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Abstract: In this article, a multivariate extension of the unit-sinh-normal (USHN) distribution is
presented. The new distribution, which is obtained from the conditionally specified distributions
methodology, is absolutely continuous, and its marginal distributions are univariate USHN. The
properties of the multivariate USHN distribution are studied in detail, and statistical inference is
carried out from a classical approach using the maximum likelihood method. The new multivariate
USHN distribution is suitable for modeling bounded data, especially in the (0, 1)p region. In addition,
the proposed distribution is extended to the case of the regression model and, for the latter, the
Fisher information matrix is derived. The numerical results of a small simulation study and two
applications with real data sets allow us to conclude that the proposed distribution, as well as its
extension to regression models, are potentially useful to analyze the data of proportions, rates, or
indices when modeling them jointly considering different degrees of correlation that may exist in the
study variables is of interest.

Keywords: multivariate log-Birnbaum–Saunders distribution; multivariate regression model; unit-
sinh-normal distribution; bounded data

MSC: 60E05; 62H05

1. Introduction

Data whose response falls in the interval (0, 1) such as indices, proportions, or rates
appear very frequently in different fields of knowledge, mainly the areas of social sciences,
engineering, economic sciences, and medicine. Some practical examples of these types of
data are the proportion of patients who die from a certain disease or virus (SARS-CoV-2,
Diabetes, HIV or Cancer) in a country or city; the Human Development Index or the
illiteracy rate in a region or country; the proportion of deaths due to exposure to smoking
or other exposure factors; the mortality rate from traffic accidents in a city; the percentage
of items that do not meet the minimum requirements in an assembly line; and the portion
of income that a family spends on entertainment.

For the analysis of data such as those described above, statistical methodologies
developed from distributions with support in the interval (0, 1) are required. In this
sense, several probability distributions and regression models have been proposed; see
Ferrari and Cribari-Neto [1], Kumaraswamy [2], Martínez-Flórez et al. [3,4], Kieschnick
and Mccullough [5], Mazucheli et al. [6,7].

Mathematics 2023, 11, 1095. https://doi.org/10.3390/math11051095 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051095
https://doi.org/10.3390/math11051095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6441-5377
https://orcid.org/0000-0001-5649-532X
https://doi.org/10.3390/math11051095
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051095?type=check_update&version=2


Mathematics 2023, 11, 1095 2 of 21

The univariate sinh-normal (SHN) distribution introduced by Rieck and Nedelman [8]
has received special attention for modeling material-fatigue-related problems. The proba-
bility density function (pdf) of this distribution is given by:

ϕ(y) =
2

σα
cosh

(
y− γ

σ

)
φ

(
2
α

sinh
(

y− γ

σ

))
, y ∈ R, (1)

where α > 0 and γ are shape and location parameters, respectively; σ > 0 is a scale
parameter, and φ(·) is the pdf of the normal distribution. The pdf in (1) can also be
written as:

ϕ(y) = b′yφ(by) (2)

where b′y = 2
σα cosh

(
y−γ

σ

)
is a derivative of by = 2

α sinh
(

y−γ
σ

)
. The distribution function

in (2) is denoted by SHN(α, γ, σ). Several extensions of the SHN distribution have been
studied by numerous authors, for example, Martínez-Flórez et al. [9] proposed the ex-
tended generalized SHN distribution, which has great applicability in the fit of datasets
presenting high skewness and bimodality simultaneously; Lemonte [10] introduced an
extension named skewed log-Birnbaum–Saunders (log-BS) regression model which is
based on the asymmetric SHN distribution proposed by Leiva et al. [11]. The log-BS re-
gression model is suitable for fitting data with high degrees of skewness. On the other
hand, Moreno et al. [12] proposed a generalization of the Birnbaum–Saunders (BS) dis-
tribution [13] that affords flexibility for fitting data with greater skewness and kurtosis
compared with other distributions.

Multivariate extensions of the SHN distribution have also been considered, for in-
stance, by Martínez-Flórez et al. [14], Díaz-García and Domínguez-Molina [15], Lemonte [16],
Marchant et al. [17] and, recently, by Martínez-Flórez et al. [18], among others.

For modeling material fatigue data, the most widely known distribution is the BS
whose pdf is given by:

fT(t) = φ(at)
t−3/2(t + β)

2α
√

β
, t > 0, (3)

where at =
1
α

(√
t/β−

√
β/t
)
, α > 0 is a shape parameter, and β > 0 is a scale parameter

and the median distribution. The distribution in (3) is denoted by T ∼ BS(α, β). Rieck
and Nedelman [8] showed that, if Y ∼ SHN(α, γ, σ = 2), then T = exp(Y) follows a BS
distribution with parameters α and β = exp(γ). From this last relationship between the
BS and SHN distributions, the SHN regression model can be formulated as follows: if
xi = (xi1, . . . , xip)

> is a vector of covariates such that,

Yi = log(Ti) = x>i θ, (4)

for i = 1, . . . , n, and,
Yi ∼ SHN(α, x>i θ, σ)

then, the model in (4) is known as the log-linear BS regression model. More details about
this regression model can be found in Rieck and Nedelman [8].

The BS distribution has great applicability to analyze data in several areas of knowl-
edge, such as biology, medicine, engineering, etc.; however, so far, no extension of the BS
distribution has been proposed to study the modeling of rates and proportions, i.e., of a
random variable in the unit interval (0, 1) from the BS model. In response to this special
case, Mazucheli et al. [19] presented an extension of the BS distribution for fitting random
variables in the unit interval (0, 1). The pdf of this model is given by:

f (x) =
1

2xαβ
√

2π

[(
− β

log x

)1/2
+

(
− β

log x

)3/2
]

exp
{

1
2α2

[
log x

β
+

β

log x
+ 2
]}

, (5)
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where x ∈ (0, 1), α > 0 is the shape parameter and β > 0 is a scale parameter. Based on
the work of Mazucheli et al. [19], Martínez-Flórez et al. [3] studied the unit sinh-normal
(USHN) distribution to deal with the problem of bounded observations on the interval
(0, 1) which has a pdf given by:

ϕ(y) =
1

(1− y) log(1− y)−1
2

σα
cosh

(
log(− log(1− y))− γ

σ

)
× φ

(
2
α

sinh
(

log(− log(1− y))− γ

σ

))
, (6)

where y ∈ (0, 1), α > 0 is a shape parameter, γ is a location parameter, and σ > 0 is a scale
parameter. The natural extension to the case of the model which considers covariates is the
USHN linear regression (USHNR) model. The USHNR model is defined by considering a
set of p explanatory variables that are denoted by xi = (xi1, . . . , xip)

> and, such that,

log
(
− log(1−Yi)

)
= x>i θ+ εi, for i = 1, . . . , n (7)

where θ = (θ1, . . . , θp)> is a p dimensional vector of unknown parameters and εi ∼
SHN(α, 0, σ). More details can be found in [3].

The main objective of this work is to introduce a new multivariate probability distri-
bution capable of modeling data in the region (0, 1)p. The new distribution is obtained
from the extension of the univariate skewed unit-sinh-normal distribution and to do so,
we rely on the conditionally specified distributions methodology introduced by Arnold.
In addition, from the new distribution, we propose the multivariate unit-sinh-normal
skewed regression model, which allows modeling data in the region (0, 1)p through linear
predictors. The new proposals are useful for the analysis of data on proportions, rates, or
indices that arise in different fields of knowledge, such as those described at the beginning
of this section. The results of a simulation presented in this work also show that these
methodologies are viable alternatives to those existing in the current statistical literature.

This paper is organized as follows. In Section 2, the multivariate skew-normal dis-
tribution is revised, and its main properties are commented on. In Section 3, the new
multivariate skewed unit sinh-normal distribution is introduced. Some properties are also
derived, and the value of the coefficient correlation for the bivariate case is presented for
some selected values of the parameter distribution. Section 4 presents the extension of
the USHN to the case of the multivariate regression model and its respective statistical
inference. Finally, two applications with real data to illustrate the applicability of the
proposed methodologies and a small simulation study are presented in Section 5.

2. Multivariate Skew-Normal Distribution

The multivariate skew-normal (SN) distribution was studied by Arnold et al. [20] by
using the theory of conditionally specified distributions; see [21]. The construction of the
multivariate SN distribution is as follows: for each j = 1, 2, . . . , p, define the vector Z(j) to
be the (p− 1) dimensional random vector obtained from Z by deleting Zj. In parallel, for a
real vector z = (z1, z2, . . . , zp)>, z(j) is obtained by deleting the jth coordinate zj of z. Now,
suppose that, for each j = 1, 2, . . . , p, the conditional distribution of Zj given Z(j) = z(j) is a
SN distribution with a parameter which is a function of z(j). Thus, it is assumed for each
j that

Zj | Z(j) = z(j) ∼ SN

λ ∏
j′ 6=j

zj′

.

The joint pdf of Z = (Z1, Z2, . . . , Zp) is given by

fZ(z) = 2

(
p

∏
j=1

φ(zj)

)
Φ

(
λ

p

∏
j=1

zj

)
. (8)
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In the distribution (8), the marginal densities follow a standard normal distribution,
that is, for j = 1, 2, . . . , p, and

Zj ∼ N(0, 1),

the conditional distribution follows a SN distribution, (see Azzalini [22]) of parameter
λ ∏j′ 6=j zj′ , with the pdf given by:

f (Zj | Z(j) = z(j)) = 2φ(zj)Φ

λ ∏
j′ 6=j

zj′


From this distribution, Lemonte et al. [23] presented the multivariate Birnbaum–

Saunders distribution, whose joint pdf is given by:

fT1,...,Tp(t1, . . . , tp) = 2
p

∏
j=1

φ(atj)Φ

(
λ

p

∏
j=1

atj

)
p

∏
j=1

t−3/2
j (tj + ηj)

2αj
√

ηj
, t1, . . . , tp > 0, (9)

where

atj(αj, ηj) = atj =
1
αj

(√
tj

ηj
−
√

ηj

tj

)
, (10)

for j = 1, 2, . . . , p, with αj > 0 and ηj > 0 being the shape and scale parameters, respectively.
The distribution (9) is denoted by MVBS(α, η, λ).

Another extension based on the multivariate SN model of Arnold et al. [20] is the
multivariate asymmetric SHN distribution, studied by Martínez-Flórez et al. [24], whose
joint pdf is given by:

fY1,...,Yp(y1, . . . , yp) = 2

(
p

∏
j=1

b′j

)(
p

∏
j=1

φ(bj)

)
Φ

(
λ

p

∏
j=1

bj

)
, y1, . . . , yp ∈ R, (11)

where bj = 2
αj

sinh
(Yj−γj

σj

)
, and b′j = 2

αjσj
cosh

(Yj−γj
σj

)
for j = 1, 2, . . . , p is a derivative

of bj with respect to Yj; αj > 0 and σj > 0 are shape and scale parameters, respectively,
and γj, λ ∈ R are location and asymmetry parameters, respectively. The distribution
in (11) is denoted by MVSHN(α, γ, σ, λ), with α = (α1, . . . , αp)>, γ = (γ1, . . . , γp)> and
σ = (σ1, . . . , σp)>.

Although MVBS and MVSHN distributions, which are defined in R2p+1 and R3p+1,
respectively, can be used to fit sets of random variables whose domain is the unit interval
(0, 1), these are not appropriate given the support of these distributions and the support of
a bounded random variable vector. In the statistical literature, there are few distributions
studied to fit sets of variables in the unit interval, that is, whose domain of definition is
(0, 1)p, which can be useful to fit rates and proportions. The interest for these type of
distributions has been very little; we highlight the works of Cepeda et al. [25], Souza and
Moura [26] and Lemonte and Moreno-Arenas [27], among others.

3. Multivariate Skewed Unit-Sinh-Normal Distribution

Following the idea of Arnold et al. [20], Lemonte et al. [23] and Martínez-Flórez et al. [24],
in this section, a multivariate extension of the SHN distribution to fit vectors of rates
and proportions is proposed, which is named multivariate skewed USHN distribution
(MVSUSHN). The construction of the MVSUSHN is as follows: for j = 1, 2, . . . , p, let

Yj = 1− exp
(
− exp

(
γj + σj sinh−1

(
αjZj

2

)))
,
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where Zj ∼ N(0, 1) for j = 1, 2, . . . , p. Then, the joint pdf of the vector with MVSUSHN
distribution is given by,

fY1,...,Yp(y1, . . . , yp) = 2

(
p

∏
j=1

b′j

)(
p

∏
j=1

φ(bj)

)
Φ

(
λ

p

∏
j=1

bj

)
, y1, . . . , yp ∈ (0, 1), (12)

where

bj =
2
αj

sinh

(
log(− log(1− yj))− γj

σj

)
and

b′j =
2

αjσj(1− yj)(− log(1− yj))
cosh

(
log(− log(1− yj))− γj

σj

)
for j = 1, 2, . . . , p is the derivative of bj with respect to yj; αj > 0 and σj > 0 are shape
and scale parameters, and γj and λ ∈ R are location and asymmetry parameters, respec-
tively. The MVSUSHN is denoted as MVSUSHN(α, γ, σ, λ), with α = (α1, . . . , αp)>, γ =

(γ1, . . . , γp)> and σ = (σ1, . . . , σp)>. For λ = 0, the case of independence is obtained, that
is, the product of the pdf of USHN random variables studied by Martínez-Flórez et al. [3].
It follows that the parameter λ is directly associated with the correlation parameter. The
Figure 1 shows the contours of the bivariate skewed USHN (BVSUSHN) distribution for
some selected values of the parameters, while the Figure 2 presents the shape of the density
function for particular values of the parameter of the the BVSUSHN distribution.
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Figure 1. Graphs of contours for the BVSUSHN distribution for: (a) BVSUSHN(0.5, 1.5, 0, 0, 1, 1, 1.5),
(b) BVSUSHN(0.25, 0.75, 0, 0, 1, 1, 0.75), and (c) BVSUSHN(1.25, 1.75, 0, 0, 1, 1,−0.75).

The following theorem provides the marginal and conditional distributions of the
MVSUSHN distribution.

Theorem 1. If (Y1, Y2, . . . , Yn) ∼ MVSUSHN(α, γ, σ, λ) then,

1. Yj ∼ USHN(αj, γj, σj) for j = 1, 2, . . . , n.
2. The conditional pdf of Yj | Y (j) = y(j) is given by

fYj |Y (j)
(yj | Y (j) = y(j)) = 2b′jφ(bj)Φ

(
λ

n

∏
j=1

bj

)
. (13)

3. The cumulative distribution function (cdf) of Yj | Y (j) = y(j) is given by

P(Yj ≤ yj | Y (j) = y(j)) = Φ(bj)− 2T

bj, λ ∏
j′ 6=j

bj′

, (14)
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where T(·) is the Owen function; see [28].
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Figure 2. Graphs of density function of the BVSUSHN distribution for:
(a) BVSUSHN(0.5, 1.5, 0.0, 0.0, 1.0, 1.0, 1.5), (b) BVSUSHN(0.25, 0.75, 0.0, 0.0, 1.5, 1.5, 0.75),
(c) BVSUSHN(1.25, 1.75, 0.0, 0.0, 1.0, 1.0,−0.75), and (d) BVSUSHN(2.5, 2.5, 0.0, 0.0, 1.0, 1.0,−2.5).

Proof.

1. For k = 1, 2, . . . , p and applying the integral over all subindex k (given by j′), other
than j, we obtain,

fYj(yj) =
∫
(0,1)

j′ 6=j
· · ·

∫
(0,1)

2

(
p

∏
k=1

b′k′φ(bk

)
Φ

(
λ

p

∏
k=1

bk

)
∏
j′ 6=j

dyj′

= b′jφ(bj)
∫
(0,1)

j′ 6=j
· · ·

∫
(0,1)

2

∏
j′ 6=j

b′j′φ(bj′)

Φ

(λbj) ∏
j′ 6=j

bj′

∏
j′ 6=j

dyj′ .

Now, using the transformation Zj′ =
2

αj′
sinh

(
log(− log(1−Yj′ ))−γj′

σj′

)
for all j′ 6= j

fYj(yj) = b′jφ(bj)
∫
R

j′ 6=j
· · ·

∫
R

2

∏
j 6=j′

φ(zj′)

Φ

(λzj) ∏
j′ 6=j

zj′

∏
j′ 6=j

dzj′

= b′jφ(bj)(1)

= b′jφ(bj).
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where the second last result follows from Arnold et al. [20].
2. Let

fZj |Z(j)
(Zj | Z(j) = z(j)) = 2φ(zj)Φ

λ ∏
j′ 6=j

zj′

zj

,

then, with the transformation Yj = 1 − exp
(
− exp

(
γj + σj sinh−1

(
αjZj

σj

)))
, it is

found that Zj = 2
αj

sinh
(

log(− log(1−Yj))−γj
σj

)
= bj and

dZj
dYj

= b′j and, by the Trans-
formation Theorem, it follows:

fYj |Y (j)
(Yj | Y (j) = y(j)) = 2b′jφ(bj)Φ

(
λ

p

∏
j=1

bj

)
.

3. It has that

P(Yj ≤ yj | Y (j) = y(j)) =
∫ yj

−∞
fYj(tj | Y (j) = y(j))dtj

through the transformation Zj =
2
αj

sinh
(

log(− log(1−Tj))−γj
σj

)
= bj, it follows that

P(Yj ≤ yj | Y (j) = y(j)) =
∫ bj

−∞
2φ(zj)Φ

λ ∏
j′ 6=j

bj′

zj

dzj

= Φ(bj)− 2T(bj, λ ∏
j′ 6=j

bj′)

where the last equality follows the properties of the cdf of the SN distribution, which
is widely known in the literature.

Martínez-Flórez et al. [3] showed that, when α→ 0, the random variable

log(− log(1−Y))− γ

ασ/2
,

converges to a standard normal distribution. From here, if αj → 0 with j = 1, 2, . . . , p, then

Y ∼ MVSN(γ, σ, λ).

Furthermore, if Xj = log(− log(1−Yj)) for j = 1, 2, . . . , p, then

X ∼ MVSHN(α, γ, σ, λ).

If Y ∼ MVSUSHN(α, γ, σ, λ) then, Zj = 2
αj

sinh
(

log(− log(1−Yj))−γj
σj

)
∼ N(0, 1), for all

j = 1, 2, . . . , p, then,
Z = (Z1, Z2, . . . , Zp)

> ∼ MVSN(0, I, λ).

(see [3]). It can be seen that, if σ1 = σ2 = · · · = σq = 2, the multivariate standard
USHN distribution follows, which is denoted by MVSUSHN(α, γ, 21q, λ). In this case, the
marginals are standard USHN, and the variables Xj = log(− log(1−Yj)) for j = 1, 2, . . . , p
follow the SHN distribution of Rieck and Nedelman [8].



Mathematics 2023, 11, 1095 8 of 21

In order to study the unimodal distribution, let p = 2, and suppose that α1 = α2,
γ1 = γ2 = 0, and σ1 = σ2 = 1. By differentiating the logarithm of the conditional
distributions and equaling to zero, it has

∂ log f (y2 | y1)

∂y2
= (1 + log(1− y2)) +

by2

b′y2

− b′y2
by2 + λb′y2

by1

φ(λby1 by2)

Φ(λby1 by2)
,

∂ log f (y1 | y2)

∂y1
= (1 + log(1− y1)) +

by1

b′y1

− b′y1
by1 + λb′y1

by2

φ(λby1 by2)

Φ(λby1 by2)
,

the following equations are obtained:

by2

b′y2

− b′y2
by2 + λb′y2

by1

φ(λby1 by2)

Φ(λby1 by2)
= −(1 + log(1− y2)) (15)

by1

b′y1

− b′y1
by1 + λb′y1

by2

φ(λby1 by2)

Φ(λby1 by2)
= −(1 + log(1− y1)) (16)

Multiplying the equation in (15) by by2 b
′2
y1

and the equation in (16) by by1 b
′2
y2

, and
subtracting these two results, it follows that

b2
y2

b
′2
y1
− b2

y2
b
′2
y2

b
′2
y1
− b

′2
y2

b2
y1
+ b

′2
y2

b
′2
y1

b2
y1

= (1 + log(1− y1))b
′2
y2

b
′
y1

by1 − (1 + log(1− y2))by2 b
′
y2

b
′2
y1

. (17)

Note that by letting y2 = y1 and substituting in (17), it follows:

b2
y1

b
′2
y1
− b2

y1
b
′4
y1
− b

′2
y1

b2
y1
+ b

′4
y1

b2
y1

= (1 + log(1− y1))b
′3
y1

by1 − (1 + log(1− y1))by1 b
′3
y1

0 = 0

Therefore, y1 = y2 is a trivial solution of the Equation (17). Then, by replacing y1 = y2
in (15), it has

by2(1− b
′
y2
)Φ(λby2) + (1 + log(1− y2))b

′
y2

Φ(λby2) + λby2 b
′
y2

φ(λby2) = 0

from which results the function

g(y2; λ) = by2(1− b
′
y2
)Φ(λby2) + (1 + log(1− y2))b

′
y2

Φ(λby2) + λby2 b
′
y2

φ(λby2).

Then, by applying the transformation Yj = 1− exp(− exp(σj arcsinh(αjZj/2) + γj)),
the bivariate distribution with conditional SN distributions is obtained.

The bivariate distribution with conditional asymmetric USHN is a one-to-one transfor-
mation. The λ values for which the SBVUSHN distribution is unimodal are the same as
for which the bivariate SN distribution is unimodal and, according to Arnold et al. [20],
the bivariate SN distribution is unimodal for λ ≤

√
π/2. One can note that the equation

g(y2; λ) is similar to the equation found by Arnold et al. [20] for the BVSN distribution. The
modes of the BVSUSHN distribution can be obtained by solving the equation g(y2; λ) = 0
and Y1 −Y2 = 0.

Moments and Correlation

The covariance for the random variables Yj and Yj′ is given by:

cov(Yj, Yj′ ; λ) = E(YjYj′)−E(Yj)E(Yj′)
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where the moment product E(YjYj′) for two random variables is given by

E(YjYj′) = 2
∫
(0,1)

∫
(0,1)

yjyj′b
′
yj

b′yj′
φ(byj)φ(byj′ )Φ

(
λbyj byj′

)
dyjdyj′

and

E(Yr) =
r

∑
j=0

∞

∑
l=0

(
r
j

)
(−1)j+l(jeγ)l

l!

[
ka1(α

−2) + kb1(α
−2)

k1/2(α−2)

]
(18)

with a = rσ+1
2 , b = rσ−1

2 , and kλ(·) being the third-order function of Bessel defined by

kλ(v) =
1
2

(v
2

)λ ∫ ∞

0
u−λ−1e−u− v2

4u du. (19)

A proof of the result in (18) can be seen in the Appendix A. Using (18) the variances:
var(Yi; λ) = E(Y2

i )− E2(Yi) are obtained for i = j, j′; thus, the correlation coefficient is
obtained from:

cor(Yj, Yj′ ; λ) =
cov(Yj, Yj′ ; λ)√

var(Yj; λ)var(Yj′ ; λ)
.

To compute cor(Yj, Yj′ ; λ), it is necessary to use numerical methods to determine the
simple moments and the product moments. It can be shown that for this distribution
cov(Yj, Yj′ ;−λ) = −cov(Yj, Yj′ ; λ), whereby cor(Yj, Yj′ ;−λ) = −cor(Yj, Yj′ ; λ). To study
the range of the correlation coefficient, cor(Yj, Yj′ ; λ) was evaluated for some parameter
values. The values taken for the parameters: σ1 = σ2 = 1 and γ1 = γ2 = 0, α1, α2, and
λ varying. The Table 1 shows the values for the parameters α1, α2, λ, and the values of
cor(Yj, Yj′ ; λ) for a pair of variables Yj and Yj′ . The values were obtained for the case of λ > 0
and the case of λ < 0 results for symmetry, given that cor(Yj, Yj′ ;−λ) = −cor(Yj, Yj′ ; λ).

As can be seen, the case of independence occurs for λ = 0, i.e., cor(Yj, Yj′ ; 0) = 0,
then according to the Table 1, for the values |cor(Yj, Yj′ ; λ)| ≤ 0.9938, which leads us to the
conclusion that for this model |cor(Yj, Yj′ ; λ)| ≤ 1.0.

Table 1. Correlation coefficient for BVUSHN distribution.

λ α1/α2 0.085 0.5 0.75 1.5 2.25 3.0 5.0 7.5 10.0

0.095 0.5124 0.3401 0.3410 0.3410 0.3388 0.3347 0.3077 0.2846 0.2759
0.45 0.3513 0.3160 0.3169 0.3173 0.3155 0.3117 0.2716 0.2239 0.1966
0.75 0.3524 0.3171 0.3181 0.3183 0.3165 0.3126 0.2722 0.2243 0.1969

0.5 1.0 0.3528 0.3177 0.3186 0.3188 0.3168 0.3128 0.2722 0.2243 0.1969
2.0 0.3507 0.3163 0.3171 0.3169 0.3148 0.3106 0.2697 0.2220 0.1949
3.0 0.3456 0.3119 0.3126 0.3122 0.3099 0.3057 0.2650 0.2180 0.1915
5.0 0.3261 0.2718 0.2722 0.2713 0.2690 0.2650 0.2318 0.1964 0.1775
7.5 0.3170 0.2240 0.2243 0.2234 0.2213 0.2180 0.1964 0.1774 0.1693
10.0 0.3188 0.1967 0.1969 0.1962 0.1943 0.1915 0.1775 0.1693 0.1684

0.095 0.8258 0.5950 0.6003 0.6123 0.6177 0.6183 0.5809 0.5252 0.4904
0.45 0.6192 0.5269 0.5321 0.5442 0.5504 0.5517 0.5070 0.4343 0.3845
0.75 0.6260 0.5331 0.5383 0.5504 0.5565 0.5576 0.5120 0.4381 0.3877
1.0 0.6311 0.5379 0.5431 0.5551 0.5611 0.5621 0.5156 0.4408 0.3900

1.5 2.0 0.6425 0.5497 0.5548 0.5662 0.5717 0.5722 0.5232 0.4460 0.3941
3.0 0.6446 0.5527 0.5576 0.5685 0.5735 0.5736 0.5232 0.4451 0.3932
5.0 0.6140 0.5079 0.5120 0.5207 0.5241 0.5232 0.4774 0.4096 0.3661
7.5 0.5695 0.4349 0.4381 0.4444 0.4464 0.4451 0.4096 0.3610 0.3315
10.0 0.5434 0.3850 0.3877 0.3930 0.3945 0.3932 0.3661 0.3315 0.3117
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Table 1. Cont.

λ α1/α2 0.085 0.5 0.75 1.5 2.25 3.0 5.0 7.5 10.0

0.095 0.9317 0.6733 0.6812 0.7013 0.7131 0.7184 0.6878 0.6282 0.5857
0.45 0.6975 0.5875 0.5945 0.6128 0.6242 0.6294 0.5900 0.5163 0.4623
0.75 0.7073 0.5958 0.6030 0.6214 0.6327 0.6379 0.5976 0.5224 0.4677
1.0 0.7154 0.6028 0.6099 0.6284 0.6397 0.6448 0.6036 0.5273 0.4718

2.5 2.0 0.7375 0.6222 0.6294 0.6478 0.6588 0.6635 0.6194 0.5396 0.4820
3.0 0.7469 0.6307 0.6379 0.6559 0.6665 0.6708 0.6250 0.5432 0.4847
5.0 0.7243 0.5912 0.5976 0.6132 0.6219 0.6250 0.5823 0.5092 0.4579
7.5 0.6772 0.5172 0.5224 0.5348 0.5414 0.5432 0.5092 0.4534 0.4157
10.0 0.6430 0.4632 0.4677 0.4781 0.4834 0.4847 0.4579 0.4157 0.3882

0.095 0.9765 0.7038 0.7128 0.7374 0.7531 0.7616 0.7367 0.6801 0.6363
0.45 0.7267 0.6135 0.6214 0.6428 0.6570 0.6645 0.6290 0.5567 0.5025
0.75 0.7379 0.6227 0.6307 0.6523 0.6666 0.6742 0.6379 0.5642 0.5090
1.0 0.7474 0.6307 0.6387 0.6605 0.6749 0.6824 0.6453 0.5705 0.5144

3.5 2.0 0.7755 0.6542 0.6624 0.6845 0.6988 0.7061 0.6662 0.5874 0.5288
3.0 0.7895 0.6659 0.6742 0.6962 0.7102 0.7172 0.6755 0.5945 0.5345
5.0 0.7730 0.6303 0.6379 0.6576 0.6698 0.6755 0.6367 0.5633 0.5098
7.5 0.7297 0.5579 0.5642 0.5805 0.5902 0.5945 0.5633 0.5064 0.4656
10.0 0.6951 0.5035 0.5090 0.5230 0.5311 0.5345 0.5098 0.4656 0.4348

0.095 0.9938 0.7228 0.7324 0.7601 0.7790 0.7903 0.7707 0.7182 0.6763
0.45 0.7446 0.6323 0.6405 0.6643 0.6808 0.6903 0.6583 0.5881 0.5346
0.75 0.7563 0.6418 0.6502 0.6743 0.6910 0.7006 0.6681 0.5967 0.5421
1.0 0.7669 0.6505 0.6590 0.6834 0.7002 0.7099 0.6767 0.6040 0.5486

5.0 2.0 0.7992 0.6772 0.6860 0.7110 0.7281 0.7377 0.7021 0.6254 0.5672
3.0 0.8170 0.6917 0.7006 0.7258 0.7428 0.7523 0.7149 0.6358 0.5760
5.0 0.8061 0.6597 0.6681 0.6913 0.7066 0.7149 0.6803 0.6084 0.5544
7.5 0.7672 0.5894 0.5967 0.6164 0.6291 0.6358 0.6084 0.5521 0.5102
10.0 0.7350 0.5357 0.5421 0.5594 0.5703 0.5760 0.5544 0.5102 0.4776

4. Multivariate Skewed USHN Regression Model

This section presents an extension of the USHN regression model for the case of
multiple bounded response variables (rates and proportions). Suppose that we have q
variables measuring rates or proportions in a sample of size n, i.e., for i = 1, 2, . . . , n, we
have the vector of dimension q× 1

yi = (yi1, yi2, . . . , yiq)
>.

Assume also that there are p explanatory variables X1, X2, . . . , Xp where, for i = 1, 2, . . . , n,

X i = (xi1, xi2, . . . , xiq)
>,

and there is a matrix q× p associated to the ith observed response yi with

xij = (xij1, xij2, . . . , xijp)
>,

for j = 1, 2 . . . , q, a p dimensional vector of values of the explanatory variables. For the
vector of response variables, we use the operator vec(·), which transforms matrices into a
column vector from the columns of the matrix. Therefore,

y = vec(y1, y2, . . . , yn).

Thus, the MVSUSHN regression model is given by

Zi = X iβ + εi, i = 1, 2, . . . , n, (20)
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where zij = log(− log(1− yij))), being β is a vector of unknown parameters of dimension
p, and the vectors εi for i = 1, 2, . . . , n are vectors of independent and identically distributed
random variables such that εi ∼ MVSHN(α, 0q, Σ, λ) where Σ = diag(σ1, σ2, . . . , σq), and
0q, a vector of zeros of dimension q. It follows that, zi ∼ SMVSHN(α, X iβ, Σ, λ).

From this result, we have by the theorem shown above that yij ∼ USHN(αj, x>ij βj, σj)

for j = 1, 2, . . . , q i.e., each marginal follows a USHN regression model. Thus, defining
X = diag(X1, X2, . . . , Xq), where X j for j = 1, 2, · · · , q is a matrix of size n× pj and X of
dimension nq× (p1 + p2 + . . . + pq), then the MVSUSHN can be represented by

Z = Xβ + ε, (21)

where Zij = X ijβj + εij, i = 1, 2, . . . , n, j = 1, 2, . . . , q taking values zij = log(− log(1−
yij))), with β = vec(β1, β2, . . . , βq) with βj a vector of dimension pj × 1, i.e., β is a vector of
dimension p× 1 being p = p1 + p2 + · · ·+ pq, ε = vec(ε1, ε2, . . . , εq) is an error vector with
εj ∼ MVSHN(α, 0nq, Σ, λ) where εj = (ε1j, ε2j, . . . , εnj) with εij ∼ SHN(αj, 0, σj) it follows
that zij ∼ SHN(αj, X ijβj, σj) for j = 1, 2, . . . , q.

Statistical Inference

For i = 1, 2, . . . , n and j = 1, 2, . . . , q, define: δ1 = (δ11, δ21, . . . , δn1), δ2 = (δ12, δ22, . . . , δn2)
and δ3 = (δ13, δ23, . . . , δn3); with δi1 = (δi11, δi12, . . . , δi1q), δi2 = (δi21, δi22, . . . , δi2q) and
δi3 = (δi31, δi32, . . . , δi3q) where

δi1j =
2

αjσj(1−yij)(− log(1−yij))
cosh

(
zij−x>ij β

σj

)
, δi2j =

2
αj

sinh

(
zij − x>ij β

σj

)

and

δi3j = Φ

(
λ

p

∏
j=1

δi2j

)
.

for j = 1, 2, . . . , p. The log-likelihood function for the parameter vector θ = (α, β, Σ, λ)> is

`(θ) =
n

∑
i=1

`i(θ),

where

`i(θ) = −
q
2

log(2π) +
q

∑
i=1

σj +
q

∑
i=1

log(−(1− yij)(log(1− yij)))

+
q

∑
i=1

log(δi1j)−
1
2

q

∑
i=1

δ2
i2j + log(δi3j).

To obtain the score function, denoted U(θ), we took the derivative of the log-likelihood
function with respect to each of the parameters, so the elements of the score function are
given by

U(β jk) =
1
σj

n

∑
i=1

xijk

(
δi1jδi2j −

δi2j

δi1j

)
+

λ

σj

n

∑
i=1

xijkδi1jωi

∏
j′ 6=j

δi2j′

, k = 1, . . . , pj, (22)

U(αj) = −
n
αj

+
1
αj

n

∑
i=1

δ2
i2j −

λ

αj

n

∑
i=1

ωi

(
q

∏
j=1

δi2j

)
, (23)
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U(σj) = −
n
σj
− 1

σj

n

∑
i=1

vij tanh(vij) +
1
σj

n

∑
i=1

vijδi1jδi2j −
λ

σj

n

∑
i=1

δi1jωi

∏
j′ 6=j

δi2j′

, (24)

U(λ) =
n

∑
i=1

ωi

(
q

∏
j=1

δi2j

)
, (25)

where vij = (log(− log(1− yij)− x>ij βj)/σj, for i = 1, . . . , n, and j = 1, 2, . . . p and; wi =

φ
(

λ ∏
q
j=1 δi2j

)
/Φ
(

λ ∏
q
j=1 δi2j

)
.

The maximum likelihood estimator (MLE) for β j1, . . . , β jpj , αj and σj are the solutions
to the equations U(β jk) = 0, U(αj) = 0 and U(σj) = 0 for j = 1, 2, . . . , q, k = 1, 2, . . . , pj,
which require numerical procedures. To start the iterative process, the least squares esti-
mates can be used for the βj, i.e., β̃j0 = (X>j X j)

−1X jzj, from where σ̂2
j0 = 1

n−pj
∑n

i=1(zij −
x>j β̃j0)

2, while for the αj, the initial values could be implemented α̂j0 =
√

α̃j, where

α̃j =
4
n ∑n

i=1 sinh
(

zij−x>j β̃j0
σ̄j0

)
. With these initial values, and assuming them to be the true

values of the parameters, a one-dimensional function for the parameter λ can be obtained,
which can be estimated by some numerical method such as uniroot from R Development
Core Team [29].

The elements of the observed information matrix that are calculated as minus the
second derivative of the log-likelihood function with respect to the parameters, denoted by
Iθjθk , are given by

Iθjθk = −
∂`(θ)

∂θj∂θk
(26)

The explicit expressions of these elements are presented in the Appendix B. The
elements of the Fisher information matrix (denoted κθjθk ) are given by the expectation of the
elements of the observed information matrix, that is κθjθk = E(Iθjθk ), these are calculated
numerically, therefore, the information matrix is expressed by

κθθ = −E
[

∂`(θ)

∂θj∂θk

]
=


καα καβ καΣ καλ

κT
αβ

κββ κβΣ κβλ

κT
αΣ

κT
βΣ

κΣΣ κΣλ

κT
αλ κT

βλ
κT

Σλ
κλλ


When λ = 0, the case of the independence of univariate USHN distribution is obtained;

thus, it follows that: κββ = bloq.diag(c(α1)x>1 x1/4, c(α2)x>2 x2/4, . . . , c(αq)x>q xq/4), is a

diagonal block matrix where c(αj) = 1+ 4
α2

j
−
√

2π/α2
j

(
1− erf[(2/α2

j )
1/2] exp(2/α2

j )
)

and

erf(x) is the error function given by: erf(x) = 2√
π

∫ x
0 e−t2

dt, see Rieck and Nedelman [8];

καα = diag(2/α2
1, 2/α2

2, · · · , 2/α2
q), κΣΣ = diag(κσ1σ1 , κσ2σ2 , · · · , κσqσq), where κσjσj =

a2(αj ,σj)

σ2
j

+ 2
b(αj ,σj)−d(αj ,σj)

σ2
j

with al(αj, σj) = E
(

vl
j

[
2δ2

2j +
4
α2

j
− 1 +

δ2
2j

δ2
2j+4/α2

j

])
, b(αj, σj) =

E(vjδ1jδ2j) and d(αj, σj) = E
(

vj
δ1j
δ2j

)
. Expectations in the above expressions must be calcu-

lated numerically, καβ = 0 is a matrix of zeros, καΣ = diag(κα1σ1 , κα2σ2 , · · · , καqσq) with

καjσj =
2

αjσj
b(αj, σj), κβΣ = diag(κβ1σ1 , κβ2σ2 , · · · , κβqσq) with κβ jσj =

a1(αj ,σj)
2σj

xj, καλ = 0 is
a vector of size q, κβλ = 0 is a vector of size p1 + p2 + . . . + pq κΣλ = 0 is a vector of size q

and κλλ = 2
π .
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The rows (or columns) of the matrix κθθ are linearly independent, so the determinant
is different than zero; this guarantees the existence of the inverse of κθθ. Hence, for large
samples, the MLE θ̂ of θ is asymptotically normal, that is,

θ̂
D−→ Np+2q+1(θ, κ−1

θθ),

resulting that the asymptotic variance of the MLE θ̂ is the inverse of I(θ̂). The approxi-
mation to the Np+2q+1(θ, κ−1

θθ
) can be used to construct confidence intervals for αj, β jkj

,

σj y λ, these are given by α̂j ∓ z1−ξ/2
√

κ̂(α̂), β̂ jkj
∓ z1−ξ/2

√
κ̂(β̂ jkj

) and λ̂∓ z1−ξ/2

√
κ̂(λ̂),

where κ̂(·) is on the diagonal of the matrix κ−1
θθ

for each parameter and z1−ξ/2 is the quantil
100(δ/2)% of the standard normal distribution.

The hypothesis of interest

H0 : λ = 0 versus λ 6= 0

can be tested by the statistic test (for large n)

−2[ ˆ̀(θ̂
∗
, λ̂)− ˆ̀(θ̂

∗
, 0)] ∼ χ2

1

where θ∗ is the vector θ without the parameter λ, and θ̂
∗

is the MLE of θ restricted on H0.

5. Numerical Results

In this section, the results of the simulation study and two applications to illustrate
the applicability of the proposed models are presented.

5.1. Simulation Study

In order to study the behavior of the MLE of the parameter vector of the MVSUSHN
regression model, a small Monte Carlo simulation study with covariates in the model was
carried out. We considered X1i ∼ N(0, 1) and X2i ∼ U(0, 1) for i = 1, 2, . . . , n. For λ = 0,
the case of independence; the results for each model can be seen in the studies conducted
by Martínez-Flórez et al. [3].

We used the bivariate MVSUSHN((α1, α2), (β10, β11, β20, β21), (σ1, σ2), λ) regression
model, and we took the values: α1 = 1.5, α2 = 0.75, β10 = −0.75, β11 = 0.50, β20 = 0.50,
and β21 = 1.5 and σ1 = σ2 = 2, while λ = 1.75, 3.5, and 5.25. The sample size was
n = 40, 80, 120, and 200, and the number of iterations was 5000. We studied the absolute
value of the relative bias (RB), root of mean square error (RMSE), length of confidence
interval (LCI), and coverage probability (CP). To generate the samples, we performed the
following algorithm:

1. Generate a uniform random U1 ∼ U(0, 1) and a random number x1 with distribution
N(0, 1).

2. Generate ε1 = 2 arcsinh(α1Φ−1(U1)/2) with Φ−1(·) the inverse of the standard
normal function.

3. Let y1 = 1− exp(− exp(β10 + β11x1 + ε1)).
4. Compute b = (2/α1) sinh((log(− log(1− y1))− (β10 + β11x1))/2).
5. Generate another uniform random number (independent of U1) U2 ∼ U(0, 1) and x2

also with distribution U(0, 1)
6. Compute the error ε2 such that ε2 = 2 arcsinh(α2Φ−1

SN(U2, 0, 1, λb1)/2), where Φ−1
SN(·, 0, 1, ·)

is the inverse function of the standard skew-normal and arcsinh(·) is the inverse of
the hyperbolic sine function.

7. Let y2 = 1 − exp(− exp(β20 + β21x2 + ε2)). This algorithm is generated n times,
finally obtaining the USHN bivariate random sample.
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The results of the simulations can be seen in the Table 2. In general, it can be seen that
the RB, RSME, and LCI of the model parameters decrease as n increases; this decrease is
slower for some parameters. It can also be seen that the CP increases as n increases.

Table 2. Relative bias, root of mean square error, length of confidence interval, and coverage
probability for the MVSUSHN regression model.

λ = 1.75 λ = 3.50 λ = 5.25

n θi RB RMSE LCI CP RB RMSE LCI CP RB RMSE LCI CP

40 α1 0.2279 0.6529 4.3944 0.9992 0.1858 0.5632 4.2347 1.0000 0.1588 0.4897 4.1603 1.0000
α2 0.5797 0.3882 3.9557 1.0000 0.4186 0.2454 3.7913 1.0000 0.2729 0.1752 3.7730 1.0000
β10 0.1648 0.0446 0.6471 0.7258 0.1059 0.0301 0.5543 0.7723 0.0844 0.0226 0.5062 0.8373
β11 0.0631 0.0295 0.6283 0.9223 0.0414 0.0218 0.5472 0.9272 0.0314 0.0189 0.5046 0.9346
β20 0.0225 0.0313 0.6037 0.8949 0.0210 0.0228 0.5251 0.9103 0.0162 0.0166 0.4833 0.9279
β21 0.1725 0.1681 1.1539 0.6816 0.1047 0.0956 0.9631 0.7742 0.0838 0.0685 0.8842 0.7535
σ1 0.0546 0.4598 4.5055 0.8934 0.0308 0.4418 4.6131 0.9272 0.0284 0.3935 4.4996 0.9519
σ2 0.3359 0.6907 9.3760 0.7098 0.2693 1.0002 6.5228 0.8036 0.3444 1.5870 6.2103 0.9096
λ 0.1705 0.7552 3.4734 0.8446 0.2084 4.6158 8.5285 0.7551 0.2087 6.2440 10.3860 0.7217

80 α1 0.0422 0.1841 2.6664 1.0000 0.0424 0.1732 2.6472 1.0000 0.0396 0.1109 2.7276 1.0000
α2 0.1296 0.0798 2.6892 1.0000 0.2238 0.0657 2.8055 1.0000 0.2974 0.0727 2.7864 1.0000
β10 0.1580 0.0270 0.4598 0.8239 0.1048 0.0167 0.3987 0.8683 0.0784 0.0099 0.3591 0.8871
β11 0.0549 0.0141 0.4374 0.9282 0.0403 0.0091 0.3740 0.9424 0.0306 0.0079 0.3440 0.9392
β20 0.0173 0.0118 0.4293 0.9276 0.0152 0.0092 0.3683 0.9380 0.0051 0.0068 0.3269 0.9286
β21 0.1698 0.1033 0.7948 0.7658 0.1040 0.0541 0.6637 0.8320 0.0797 0.0336 0.5786 0.8199
σ1 0.0301 0.2265 3.0365 0.9973 0.0289 0.1868 2.9427 0.9993 0.0223 0.1192 2.7508 1.0000
σ2 0.1044 0.4867 7.9724 0.9606 0.2363 0.8463 5.8032 1.0000 0.2265 1.2797 5.8860 1.0000
λ 0.1038 0.1931 1.8814 0.9043 0.1782 0.7432 4.0199 0.9170 0.1674 1.4969 6.6811 0.8465

120 α1 0.0363 0.0903 2.2934 1.0000 0.0313 0.0793 2.1980 1.0000 0.0208 0.1048 2.0728 1.0000
α2 0.1172 0.0413 2.6855 1.0000 0.1760 0.0594 2.3182 1.0000 0.1853 0.0613 2.4098 1.0000
β10 0.1522 0.0196 0.3802 0.8248 0.1037 0.0112 0.3217 0.8755 0.0776 0.0090 0.2899 0.9029
β11 0.0537 0.0078 0.3533 0.9294 0.0375 0.0062 0.3008 0.9431 0.0306 0.0051 0.2762 0.9444
β20 0.0043 0.0092 0.3635 0.9408 0.0116 0.0056 0.2964 0.9448 0.0020 0.0052 0.2672 0.9410
β21 0.1675 0.0790 0.6467 0.8606 0.1042 0.0357 0.5260 0.8499 0.0794 0.0304 0.4765 0.8885
σ1 0.0103 0.0793 2.2790 1.0000 0.0034 0.0690 2.1409 1.0000 0.0104 0.1054 2.2788 1.0000
σ2 0.0599 0.4395 6.8628 1.0000 0.0990 0.5798 3.1258 1.0000 0.2055 0.5280 4.7802 1.0000
λ 0.0909 0.1370 1.5647 0.9151 0.0893 0.5541 3.2542 0.9274 0.1199 1.3591 4.5893 0.9413

200 α1 0.0055 0.0611 1.5785 1.0000 0.0073 0.0573 1.5689 1.0000 0.0012 0.0603 1.5590 1.0000
α2 0.1022 0.0350 1.7030 1.0000 0.0316 0.0316 1.8231 1.0000 0.1446 0.0280 1.9242 1.0000
β10 0.1299 0.0186 0.2872 0.8766 0.0905 0.0100 0.2490 0.8795 0.0656 0.0064 0.2220 0.9357
β11 0.0360 0.0055 0.2693 0.9552 0.0314 0.0037 0.2323 0.9481 0.0260 0.0029 0.2103 0.9487
β20 0.0014 0.0053 0.2691 0.9464 0.0051 0.0035 0.2280 0.9438 0.0011 0.0028 0.2041 0.9455
β21 0.1407 0.0701 0.4915 0.9187 0.0859 0.0344 0.4086 0.9020 0.0724 0.0239 0.3628 0.8919
σ1 0.0063 0.0605 1.6167 1.0000 0.0028 0.0645 1.6578 1.0000 0.0095 0.0673 1.6935 1.0000
σ2 0.0527 0.2503 5.3491 1.0000 0.0508 0.1961 2.2176 1.0000 0.0672 0.1795 2.5655 1.0000
λ 0.0864 0.1210 1.0579 0.9497 0.0822 0.4112 2.1510 0.9580 0.0734 0.8740 3.2651 0.9598

5.2. Illustration 1

To show the relevance of the MVSUSHN distributio, a real data set from a study
conducted by Freeman [30] on drunk driving legislation and traffic fatalities in 48 states
in the United States of America (USA) during the period from 1980 to 2004 is considered.
The database is available in the wooldridge library by Shea and Brown [31] of the software
R Development Core Team [29] under the name of driving, and it contains information
associated with current legislation, accident records, and some demographic characteristics.
For this illustration, the unemployment rate variables (y1) and the percent of the population
aged 14 through 24 (y2) were used. The bivariate beta (BVBeta) model of Cepeda et al. [25],
the bivariate Johnson SB (BVJSB) model of Lemonte and Moreno-Arenas [27], and the
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BVSUSHN model were fitted. The BVBeta distribution of Cepeda et al. [25] is based on the
e Farlie–Gumbel–Morgentern copula; see Nelsen [32], and their joint pdf is given by

fX1X2(x1, x2) = fX1(x1) fX2(x2)(1 + θ(1− 2FX1(x1))(1− 2FX2(x2)),

where fXj(xj) and FXj(xj) correspond, respectively, to the pdf and cdf of the beta distribu-
tions of parameters αj and β j for j = 1, 2 and θ ∈ (−1, 1). To compare models, we used the
Akaike information criterion (AIC) of [33] and the Bayesian information criterion (BIC) of
[34], defined, respectively, by

AIC = −2`(θ̂) + 2p and BIC = −2`(θ̂) + n log(n),

where p is the number of parameters and `(·) is the log-likelihood function evaluated at
the MLEs of parameters. The best model is the one with the smallest AIC or BIC.

For fitting the bivariate model, we used the optim function of R Development Core
Team [29]. The parameter estimates of these models, accompanied by their standard errors
in parentheses, obtained using the maximum likelihood method, are given in the Table 3.
According to the AIC and BIC criteria, the BVSUSHN model presents the best fit.

Table 3. MLE (SE) for BVBeta, BVSJB, and BVSUSHN models.

Parameters BVSJB BVBeta BVSUSHN

α1 0.1554 (0.0010) 57.0023 (2.2745) 1.5520 (0.1731)
α2 0.0624 (0.0018) 312.5664 (12.5410) −1.7849 (0.0035)
β1 5.0188 (0.9010) 8.2716 (0.3220) 0.2001 (0.0163)
β2 2.7763 (0.1020) 128.3064 (5.1770) 0.1729 (0.1590)
σ1 1.7204 (0.6972) −2.8302 (0.0097)
σ2 8.0839 (0.2439) 4.0036 (3.6538)
λ 3.2156 (0.5746) 0.9995 (0.0001) 0.6239 (0.0547)

KS test (p-value) D1 = 0.14 (6× 10−10) D1 = 0.12 (5× 10−8) D1 = 0.5725 (0.8987)
D2 = 0.07 (0.00234) D2 = 0.08 (0.00234) D2 = 0.5175 (0.9518)

AIC −10, 980.07 −12, 446.15 −12, 559.71
BIC −10, 944.44 −12, 440.69 −12, 524.08

The graphs in the Figure 3 show the contours of the fitted models. For the BVSUSHN
distribution, we have that Xj = log(− log(1− Yj)) ∼ USHN(αj, γj, σj) for j = 1, 2 and
(X1, X2) ∼ BVSUSHN(α1, α2, γ1, γ2, σ1, σ2, λ), then it follows that

Wj =
2
αj

sinh

(
Xj − γj

σj

)
∼ N(0, 1), j = 1, 2

and
(W1, W2) ∼ SBSN(02, I2, λ)

where 02 and I2 are a column vector of size 2 and an identity matrix of size 2× 2, respectively.
The statistic of the Kolmogorov–Smirnov (KS) goodness-of-fit test joint with the respective
p-values for the marginal distributions for the BVSJB, BVBeta, and BVSUSHN distribution
are presented in Table 3. From here, it can be see that the BVSUSHN distribution shows a
good fit compared with the BVSJB and BVBeta models.
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Figure 3. Contour plots for the fitted models. (a) VBJSB, (b) VBBeta, and (c) SMVUSHN.

5.3. Illustration 2

In the second illustration, the USHN bivariate regression model is fitted. The real
data were taken from http://www.pe.undp.org (accessed on 31 August 2022), and they
correspond to measurements made on 195 districts in Peru. In this illustration, the in-
terest is to model the human development index (Y1) and illiteracy rate (Y2) as functions
of the proportion of people with high poverty level (HPL) by using the MVSUSHN re-
gression model. As far as poverty is concerned, poor are identified as those unable to
obtain minimum required calorie per day to keep body and soul together. We have that
log(− log(1− Y1i)) = β10 + β11HPL + ε1i and log(− log(1− Y2i)) = β20 + β21HPL + ε2i
with (ε1, ε2) ∼ BVSHN((α1, α2), (0, 0), diag(σ1, σ2), λ).

The MLEs of the vector of model parameters, with standard errors in parenthesis
are given by α̂1 = 0.3938(0.1539), β̂10 = −0.0269(0.0075), β̂11 = −0.5734(0.0277), σ̂1 =
0.3765(0.1384), α̂2 = 0.1303(0.0654), β̂20 = −2.8999(0.0500), β̂21 = 3.5010(0.1832), σ̂2 =
7.8736(3.9272), and λ̂ = −3.1520(0.6167).

Wj =
2
αj

sinh

(
log(− log(1−Yji))− β j0 − β j1HPL

σj

)
∼ N(0, 1), j = 1, 2,

and
(W1, W2) ∼ SBSN(02, I2, λ),

where 02 and I2 are a column vector of size 2 and an identity matrix of size 2× 2. To study
the model fit, we perform the Kolmogorov–Smirnov test for the bivariate vector (ε1, ε2).

For the multivariate Kolmogorov–Smirnov test of goodness of fit proposed by Justel [35],
special for the case of a bivariate distribution, which we denote by BKS (bivariate Kolmogorov–
Smirnov), the statistic is given by

dn = sup
(x1,x2)∈R2

∣∣Fn(x1, x2)−F (x1, x2)
∣∣

where Fn is the empirical distribution function of the sample, and F is some specified
distribution function. When the F distribution is unknown, the Kolmogorov–Smirnov
statistic is defined by

dn(F ) = max
{

D1, D2},

where
D1 = sup

(x1,x2)∈R2

∣∣Gn(y1, y2)− y1 × y2
∣∣

by using the transformations y1 = FX1(x1), y2 = FX2|X1
(x2 | x1), and

D2 = sup
(x1,x2)∈R2

∣∣Gn(y2, y1)− y2 × y1
∣∣

http://www.pe.undp.org
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by using the transformations y2 = FX2(x2) and y1 = FX1|X2
(x1 | x2), where Gn is the

empirical distribution function of the sample. For the special case of the BVSUSHN model,

dn(BPSN) = max
{

0.08622004 , 0.0750111
}
= 0.08622004,

which is less than 0.1265 (for n = 200), which is the critical value given by Justel [35] at
level of 5%. Therefore, it is concluded that the MVSUSHN model fits the data set well.

We also performed univariate Kolmogorov–Smirnov goodness-of-fit tests for Wj with
j = 1, 2 yielding the test statistics of D1 = 0.5282 with p− value = 0.949 and D2 = 0.5076
with p− value = 0.9898, indicating that the marginals show a good fit.

The Figure 4 shows the envelope plots for the marginal and contour distributions for
the residuals of the fitted model. For the envelope plot, we used the martingale residual
transformation, rMTi, proposed by Barros et al. [36]. These residuals are defined by

rMTi = sgn(rMi)
√
−2[rMi + αi log(δi − rMi)]; i = 1, 2, . . . , n

where rMi = δi + log(S(ei, θ̂)) is the martingale residual proposed by Ortega et al. [37],
where δi = 0, 1 indicates whether the i-th observation is censored or not, respectively,
sgn(rMi) denotes the sign of rMi, and S(ei; θ̂) represents the survival function evaluated at
ei, where θ̂ are the MLE for θ.
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Figure 4. Envelope plots for the marginals and contour for the fitted model. (a) W1, (b) W2, and
(c) MVSUSHN.

6. Concluding Remarks

Diverse distributions to deal with the problem of bounded data on the interval (0, 1)
were proposed, with great applicability in all fields of knowledge, especially in the social
sciences, humanities, medicine, and engineering, among others. However, few proposals
have been developed in the statistical literature to jointly model two or more variables,
such as those described above, and especially that incorporate covariates to explain the
variability of the variables of interest.

In this paper, a new multivariate distribution was introduced from the conditionally
specified distributions methodology useful for modeling responses in the (0, 1)p region
jointly. The new distribution, which is absolutely continuous, is called the skewed log-
Birnbaum–Saunders distribution and is also extended to the case of regression models. For
the multivariate distribution, the marginal densities and conditional distributions were
presented, and the Fisher information matrix of the multivariate regression model was
also presented. For the estimation of the parameters in the models, a classical approach
was used together with the maximum likelihood method. A small Monte Carlo simulation
study was carried out to study the benefits and limitations of the new methodologies,
which allows us to conclude that the parameter estimators behave asymptotically well.
Two applications with real data to illustrate the usefulness of the introduced methodologies
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showed great flexibility to model data in (0, 1)p for the particular case p = 2, which makes
them excellent alternatives to existing methodologies in the statistical literature.
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Appendix A. Expected Value of the LSHN Distribution

This Appendix presents the derivation of the expected value of a random variable
with LSHN distribution, which is used to obtain the Equation (18).

Let Z ∼ SHN(α, γσ), then X = exp(Z) ∼ LSHN(α, γσ), where LSHN denotes the pdf
of a non-negative SHN distribution; see Martínez-Flórez et al. [3].

Thus, if X ∼ LSHN, then Z = − log(X) ∼ SHN. Following Rieck and Nedelman [8],
we have that

X = exp(−Z) =⇒ Xr = exp(−rZ)

=⇒ E(Xr) = E(e−rZ)

=⇒ E(Xr) =
∞

∑
k=0

(−r)k

k!
E(Zk)

=⇒ E(Xr) =
∞

∑
k=0

(−r)k

k!
ekr ka(α−2) + kb(α

−2)

k1/2(α−2)

where a = (rσ + 1)/2, b = (rσ− 1)/2 and kΛ(·) is the third-order function of Bessel.
Now, if X ∼ LSHN(α, γσ), then Y = 1− exp(−X) ∼ USHN(α, γ, σ).
Hence,

E(Yn) = E[(1− e−X)n]

=
n

∑
j=0

(
n
j

)
(−1)jE(e−jX)

=
n

∑
j=0

∞

∑
l=0

(
n
j

)
(−1)j+1(−jeγ)l

l!
ka1(α

−2) + kb1(α
−2)

k1/2(α−2)

The last term is obtained by using Taylor expansion for e−jX for the jth moment of the
LSHN(α, γ, σ).
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Appendix B. Elements of the Observed Information for the SMVSHN
Regression Model

This Appendix presents the elements of the observed information, which are calculated
from Equation (26).

Iαjαj = − n
α2

j
+

3
α2

j

n

∑
i=1

δ2
i2j

+
λ

α2
j

n

∑
i=1

(
q

∏
j=1

δi2j

)
ωi

[
− 2

αj
+ λ

(
q

∏
j=1

δi2j

)(
λ

(
q

∏
j=1

δi2j

)
+ ωi

)]
,

Iαjαj′ =
λ

αjαj′

n

∑
i=1

(
q

∏
j=1

δi2j

)
ωi

[
−1 + λ

(
q

∏
j=1

δi2j

)(
λ

(
q

∏
j=1

δi2j

)
+ ωi

)]
,

Iαj β jk =
2

αjσj

n

∑
i=1

xijkδi1jδi2j

+
λ

αjσj

n

∑
i=1

xijkδi1j

∏
j′ 6=j

δi2j′
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−1 + λ

(
q

∏
j=1

δi2j

)λδi2j

∏
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Iβ jk β jk′
=

1
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