitutive equation is (see [44])

τ = −pI + S, (3)

S =
µ

1 + α

( .
r + λ1

..
r
)
, (4)

where p is the pressure, I is the identity tensor, S is the extra stress tensor, α is the ratio of
relaxation time to retardation time, and λ1 is the retardation time. Variables

.
r and

..
r are

.
r = ∇V + transpose(∇V), (5)

..
r =

D
Dt
( .
r
)
=

∂

∂t
( .
r
)
+ (V·∇) .

r, (6)

where D
Dt is the material derivative. The frame of the cylindrical coordinate (r, ϕ, z) is

chosen accordingly. The velocities are to be (u, v, w). The pertinent non-linear boundary-
layer axisymmetric PDEs governing the heat transport of Jeffrey fluid are (see [44])

∂u
∂r

+
u
r
+

∂w
∂z

= 0, (7)

u
∂u
∂r

+ w
∂u
∂z
− v2

r
=

υ

1 + α

[
∂2u
∂z2 + λ1

(
∂u
∂z

∂2u
∂r∂z

+ u
∂3u

∂r∂z2 +
∂w
∂z

∂2u
∂z2

)]
−

σB2
0

1 + m2 (u−mv)

+
υλ1

1 + α

[
w

∂3u
∂z3 −

1
r

(
∂v
∂z

)2
− v

r
∂2v
∂z2

]
,

(8)
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u
∂v
∂r

+ w
∂v
∂z

+
uv
r

=
υ

1 + α

[
∂2v
∂z2 + λ1

(
∂u
∂z

∂2v
∂r∂z

+ u
∂3v

∂r∂z2 +
∂w
∂z

∂2v
∂z2

)]
−

σB2
0

1 + m2 (v + mu)

+
υλ1

1 + α

[
w

∂3v
∂z3 +

1
r

∂u
∂z

∂v
∂z

+
v
r

∂2u
∂z2

]
,

(9)

ρCp

(
u

∂T
∂r

+ w
∂T
∂z

)
= −∇·q +

16σ∗T3
∞

3k∗
∂2T
∂z2 + qt(T − T∞) + qe(Tw − T∞) exp

(
−n

√
2Ω
υ

)
, (10)

where T∞ is the ambient temperature, m = ωeτe is the dimensionless Hall factor, qt and
qe are the TRTS and ERTS coefficients, respectively, Tw and T∞ are surface and ambient
temperature, respectively, and n is the exponential index. The CCHF is presented as
in [50–55]:

q + λ2

(
∂q
∂t

+ (∇·V)q + V·∇q− q·∇V
)
= −k∇T. (11)

For time-independent and constant density fluid, we have

q + λ2(V·∇q− q·∇V) = −k∇T. (12)

In view of (12), Equation (10) yields

ρCp

(
u

∂T
∂r

+ w
∂T
∂z

)
= k

∂2T
∂z2 +

16σ∗T3
∞

3k∗
∂2T
∂z2 + qt(T − T∞) + qe(Tw − T∞) exp

(
−n

√
2Ω
υ

)

−λ2

[
w2 ∂2T

∂z2 + u2 ∂2T
∂r2 + 2uw

∂2T
∂r∂z

+
∂T
∂r

(
u

∂u
∂r

+ w
∂u
∂z

)
+

∂T
∂z

(
u

∂w
∂r

+ w
∂w
∂z

)]
.

(13)

Apposite boundary conditions are (see [41,45])

u = L1
∂u
∂z

, v = rΩ + L1
∂v
∂z

, w = 0, T = Tw + L2
∂T
∂z

, at z = 0, (14)

u→ 0, v→ 0, T → T∞ , as z→ ∞, (15)

where L1 and L1 are the velocity and temperature slip coefficients, respectively.
By using the appropriate transformations [6–8],

ξ = z

√
2Ω
υ

, f ′(ξ) =
u(r, z)

rΩ
, g(ξ) =

v(r, z)
rΩ

,

f (ξ) =
w(r, z)
−
√

2Ων
, θ(ξ) =

T − T∞

Tw − T∞
,

(16)

where ξ, f ′(ξ), g(ξ), f (ξ), and θ are the dimensionless similarity variable, radial velocity,
tangential velocity, axial velocity, and temperature, respectively.

Taking Equation (16) and applying it to Equations (8), (9), and (13) yields

f ′′′ − Ha(1 + α)

2(1 + m2)

(
f ′ −mg

)
+

(1 + α)

2

[
2 f f ′′ − f ′2 + g2

]
+β
[

f ′′2 − f ′ f ′′′ − 2 f f
′′′′ − g′2 − gg′′

]
= 0,

(17)

g′′ − Ha(1 + α)

2(1 + m2)

(
f ′ −mg

)
+

(1 + α)

2
[

f g′ − f ′g
]

+β
[
2 f ′′ g′ − f ′g′′ − 2 f g′′′ + f ′′′g

]
= 0,

(18)

1 + R
Pr

θ′′ + f θ′ − 2Γ
(

f 2θ′′ + f f ′θ′
)
+ Qtθ + Qe exp(−nξ) = 0, (19)
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f (ξ) = 0, f ′(ξ) = δ f ′′ (ξ), g(ξ) = 1 + δg′(ξ), θ(ξ) = 1 + ζθ′(ξ), at ξ = 0, (20)

f ′(ξ)→ 0, g(ξ)→ 0, θ(ξ)→ 0 as ξ → ∞, (21)

where M =
σB2

0
ρΩ denotes the magnetic parameter, R = 4σ∗T3

∞
kk∗ denotes the radiation pa-

rameter, Pr =
µCp

k denotes the Prandtl number, Qt = qt
µCpΩ denotes the TRTS parameter,

Qe = qe
µCpΩ denotes the ERTS parameter, Γ = λ2Ω denotes the dimensionless thermal

relaxation time, δ = L1

√
2Ω
υ denotes the velocity slip parameter, ζ = L2

√
2Ω
υ denotes the

thermal slip parameter, and β = λ1Ω denotes the Deborah number.
The total heat flux and shear stress in the tangential and radial directions are given by

qw =

[
−k

∂T
∂z

+ qr

]
z=0

, (22)

τϕ =
µ

1 + α

[
∂v
∂z

+ λ1

(
∂v
∂r

∂u
∂z
− 2

v
r

∂u
∂z

+
3u
r

∂v
∂z

)]
, (23)

τr =
µ

1 + α

[
∂u
∂z

+ λ1

(
3

∂u
∂r

∂u
∂z

+ 2
∂v
∂r

∂v
∂z
− v

r
∂v
∂z

+
∂w
∂z

∂u
∂z

)]
. (24)

The local Nusselt number (Nu) and coefficients of wall friction in tangential (Cg) and
radial (C f ) directions are given below.

Nu =
rqw

k(Tw − T∞)
, (25)

Cg =
τϕ

ρ(rΩ)2 , (26)

C f =
τr

ρ(rΩ)2 , (27)

Taking (16) and (22)–(24) and applying these to (25)–(27) yields the following:

(
Rer

2
)
−1/2

Nu = −(1 + R)θ′(0), (28)

(
Rer

2
)

1
2
C f =

1
1 + α

[
f ′′ (0) + 3βg′(0)

]
, (29)

(
Rer

2
)

1
2
Cg =

1
1 + α

[
g′(0)− β f ′′ (0)

]
, (30)

where Rer =
Ωr2

υ denotes the local Reynolds number.

3. Numerical Approach

The Runge–Kutta shooting method (RKSM) was employed to solve the normalized
non-linear Equations (17)–(19), subjected to (20) and (21), as follows:

(Z1, Z2, Z3, Z4,Z5, Z6, Z7, Z8,Z9) =
(

f , f ′, f ′′ , f ′′′ , g, g′, g′′ , θ, θ′
)
,

to yield an IVP (initial value problem) from Equations (17)–(21):

Z ′1 = Z2, (31)

Z ′2 = Z3, (32)

Z ′3 = Z4, (33)
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Z ′4 =

[
Z4 +

1+α
2
(
2Z1Z3 −Z2

2 +Z2
5
)
− Ha(1+α)

2(1+m2)
(Z2 −mZ5)

+β
(
Z2

3 −Z2Z4 −Z2
6 −Z5Z7

) ]
/2βZ1, (34)

Z ′5 = Z6, (35)

Z ′6 = Z7, (36)

Z ′7 =

[
Z7 + (1 + α)(Z1Z6 −Z5Z2)− Ha(1+α)

2(1+m2)
(Z5 + mZ2)

+β(2Z3Z6 −Z2Z7 +Z5Z4)

]
/2βZ1, (37)

Z ′8 = Z7, (38)

Z ′9 = −
(

Pr
1 + R− 2PrΓZ2

1

)
(Z1Z9 − 2ΓZ1Z2Z9 + QtZ8 + Qe exp(−nξ)). (39)

The initial conditions were chosen and set using the classical Runge–Kutta method
with an error tolerance of 10−8 and step size of 0.001. The initial estimates were then
refined using the Newton–Raphson iterative method, such that the obtained solution
satisfied the conditions at infinity. The error tolerance for the convergence criteria of the
Newton–Raphson method was set to 10−6. We developed an in-house MATLAB code for
the computations, and the obtained solutions were validated by referring to earlier works.
The results of the present study were compared with those of Hayat et al. [44], where
R = m = δ = ζ = Γ = Qt = Qe = 0, α = 1, and β = 0.25 (see Table 1), and this indicated
good agreement.

Table 1. Comparison of ( Rer
2 )

1
2 C f and ( Rer

2 )
1
2 Cg values for different values of Ha with those of

Hayat et al. [44], where R = m = δ = ζ = Γ = Qt = Qe = 0, α = 1, and β = 0.25.

Ha
Hayat et al. [44] Present Results

(Rer
2 )

1
2 Cf (Rer

2 )
1
2 Cg (Rer

2 )
1
2 Cf (Rer

2 )
1
2 Cg

0 1.01735 −1.27135 1.017349 −1.271352

1.0 −0.01336 −1.09247 −0.013357 −1.092468

2.0 −0.72170 −1.00951 −0.721704 −1.009513

2.5 −0.98025 −0.99714 −0.980251 −0.997145

4. Results and Discussion

This section describes the impact of Hall current and Cattaneo–Christov heat flux
on the mechanisms of Jeffrey fluid on a spinning disk when thermal radiation, multiple
slip conditions, an exponential-related heat source (ERHS), and temperature-related heat
source (TRHS) are significant. The effects of the relaxation–retardation time ratio (α),
Deborah number (β), dimensionless thermal relaxation time (Γ), Hartmann number (Ha),
thermal radiation parameter (R), Hall parameter (m), velocity slip number (δ), thermal
slip number (ζ), TRHS number (Qt), and ERHS number (Qe) on the self-similar radial
velocity ( f ′(ξ)), azimuth velocity (g(ξ)), axial velocity ( f (ξ)), and temperature (θ(ξ)) are
shown in Figures 2–22. Factors of technological interest, namely the Nusselt number

(( Rer
2 )
− 1

2 Nu), radial shear stress (( Rer
2 )

1
2 C f ), and tangential shear stress (( Rer

2 )
1
2 Cg), were

also scrutinized. The predefined values for the relevant parameters were as follows :
R = Ha = 0.5, α = β = 0.2, δ = ζ = 0.5, Γ = 0.1, Qt = Qe = 0.2, Pr = 6, and n = 1.
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Figure 5. Impact of α on θ(ξ).

Figures 2–5 exemplify the radial velocity ( f ′(ξ)), azimuth velocity (g(ξ)), axial velocity
( f (ξ)), and temperature (θ(ξ)) for several values of the relaxation time–retardation time
ratio (α). As the values of α increase, the retardation time lessens, meaning that Jeffrey fluid
molecules need more time to achieve a state of equilibrium after being in a perturbed state.
Because of this, a decrease in the momentum of the surface layer in the axial (z), azimuth (ϕ),
and radial (r) directions was observed. Significant expansion of the temperature surface
layer width was observed (shown in Figure 5) by increasing the magnitude of α from
0.1 (a relatively small value) to 1.0 (a relatively high value). The reason for this is that a
longer relaxation time leads to an increase in the Jeffrey fluid temperature (θ(ξ)). Figure 6
shows the radial velocity ( f ′(ξ)) when varying β, where the performance was found to
improve twofold. That is, in the vicinity of the disk surface, radial velocity f ′(ξ) condensed,
augmenting the β values, whereas the radial velocity f ′(ξ) remained unchanged in the
rest of the flow domain. The radial velocity profile showed dual behavior with variation
of β. This is because the Coriolis force exerted by the rotation of the disk leads to radial
outward flow in the vicinity of the disk. When nearing an ambient state, radial velocity
approaches zero, with a crossover in the middle of the flow region. The Deborah number
(β) and retardation time are directly proportional, so f ′(ξ) is enhanced with β. In Figure 7,
it is evident that the azimuth velocity (g(ξ)) lessens for cumulative values of β. However,
in Figure 8, axial momentum ( f (ξ)) can be seen to exhibit a contrasting relationship.
Figure 9 shows that the Deborah number causes the temperature of the Jeffrey fluid to rise
significantly for cumulative values of β.
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Frictional forces exerted by the Lorentz effect are instigated by amalgamation of a
stimulating external magnetization, lessening the growth of velocities in all three directions
(axial (z), azimuth (ϕ), and radial (r)). This is supported by Figures 10–12, which show
that radial velocity ( f ′(ξ)), azimuth velocity (g(ξ)), and axial velocity ( f (ξ)) decrease
with cumulative values of the Hartman number (Ha). Therefore, the Hartman number
is decisive for inducing surface-layer momentum, by which surface shear stress can be
controlled. Figure 13 shows the inverse consequence for the Jeffrey fluid’s temperature
(θ(ξ)). In non-appearance of the Hall effect (m = 0), the velocity field is inferior to the Hall
effect. Figure 14 shows the radial velocity ( f ′(ξ)) (by varying m), with a significant upsurge
in f ′(ξ) with m. The reason for this is that the parameter m appears in the denominator
of the Lorentz force term in the momentum equation (see Equation (17)), so the larger
the m values, the smaller the Lorentz force. As a result, the velocity ( f ′(ξ)) reduces for
larger m values. A similar tendency was observed for the azimuth velocity (g(ξ)) (see
Figure 15). However, the effect of m on the axial velocity ( f (ξ)) and temperature (θ(ξ)) was
insignificant, so it is not presented here.
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Figure 17. Impact of δ on g(ξ).

Figures 16–18 illustrate the radial velocity ( f ′(ξ)), azimuth velocity (g(ξ)), and axial
velocity ( f (ξ)) values for the varying velocity slip factor (δ). The velocity configurations
were condensed by the velocity slip factor. It is evident that variation of the radial velocity
( f ′(ξ)) and azimuth velocity (g(ξ)) is more substantial in the vicinity of the disk, compared
to the rest of the flow domain. This is because of the effectiveness of the slippage on
the surface of the disk. Zero slippage within the system creates increased velocity at
the surface layer. The thermal configurations (θ(ξ)) in Figure 19 are diminished by the
thermal jump factor (ζ). Figures 20 and 21 show how the TRHS and ERHS factors affect
the thermal configurations (θ(ξ)), and they also present a comparison of the TRHS and
ERHS phenomena. The thermal configurations (θ(ξ)) are heightened by the large TRHS
and ERHS factors. The temperature of the fluid increases, along with Qt and Qe, and the
thermal surface layer widens. In comparison, the ERHS process is more effective than the
TRHS process. The dispersion of the temperature profile (θ(ξ)) appears to increase as R
decreases (see Figure 22). The cumulative radiative heat flux exerts heat in the Jeffrey fluid
through electromagnetic waves. This accounts for enlargement in θ(ξ) subjected to R.



Mathematics 2023, 11, 1096 15 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 18. Impact of 𝛿 on 𝑓(𝜉). 

 

Figure 19. Impact of 𝜁 on 𝜃(𝜉). 

 

Figure 20. Impact of 𝑄𝑡 on 𝑓(𝜉). 

Figure 18. Impact of δ on f (ξ).

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 18. Impact of 𝛿 on 𝑓(𝜉). 

 

Figure 19. Impact of 𝜁 on 𝜃(𝜉). 

 

Figure 20. Impact of 𝑄𝑡 on 𝑓(𝜉). 

Figure 19. Impact of ζ on θ(ξ).

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 18. Impact of 𝛿 on 𝑓(𝜉). 

 

Figure 19. Impact of 𝜁 on 𝜃(𝜉). 

 

Figure 20. Impact of 𝑄𝑡 on 𝑓(𝜉). Figure 20. Impact of Qt on f (ξ).



Mathematics 2023, 11, 1096 16 of 21

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 21. Impact of 𝑄𝑒 on 𝜃(𝜉). 

 

Figure 22. Impact of 𝑅 on 𝜃(𝜉). 

The effect of 𝛼  and 𝛽  on the radial shear stress (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , azimuth shear stress 

(
𝑅𝑒𝑟

2
)

1

2𝐶𝑔 , and Nusselt number (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢 for a non-magnetic case is shown in Table 2. 

Here, (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢, and (
𝑅𝑒𝑟

2
)

1

2𝐶𝑔  are the cumulative properties of 𝛼 when 𝛽 =

0.2, while an inverse tendency can be seen for 𝛽 when 𝛼 = 0.2. Table 3 also presents 

similar results for magnetized Jeffrey fluid. Moreover, the magnitude of (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , 

(
𝑅𝑒𝑟

2
)

1

2𝐶𝑔, and (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢 is progressive for magnetized Jeffrey fluid (𝐻𝑎 = 0.5), compared 

to non-magnetized Jeffrey fluid (𝐻𝑎 = 0). The significance of 𝐻𝑎 and 𝑚 for (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , 

(
𝑅𝑒𝑟

2
)

1

2𝐶𝑔 , and (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢  is detailed in Table 4. Increasing 𝐻𝑎  values reduced the 

(
𝑅𝑒𝑟

2
)

1

2𝐶𝑓, (
𝑅𝑒𝑟

2
)

1

2𝐶𝑔, and (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢 profiles, whereas a contrasting trend was noted for 𝑚. 

Moreover, asymptotic performance of (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , (
𝑅𝑒𝑟

2
)

1

2𝐶𝑔 , and (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢 was observed 

for larger values of 𝑚. That is, the effect of the Lorentz force was negligible when 𝑚 =

100 (sufficiently large). 

  

Figure 21. Impact of Qe on θ(ξ).

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 21 
 

 

 

Figure 21. Impact of 𝑄𝑒 on 𝜃(𝜉). 

 

Figure 22. Impact of 𝑅 on 𝜃(𝜉). 

The effect of 𝛼  and 𝛽  on the radial shear stress (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , azimuth shear stress 

(
𝑅𝑒𝑟

2
)

1

2𝐶𝑔 , and Nusselt number (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢 for a non-magnetic case is shown in Table 2. 

Here, (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢, and (
𝑅𝑒𝑟

2
)

1

2𝐶𝑔  are the cumulative properties of 𝛼 when 𝛽 =

0.2, while an inverse tendency can be seen for 𝛽 when 𝛼 = 0.2. Table 3 also presents 

similar results for magnetized Jeffrey fluid. Moreover, the magnitude of (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , 

(
𝑅𝑒𝑟

2
)

1

2𝐶𝑔, and (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢 is progressive for magnetized Jeffrey fluid (𝐻𝑎 = 0.5), compared 

to non-magnetized Jeffrey fluid (𝐻𝑎 = 0). The significance of 𝐻𝑎 and 𝑚 for (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , 

(
𝑅𝑒𝑟

2
)

1

2𝐶𝑔 , and (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢  is detailed in Table 4. Increasing 𝐻𝑎  values reduced the 

(
𝑅𝑒𝑟

2
)

1

2𝐶𝑓, (
𝑅𝑒𝑟

2
)

1

2𝐶𝑔, and (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢 profiles, whereas a contrasting trend was noted for 𝑚. 

Moreover, asymptotic performance of (
𝑅𝑒𝑟

2
)

1

2𝐶𝑓 , (
𝑅𝑒𝑟

2
)

1

2𝐶𝑔 , and (
𝑅𝑒𝑟

2
)−

1

2𝑁𝑢 was observed 

for larger values of 𝑚. That is, the effect of the Lorentz force was negligible when 𝑚 =

100 (sufficiently large). 

  

Figure 22. Impact of R on θ(ξ).

The effect of α and β on the radial shear stress ( Rer
2 )

1
2 C f , azimuth shear stress ( Rer

2 )
1
2 Cg,

and Nusselt number ( Rer
2 )
− 1

2 Nu for a non-magnetic case is shown in Table 2. Here,

( Rer
2 )

1
2 C f , ( Rer

2 )
− 1

2 Nu, and ( Rer
2 )

1
2 Cg are the cumulative properties of α when β = 0.2, while

an inverse tendency can be seen for β when α = 0.2. Table 3 also presents similar results for

magnetized Jeffrey fluid. Moreover, the magnitude of ( Rer
2 )

1
2 C f , ( Rer

2 )
1
2 Cg, and ( Rer

2 )
− 1

2 Nu
is progressive for magnetized Jeffrey fluid (Ha = 0.5), compared to non-magnetized Jeffrey

fluid (Ha = 0). The significance of Ha and m for ( Rer
2 )

1
2 C f , ( Rer

2 )
1
2 Cg, and ( Rer

2 )
− 1

2 Nu is

detailed in Table 4. Increasing Ha values reduced the ( Rer
2 )

1
2 C f , ( Rer

2 )
1
2 Cg, and ( Rer

2 )
− 1

2 Nu
profiles, whereas a contrasting trend was noted for m. Moreover, asymptotic performance

of ( Rer
2 )

1
2 C f , ( Rer

2 )
1
2 Cg, and ( Rer

2 )
− 1

2 Nu was observed for larger values of m. That is, the
effect of the Lorentz force was negligible when m = 100 (sufficiently large).



Mathematics 2023, 11, 1096 17 of 21

Table 2. The values of ( Rer
2 )

1
2 C f , ( Rer

2 )
1
2 Cg, and ( Rer

2 )
− 1

2 Nu for different values of α and β by setting
R = 0.5, m = 1, δ = ζ = 0.5, Γ = 0.1, Qt = Qe = 0.2, Pr = 6, and n = 1.

Ha α β
Non-Magnetic Jeffrey Fluid

(Rer
2 )

1
2 Cf (Rer

2 )
1
2 Cg (Rer

2 )
− 1

2 Nu

0.1 0.2 −0.06125664 −0.39446355 −1.17901854
0.2 0.2 −0.06008768 −0.37373903 −1.17861751
0.3 0.2 −0.05897289 −0.35550976 −1.17834275
0.4 0.2 −0.05790908 −0.33932084 −1.17817031

0.0 0.5 0.2 −0.05689318 −0.32482506 −1.17808173
0.2 0.1 0.05340656 −0.35924537 −1.15292255
0.2 0.2 −0.06008768 −0.37373903 −1.17861751
0.2 0.3 −0.17308504 −0.38369116 −1.18436835
0.2 0.4 −0.28369392 −0.39065929 −1.18990441
0.2 0.5 −0.39113367 −0.39493977 −1.19520976

Table 3. The values of ( Rer
2 )

1
2 C f , ( Rer

2 )
1
2 Cg, and ( Rer

2 )
− 1

2 Nu for different values of α and β by setting
R = 0.5, m = 1, δ = ζ = 0.5, Γ = 0.1, Qt = Qe = 0.2, Pr = 6, and n = 1.

Ha α β
Magnetic Jeffrey Fluid

(Rer
2 )

1
2 Cf (Rer

2 )
1
2 Cg (Rer

2 )
− 1

2 Nu

0.1 0.2 −0.20719834 −0.54699975 −1.21448688
0.2 0.2 −0.19735447 −0.51658603 −1.21487245
0.3 0.2 −0.18864641 −0.48992375 −1.21530051
0.4 0.2 −0.18087120 −0.46631856 −1.21575914

0.5 0.5 0.2 −0.17387347 −0.4452424 −1.21623946
0.2 0.1 −0.03462087 −0.50858416 −1.18607258
0.2 0.2 −0.19735447 −0.51658603 −1.21487245
0.2 0.3 −0.35766588 −0.51886684 −1.22226033
0.2 0.4 −0.51393502 −0.5172768 −1.22949732
0.2 0.5 −0.66511655 −0.51213728 −1.23656366

Table 4. The values of ( Rer
2 )

1
2 C f , ( Rer

2 )
1
2 Cg, and ( Rer

2 )
− 1

2 Nu for different values of Ha and m by
setting R = 0.5, α = β = 0.2, δ = ζ = 0.5, Γ = 0.1, Qt = Qe = 0.2, Pr = 6, and n = 1.

Ha m (Rer
2 )

1
2 Cf (Rer

2 )
1
2 Cg (Rer

2 )
− 1

2 Nu

0 0 −0.06008768 −0.37373903 −1.17861751
0.1 −0.08426340 −0.38368352 −1.18984404
0.2 −0.10745435 −0.39453821 −1.20053417
0 5 −0.06008768 −0.37373903 −1.17861751

0.1 −0.06146400 −0.3789904 −1.17769753
0.2 −0.06279512 −0.38411897 −1.17681152
0 10 −0.06008768 −0.37373903 −1.17861751

0.1 −0.06056089 −0.37636651 −1.17802761
0.2 −0.06102613 −0.37896354 −1.17744919
0 100 −0.06008768 −0.37373903 −1.17861751

0.1 −0.06011372 −0.37399731 −1.17854714
0.2 −0.06013971 −0.37425529 −1.1784769

Table 5 presents the ( Rer
2 )
− 1

2 Nu values for dissimilar values of n, ζ, and R when
α = β = 0.2, δ = 0.5, Γ = 0.1, Pr = 6, and n = 1. In the presence of TRHS and ERHS

phenomena (Qt = Qe = 0.2), the magnitude of ( Rer
2 )
− 1

2 Nu was found to be greater than
when the TRHS and ERHS phenomena were absent (Qt = Qe = 0). Furthermore, for

increasing values of n and ζ, a substantial increase in ( Rer
2 )
− 1

2 Nu was observed, whereas a
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deterioration in ( Rer
2 )
− 1

2 Nu was seen for rising values of the radiation number (R). Table 6

shows that non-Fourier heat flux is significant in improving heat transport ( Rer
2 )
− 1

2 Nu.

That is, ( Rer
2 )
− 1

2 Nu was found to be higher in the non-Fourier heat flux case than with the
Fourier heat flux model.

Table 5. The values of ( Rer
2 )
− 1

2 Nu for different values of n, ζ, and R by setting α = β = 0.2, δ = 0.5,
Γ = 0.1, Pr = 6, and n = 1.

n ζ R
(Rer

2 )
− 1

2 Nu (Rer
2 )
− 1

2 Nu

Qt = Qe = 0.2 Qt = Qe = 0

0.1 0.5 0.5 −1.41850538 −1.16647540
0.2 −1.36654000 −1.16647540
0.3 −1.32706867 −1.16647540
0.4 −1.29593067 −1.16647540
1 0.1 0.5 −1.41494968 −1.41884553

0.2 −1.34453339 −1.34604109
0.3 −1.28525897 −1.28034291
0.4 −1.23467631 −1.22075960

1 0.5 0.1 −0.86416390 −0.82476824
0.2 −0.94531928 −0.90931794
0.3 −1.02685975 −0.99449018

1 0.5 0.4 −1.10876180 −1.08022592

Table 6. The values of ( Rer
2 )
− 1

2 Nu, for different values of Qe and Qt by setting R = 0.5, n = 1, ζ =

0.5, α = β = 0.2, δ = 0.5, Pr = 6, and n = 1.

Qt Qe (Rer
2 )
− 1

2 Nu (Rer
2 )
− 1

2 Nu

Γ = 0 Γ = 0.1

0 0.2 −1.48401825 −1.48133282
−0.1 −1.30346759 −1.30280458
−0.2 −1.19102030 −1.19080604
−0.3 −1.11064431 −1.11056507
−0.2 0 −0.98769763 −0.98736978

0.1 −1.08935897 −1.08908791
0.2 −1.19102030 −1.19080604

−0.2 0.3 −1.29268164 −1.29252360

5. Concluding Remarks

Three-dimensional thermal transport of Jeffrey fluid via a gyrating disk was investi-
gated in this study, taking into consideration non-Fourier thermal flux, the ERHS, TRHS,
and Hall current. A framework of multiple slip effects was employed. The main results of
the analysis are as follows:

• Non-dimensional radial velocity f ′(ξ), azimuth velocity g(ξ), and tangential velocity
f (ξ) components diminished when Ha values increased but improved due to the
Hall current.

• Dimensionless azimuth velocity g(ξ) improved because of a larger β.
• The temperature field θ(ξ) improved when α and β were elevated.
• The Ha number had a constructive impact on the temperature field θ(ξ).
• Multiple slip conditions diminished the radial velocity f ′(ξ), azimuth velocity g(ξ),

radial velocity f (ξ), and temperature θ(ξ).
• Compared to TRHS, ERHS had a more pronounced effect on temperature θ(ξ).

• Dimensionless ( Rer
2 )

1
2 C f , ( Rer

2 )
− 1

2 Nu, and ( Rer
2 )

1
2 Cg diminished when α increased, but

this did not happen when β increased.
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Considering the non-Fourier thermal flux theory, the current work has shown several
remarkable properties of Jeffrey fluid dynamics and heat transfer, due to the gyrating disk.
The shooting algorithm was found to be relatively accurate. The simulation presented here
takes into account steady-state flow and heat transfer. Future research could expand on the
results of this study by incorporating unsteady flows with nanoparticles.
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