
Citation: Saleh, S.A.M.; Kadarman,

A.H.; Suandi, S.A.; Ghaleb, S.A.A.;

Ghanem, W.A.H.M.; Shuib, S.;

Hamad, Q.S. A Tracklet-before-

Clustering Initialization Strategy

Based on Hierarchical KLT Tracklet

Association for Coherent Motion

Filtering Enhancement. Mathematics

2023, 11, 1075. https://doi.org/

10.3390/math11051075

Academic Editors: Pradeep Kumar

Mallick, Arun Kumar Ray

and Gyoo-Soo Chae

Received: 28 November 2022

Revised: 7 February 2023

Accepted: 8 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Tracklet-before-Clustering Initialization Strategy Based on
Hierarchical KLT Tracklet Association for Coherent Motion
Filtering Enhancement
Sami Abdulla Mohsen Saleh 1 , A. Halim Kadarman 2,*, Shahrel Azmin Suandi 1,* , Sanaa A. A. Ghaleb 3,
Waheed A. H. M. Ghanem 4, Solehuddin Shuib 5 and Qusay Shihab Hamad 1,6

1 Intelligent Biometric Group, School of Electrical and Electronic Engineering, Universiti Sains Malaysia,
Nibong Tebal 14300, Pulau Pinang, Malaysia

2 School of Aerospace Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia
3 Faculty of Computing and Informatics, Universiti Sultan Zainal Abidin,

Kampung Gong Badak 21300, Terengganu, Malaysia
4 Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu,

Kuala Terengganu 21030, Terengganu, Malaysia
5 Faculty of Mechanical Engineering, Universiti Teknologi Mara, Shah Alam 40450, Selangor, Malaysia
6 Quality Assurance Department, University of Information Technology and Communications,

Baghdad 10068, Iraq
* Correspondence: ahalim@usm.my (A.H.K.); shahrel@usm.my (S.A.S.)

Abstract: Coherent motions depict the individuals’ collective movements in widely existing moving
crowds in physical, biological, and other systems. In recent years, similarity-based clustering algo-
rithms, particularly the Coherent Filtering (CF) clustering approach, have accomplished wide-scale
popularity and acceptance in the field of coherent motion detection. In this work, a tracklet-before-
clustering initialization strategy is introduced to enhance coherent motion detection. Moreover, a
Hierarchical Tracklet Association (HTA) algorithm is proposed to address the disconnected KLT
tracklets problem of the input motion feature, thereby making proper trajectories repair to opti-
mize the CF performance of the moving crowd clustering. The experimental results showed that
the proposed method is effective and capable of extracting significant motion patterns taken from
crowd scenes. Quantitative evaluation methods, such as Purity, Normalized Mutual Information
Index (NMI), Rand Index (RI), and F-measure (Fm), were conducted on real-world data using a
huge number of video clips. This work has established a key, initial step toward achieving rich
pattern recognition.

Keywords: crowd analysis; coherent motion detection; trajectory clustering; KLT tracklets

MSC: 62H30; 65D19; 68T45; 37M10

1. Introduction

Video surveillance plays a key role in the field of public safety management. In
the case of gigantic crowd scenes, such as airports, shopping malls, stations, etc., using
traditional monitoring methods cannot effectively supervise the behaviour of the crowd due
to many influencing factors, including the large scale of the crowd, low resolution, serious
occlusions, and complicated motion patterns [1–3]. Smart video surveillance systems,
which are based on computer vision and image processing, can automatically complement
various tasks. According to many survey papers [4], crowd analysis is subdivided into
two research axes: crowd statistics and crowd behavior analysis. The purpose of crowd
statistics is to estimate crowd density by the means of crowd-counting methods [5–8]. The
purpose of crowd behavior analysis is to study the behavior of a crowd, such as a crowd
motion detection and scene understanding [9–17], crowd event detection [18–20], and
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crowd anomaly detection [21–24]. In this regard, collective motion analysis has recently
received considerable attention.

Crowd motion pattern segmentation can macroscopically describe the holistic moving
structures of crowds and simplify complex interactions among individuals to closely watch
crowds with similar motion states. It does not only depict the segmentation in the spatial
space but also reflects the motion tendency over a certain period. These patterns can be joint
or disjoint in the image space [25]. The technique is regarded as an indispensable foundation
for other crowd behaviour analysis techniques [22,26–28] and, therefore, received a lot of
attention. However, improving the accuracy of the segmentation results is quite challenging,
particularly resulting from confused crowd scenarios, high people density, low resolution, etc.

Based on the principle of crowd motion detection [4,29], the existing methods of crowd
motion segmentation and clustering can be classified into three main categories, including
the flow field model-based [30–32], probability model-based [33–35], and similarity-based
methods [36–40]. The first category uses flow field models to simulate image spatial
segmentation and produce spatially continuous segments consequently. This type of
method has been successful in dealing with high-density scenes, but it may result in
creating over-segmented scenes in low-crowd-density scenes. The other two categories
utilize local motion features by initially extracting them, then segmenting crowds using a
variety of well-developed clustering algorithms. Their detection results are usually erratic,
but these methods can be applied to structured and unstructured various crowd scenes.

More specifically, the similarity-based clustering methods extract trajectories or track-
lets as motion features and utilize similarity measurements for motion clustering or crowd
profiling. This method has become more and more popular due to its virtually unsuper-
vised process. It also has the advantage of being suitable for structured and unstructured
scenes with different crowd-level density degrees. However, as the density of the crowd
increases, the scene clutter becomes more severe. Feature extraction and tracking cannot be
carried out accurately due to the problems of severe occlusion and clutter [41].

In the available literature, many similarity-based clustering methods adopted keypoint
trajectories obtained by the Kanade–Lucas–Tomasi (KLT) tracker [42,43] as their basis
to describe the raw motion of the crowd data due to its robustness and computational
efficiency [36,44]. This feature point tracker is often used as part of a larger tracking
framework and the resulting sub-trajectories are a description of the microscopic behaviour
of the crowd motion. It has many data points over a short time. They are compact
spatiotemporal representations of moving rigid points [45]. In the subsequent step, these
methods apply Coherent Neighbour Invariance (CNI) on KLT points for crowd motion
clustering. It is worth mentioning that they use the KLT keypoints as raw input without
making enhancements as pre-processing for their clustering techniques.

In particular, the fragment of a trajectory obtained by the KLT tracker within a short
range is called a tracklet. The length of the KLT tracklets of motion crowd depends on
several factors. The most important factors are: (a) the frame rate of the frame sequence,
(b) the relative position of the camera, and (c) the intensity of the motion patterns present
in the scene. Furthermore, the kinematic sequence of a single tracklet’s points is assumed
to be in a homogeneous localization in a consecutive time. All these factors can be exposed
based on the location of moving points related to trajectories in a two-dimensional space.
In some motion cases, however, the moving dense points of a single tracklet across frames
are frequently lost in crowded scenes. More importantly, this indicates that many tracklet
feature points can be lost across a few frames. Nonetheless, some of them are detected and
tracked again in a few frames. Consequently, this condition has negatively affected the
outcome of the crowd motion clustering and produced inaccurate results due to the lack of
moving point information during the clustering process. Naturally, tracklets belonging to
the same feature point should be merged into a single trajectory for more accurate motion
crowd detection.

Many previous studies on similarity-based coherent motion and crowd detection used
the KLT tracker to create short trajectories as initial input data. The relationships of the
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moving keypoints as the main phase in the clustering process were analysed. However,
previous studies focused on improving the tracklet keypoint clustering technique rather
than the tracklet feature itself. The input feature development as a key factor in improving
motion crowd clustering has been neglected in previous research. Therefore, this study
aims to characterize disconnected KLT features, which mostly occur in the extracted input
trajectories. To solve these problems, a tracklet-before-clustering initialization strategy is
proposed to enhance coherent motion filtering. To the researchers’ best knowledge, this
study is original in the field of computer vision as it aims to investigate comprehensively
and systemically the instability of extracted moving input features (tracklets) from the
vision’s perspective to achieve better coherent motion detection. The main contributions of
this work can be summarized as follows:

1. A Hierarchical Tracklet Association (HTA) algorithm is proposed as an initialization
strategy to optimize coherent motion clustering. The purpose of the proposed frame-
work is to address the disconnected tracklets problem of the input KLT features and
carry out proper trajectories repair to enhance the performance of motion crowd clus-
tering. In other words, HTA can be described as an enhanced initialization strategy
for tracklet-before clustering.

2. The coherent motion clustering results of the crowd were comprehensively examined
and analysed on a crowd dataset, which is openly available to the public and contains
a huge number of video clips.

The rest of this paper is outlined as follows: several related works are presented in
Section 2. Section 3 introduces the fundamentals of coherent motion filtering detection
based on coherent neighbour invariance. Section 4 provides details of the proposed hierar-
chical tracklet association algorithm. Section 5 presents the evaluation metrics. Section 6
provides the conducted experiments, the findings of the study, and comparisons of several
videos. Section 7 provides the conclusion.

2. Related Works

Due to surveillance application demands, crowd analysis has captivated researchers
over the past decade. Detecting collective movements in crowd scenes is one of the hot
topics in video surveillance. Researchers [46–48] found that crowds tend to form when
many people exhibit similar motion patterns. Crowd applications vary depending on the
use of handcrafted features to deep learning methods. To understand more about deep
learning methods on crowd analysis, these recent surveys should be considered [4,20,49,50].
This section provides an overview of similarity-based clustering methods, which utilise the
trajectories’ pattern recognition for crowd detection.

Among numerous efforts, which were carried out to investigate this topic, many
methods examined the Coherent Neighbour Invariance (CNI) concept on the motion of KLT
keypoints and developed it from their point of view. The CNI concept is first introduced
by Zhou et al. [36] to detect crowds with coherent motions from clutters by applying the
Coherent Filtering (CF) method. CF utilizes spatial–temporal information and motion
correlations to segment crowds over a short period. This input information is a set of
moving tracklets detected by the KLT feature tracker and used to form motion groups. CNI
has become a universal prior knowledge in collective scenes and is widely used to solve
the problems of time series data clustering, such as crowd behaviour analysis [37,38,51]. In
the same vein, Shao et al. [37] introduced group profiling to understand the group-level
dynamics and properties. They first discovered the Collective Transition Prior (CT) from
the initial CF clustering results obtained from [36]. The group collective transition prior is
learned through EM iteration. Then, visual descriptors were provided to quantify intra- and
inter-group properties, which were used for crowd detection and analysis. Chen et al. [52]
proposed a Patch-based Topic Model (PTM) for group detection. The process begins with
dividing the input crowd image into a fixed number of patches (using a Simple Linear
Iterative Clustering algorithm). Then, a patch-level descriptor is computed for each patch by
combining the feature points generated by the KLT tracker and the orientation distribution
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of each feature point within the patch. The Latent Dirichlet Allocation-based model is then
combined with the Markov Random Field to determine the groups. Pai et al. [53] proposed
a Spatio-Angular Density-based Clustering approach to cluster the crowd motion based
on angular and spatial data obtained from the input trajectories. The data depends on the
KNN similarity measure and angular deviation between the moving keypoints. Their work
is effective to scene change when the tracks are well extracted. Wang et al. [54] proposed a
self-weighted multi-view clustering approach that combines an orientation-based graph
and a structural context-based graph. They applied a tightness-based merging strategy to
detect groups within the crowd.

Another similarity-clustering approach is proposed by Zhou et al. [44] for detecting
KLT motions using the Crowd Collectiveness (MCC) descriptor. Collectiveness describes
the degree to which the individuals act as a union in a collective motion. It depends on
multiple factors, such as the decision-making of individuals and crowd density. First, the
algorithm measured the collectiveness of each point by using graph-based learning. Then,
it detected collective motions by thresholding the crowd collectiveness. It can be used to
detect collective motions at different length scales from randomly moving outliers. How-
ever, the algorithm is sensitive when there is a break in paths and returns a large number of
tracklets. Meanwhile, Shao et al. [55] proposed the collectiveness descriptor based on CT to
detect and quantify the collectiveness of all group members. However, relying on motion at-
tributes without refining showed irrelevant measurements of collectiveness. Japar et al. [56]
proposed a discriminative visual-attributes extraction approach based on still-image input
to detect the collective motion of the crowd. They classified individuals by head pose to
infer individual-level collectiveness analysis, including collectiveness detection. Most of the
above methods detect the collective motion in the crowd by considering moving keypoint
relations as the main stage for the clustering process. However, researchers neglected
to deal with the input feature development as an important factor in improving motion
crowd clustering.

This work differs significantly compared with the previous studies. This study focuses
on the instability of extracted moving input features (tracklets) from the vision’s perspective.
This study aims to utilize the short path of the input trajectories to enhance it as a correction
strategy before clustering for further coherent motion enhancement.

3. The Fundamental of Coherent Filtering (CF) Clustering

When feature keypoints are used to describe objects in scenes, the process of the crowd
motion analysis can be converted to analyse the motion states of these keypoints. CF is
proposed by Zhou et al. [36]. It is a similarity-based clustering technique, which detects the
crowd’s coherent motion from crowd clutters. A general illustration of the CF process is
shown in Figure 1. It functions from a microscopic-to-macroscopic consistency based on
two main sequence processes that are briefly described in Sections 3.1 and 3.2.
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3.1. Coherent Motion Cluster Detection Based on Coherent Neighbor Invariance (CNI)

The coherent neighbour invariance, which is widely existing in collective scenes,
can understand coherent motion detection. This section provides the details of the CNI
relationship and describes its basic equations. It also provides the local neighbourhood
of the moving individuals or points in terms of: (1) the invariance of spatiotemporal
relationships of the points; and (2) the invariance of velocity correlations of points. The
CNI process is shown in Figure 1a. It is categorized into two main sequence stages that are
briefly described in Sections 3.1.1 and 3.1.2.

3.1.1. Spatio-Temporal Invariant Points by Using Euclidian Distance Metric Stage

Initially, let the represented input moving points that contain all mixed points as
I , which are the coherent and uncoherent moving points. All the points are moving in
2-dimensional space during a period from t to t + d, where d is the time distance. Here, the
points are a general term, which represents the moving points. To find the spatiotemporal
invariant points, each point from the input points must be tested separately from all other
points. Therefore, at time t, select randomly point p, where p ∈ I and calculate the distance
between point p and other point(s) pk, where pk ∈ I and pk 6= p. For the calculation of the
distance among the entire points, the Euclidean distance measure function is used for this
purpose. It determines the quantitative degree of how close two points are. Then, find the
K nearest points to point p and create the K nearest neighbours (KNN) group Np

t at time t.
Accordingly, the process is performed for point p to the rest of the specified period until
t + d to search for the KNN point set Np

τ , where τ = t → t + d . Finally, a large graph is
created to filter out points that do not satisfy the neighbourhood condition, then search for
the invariant neighbour among the KNN of point p from t to t + d, and represent it asMp

τ .

3.1.2. Velocity Correlated Invariant Points Stage

To identify the spatiotemporal invariant points, each point from the invariant neigh-
bour set must be tested separately from all other points. Suppose the point pk belongs to
the invariant neighbour set of point p, where each pk ∈ M

p
τ . Thus, at time t, compute the

velocity correlation between pk and p. Second, compute the average velocity correlation
gpk

τ from time t to t + d with point p. Then, detect the outlier points from the invariant
neighbour set Mp

τ based on the gpk
τ < λ threshold, regarded as incoherent points. Af-

ter thresholding, keep all the thresholds pairwise connections (p, pk) in a set R, where
pk ∈ M

p
τ . After that, build a connectivity graph from R to identify the coherent nodes

and incoherent nodes B fromR to be removed as isolated nodes. Finally, identify coherent
motion clusters as

{
C1, . . . , CJ

}
.

3.2. Coherent Motion Cluster Association over Time

The main function of this part is to maintain the detected motion clusters
{

C1, . . . , CJ
}

and associate them over time. To associate these clusters of coherent motion over time, a
special variable is defined for each moving point to conserve the clustered index to the
specified moving point over time. For each cluster, the cluster indices will be updated
for its moving points based on the majority voting. This process keeps on updating new
coherent motion clusters consistent with keeping old clusters over time.

4. Hierarchical KLT Tracklets Association (HTA) Process for Coherent
Motion Detection

In this work, the Kanade–Lucas–Tomasi (KLT) feature point tracker [43,57] is uti-
lized due to its robustness and computational efficiency [36,38,44]. The focus is on
the KLT tracklets corrections for better outcomes of the subsequent tasks of the crowd
clustering process.
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For a specific video sequence, let Ft be the tth input frame of the video V, where
t ∈ {1, 2, . . . , T} and T is the total frame/time number. The KLT tracker produces small
trajectories (tracklets), as given in Equation (1),

{Ft}|Tt=1
KLT Tracker→ {trn}|Nn=1 , (1)

where trn is one single tracklet, tracklet number n ∈ {1, 2, . . . , N}, and N refers to the total
number of tracklets. The length of the KLT tracklets depends on several factors, as discussed
in Section 1. This process produces a large pool of tracklets, Tr = {tr1, . . . , trn, . . . , trN},
which summarizes the motion patterns observed in the scene. More formally, trn can be
defined as a set of points, as shown in Figure 2, which represents discrete spatial locations
over time, as given in Equation (2),

trn
2D positions→ {pnt = (xnt , ynt)}|

t f inal
t=tinit

, (2)

where pnt ∈ R2, it is nth tracklet’s position in x and y axis of the crowd at specific frame t.
The time index tinit and t f inal represent the lifetime of the tracklet, which is determined in
period 1 ≤ tinit < t f inal ≤ T. Thus, the final tracklet-position matrix P of the input video is
defined in Equation (3),

P =


p1tinit p1tinit+1

p2tinit p2tinit+1

· · ·
· · ·

p1t f inal

p2t f inal
...

. . .
...

pNtinit pNtinit+1 · · · pNt f inal

 =


tr1
tr2
...

trN

. (3)
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The proposed HTA initialization process consists of several hierarchal steps and
encompasses statistics of trajectories’ motion. This hierarchical process is shown in a
block diagram with an example in Figure 3. The steps of the proposed HTA algorithm are
described in detail in this section. Table 1 illustrates the main symbols used in this paper.

Table 1. Nomenclature.

Symbol Description

F Input frame
T Total frames number for a given video sequence
tr A single tracklet
Tr Tracklets pool
N Tracklets total number
p One point position of a tracklet in x and y axis
P Tracklet-position matrix of the input video
tre Tracklet that ended in ROI
trs Tracklet that started in ROI
ep End-point position of tre tracklet
sp Start-point position of trs tracklet
MainTr Tracklets vector that ended in ROI
SubTr Tracklets vector that started in ROI
O Tracklet orientation
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4.1. Stage-1 (S1): Tracklets at Region of Interest (ROI)

Initially, it is quite essential to search for tracklets on the affected areas of the input
video space that can be considered lost or disconnected tracklets. This can be done by
searching for the tracklets with a missing connection. This procedure is carried out by the
following steps:

Step-1: On the video sequence Ft, the area in which the missing path problem will be
addressed, is determined manually as the region of interest (ROI).

Step-2: From the tracklets pool Tr, search for all the tracklets, which ended inside ROI, and
represent it as the parent or main tracklet set, MainTr. Minutely, MainTrt are the
tracklets that started before a specific time and were suddenly lost at a specific time
t, as defined in Equation (4),

MainTrt = {tre1, . . . , trei, . . . , treI}, (4)

where trei represents an individual tracklet that ended at ROI; I is the total number
of tracklets that ended inside ROI.

Step-3: Also, search for tracklets that can be connected to the tracklets in MainTrt. These
tracklets are described as paths, which started their lifetime at ROI and are pre-
sented in another group called SubTr, as defined in Equation (5),

SubTrt+1→t+W =
{

trs1, . . . , trsj, . . . , trsJ
}

, (5)

where W is a temporal window stride of t, J is the total number of tracklets that
started inside ROI, and trsj represents an individual tracklet, which started at any
time from t + 1 to t + W in ROI.

Step-4: Lastly, the main and sub-tracklet sets at time t of this stage will be grouped, as
represented in Equation (6),

ROIt = {MainTrt, SubTrt+1→t+W}. (6)

4.2. Stage-2 (S2): Short-Path Filtering Layer (SPFL)

Some tracklets in the ROIt show unusual behaviour in the length compared to the
majority of the tracklet set lengths (the tracklet’s length is the total number of its points in the
tracklet’s lifetime) of MainTrt and SubTrt+1→t+W . These small paths produce wrong results
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and affect the process of associating the successions to the correct paths. Therefore, this
short-path filter layer (SPFL) seeks to detect the outlier tracklets by some steps as follows:

Step-1: Calculate the lengths of all collected tracklets from Stage-1 and get the average as
given in Equation (7),

AvgL =
1
2

(
1
I

I

∑
i=1

length(trei) +
1
J

J

∑
j=1

length
(
trsj
))

, (7)

where I and J are the total tracklet number for MainTrt and SubTrt+1→t+W , respec-
tively. Finding the average result provides information about the lengths of the
normal paths. This value is useful in filtering very short lengths, as can be seen in
the next step.

Step-2: Keep the tracklets that can be considered candidate tracklets based on an average
threshold thavg = AvgL/ε, where the value of ε is an empirical value, which varies
from video to video. For example, to remove the short-path tracklets from the
MainTrt set, Equation (8) is considered,

SPFL_Con(MainTrt) =

{
Keep as tresp f l

l , length(trei) ≥ thavg
Ignore (trei) , otherwise

, (8)

where SPFL_Con represents the tracklets length consistency. This filtering process
is applied to MainTrt and SubTrt+1→t+W to remove all the short paths in both sets.

Step-3: As a result, the updated tracklets sets after filtering the short paths will be consid-
ered in Equation (9),

Match_Trt =
{

MainTrsp f l
t , SubTrsp f l

t+1→t+W

}
=
{(

tresp f l
1 , . . . , tresp f l

l , . . . , tresp f l
L

)
,
(

trssp f l
1 , . . . , trssp f l

k , . . . , trssp f l
K

)}
,

(9)

where L is the total tracklet number of MainTrt and K is the total tracklet number of
SubTrt+1→t+W .

4.3. Stage-3 (S3): Position Filtering Layer (PFL)

After applying the SPFL layer, it is important to find tracklets from SubTrsp f l
t+1→t+W ,

which are near the tracklets of MainTrsp f l
t and have the potential to be associated with

a single path in terms of neighbourhoods. Starting from this stage until the end of this
algorithm, the process will be applied to one selected individual tracklet tresp f l

l from

MainTrsp f l
t to find the most adjacent tracklets from SubTrsp f l

t+1→t+W set, which can be done
in the following steps:

Step-1: For an individual tracklet tresp f l
l at time t, find its end-point position in x and y

from the tracklet-position matrix, as given in Equation (10),

epl = psp f l
lt f inal

. (10)

Step-2: Find the start-point positions of the entire candidate tracklets from SubTrsp f l
t+1→t+W ,

as given in Equation (11),

(sp1, . . . , spk, . . . , spK) = (psp f l
1tinit

, . . . , psp f l
ktinit

, . . . , psp f l
Ktinit

). (11)

Step-3: Calculate the position coordinates Euclidian distance of the endpoint epl with all
the start points of the sub-tracklets, as given in Equation (12),

Ecdlk(epl , spk) =

√
|epl − spk|2 =

√
(xl − xk)

2 + (yl − yk)
2. (12)
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Step-4: Apply the position consistency to filter out tracklets that do not satisfy the neigh-
bouring condition, as given in Equation (13),

PFL_Con
(

tresp f l
l , SubTrsp f l

t+1→t+W

)
=

{
Keep as trsp f l

m , Ecdlk ≤ thpos

Ignore trssp f l
k , otherwise

, (13)

where m ∈ {1, 2, . . . , M} and M represent the tracklet’s total number of updated
SubTrp f l

t+1→t+W set. The thpos represents the neighbourhood threshold; it is an
empirical value that varies from video to video.

Step-5: The updated tracklet set in this step is represented as the end, as given in Equation (14),

Match_trt =
{

tresp f l
l ,

(
SubTrp f l

t+1→t+W

)}
. (14)

4.4. Stage-4 (S4): Orientation Filtering Layer (OFL)

After identifying the matching tracklets using the PFL stage, the next step is to ensure
that the orientations of the tracklets are uniform. In this layer, the tracklet orientations are
calculated for both the main and sub-tracklets.

Step-1: The orientation of an individual main tracklet tresp f l
l at time t is calculated by

considering the directions of its position points in a frame distance, as given in
Equation (15),

Ol =
1

FrDist

t

∑
k=t−FrDist+1

atan2
(

ylk − ylk−1
, xlk − xlk−1

)
180◦/π, (15)

where FrDist is a frame distance that 0< FrDist ≤W and 0◦ ≤ Oi ≤ 360◦.
Step-2: Likewise, if the sub-tracklet trsp f l

m is assumed to start from time t + 1, then its
orientation can be calculated, as given in Equation (16),

Om =
1

FrDist

(t+1)+FrDist

∑
k=t+1

atan2
(
ymk+1 − ymk , xmk+1 − xmk

)
180◦/π, (16)

where 0◦ ≤ Om ≤ 360◦.
Step-3: Apply the orientation consistency to filter out sub-tracklets that do not satisfy the

orientation condition with the main tracklet tresp f l
i , as given in Equation (17),

OFL_Con
(

tresp f l
l ,

(
SubTrp f l

t+1→t+W

))
=

Keep as trso f l
q , ||Ol −Om|| ≤ thori

Ignore trsp f l
m , otherwise

, (17)

where q ∈ {1, 2, . . . , Q} and Q represents the total number of updated SubTro f l
t+1→t+W set

and thori represents the orientation threshold; it is an empirical value that varies from video
to video.

Step-4: The updated match tracklets set in this layer will be finally grouped, as given in Equation (18),

Match_trt =
{

tresp f l
l ,

(
SubTro f l

t+1→t+W

)}
. (18)

4.5. Stage-5 (S5): Correlation Filtering Layer (CFL)

The previous filtering layers tried to search for the best candidate tracklets to connect
the main and sub-tracklets as one hale path, depending on their lengths, positions, and
orientations of tracklet points. These steps can ensure the selection of the best pair of
tracklets, which achieves the best homogeneity among their natural behaviour movements.
In the case of obtaining more than one candidate tracklet after successfully passing all these
filtering layers, it is necessary to study these tracklet points at the image pixel level through
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the use of correlation coefficient statistics to ensure that the best path is chosen as the
final result.

More specifically, the correlation coefficient measure [58,59], (also known as Pearson’s
correlation coefficient) is a method, which is used to establish the degree of probability that
a linear relationship exists between two measured quantities or variables. A single quantity
represents the matrix values of 2D image pixels for one tracklet point. The suggested idea
in this layer is to compare the endpoint value of the main tracklet tresp f l

l with the starting

point value of the candidate sub-tracklet trso f l
q . The following steps explain the process

in detail:

Step-1: At time t, find the position of the endpoint epl of the tracklet tresp f l
l in the image

plane. Then, calculate its intensity pixel values matrix Al ab, where a and b represent
the size of adjacent pixels window.

Step-2: From time t + 1 to t + W, find the position of the start point spq of a sub-tracklet

set. For example, the intensity pixel value of the endpoint of trso f l
q in the image, the

plane is represented as Bqab.
Step-3: Measure the pixel correlation coefficient Corlq among positions epl and spq, as

given in Equation (19),

Corlq =
∑a ∑b

(
Al ab − Al

)
×
(

Bqab − Bq
)√

(∑a ∑b
(

Al ab − Al
)2
)× (∑a ∑b

(
Bqab − Bq

)2
)

, (19)

where Al and Bq are the mean of Al ab and Bqab, respectively. The correlation
coefficient ranges from −1 for perfect negatively correlated results, through 0 when
there is no correlation, to 1 when the results are identical.

Step-4: Then, apply correlation consistency to filter out all sub-tracklets that do not satisfy
the correlation condition with the main tracklet, as given in Equation (20),

CFL_Con
(

tresp f l
l , SubTro f l

t+1→t+W

)
=

{
Keep as trsc f l

r , Corlq ≤ thcor

Ignore trso f l
q , otherwise

, (20)

where r ∈ {1, 2, . . . , R} and R represent the total number of updated SubTrc f l
t+1→t+W

set and thcor represents the correlation threshold, which is an empirical value that
varies from video to video. Lastly, the updated match tracklets set in this step are
given in Equation (21),

Match_trt =
{

tresp f l
l ,

(
SubTrc f l

t+1→t+W

)}
. (21)

Step-5: The final match sub-tracklets from Equation (21) are ranked in ascending order as
↑ Match_trt from the closest correlation related to the least correlation related.

Step-6: Then, the first sub-tracklet in ↑ Match_trt will be the best candidate to be connected

with tresp f l
l as one big path, as given in Equation (22),

trnew
l : tresp f l

l
Connect↔ trsc f l

r , (22)

where trnew
l is the new tracklet after connecting tresp f l

l and trsc f l
r .

Step-7: Update trnew
i to the enhanced KLT tracklets’ set.

Figure 4 demonstrates a spatiotemporal schematic example of applying the HTA
algorithm, which shows a connection between two separated tracklets. Tracklets tre1 and
trs3 are a single entity path after fulfilling the required conditions of the HTA process.
At the end of this section, all raw KLT tracklets are supposed to be updated by the HTA
algorithm as new enhanced KLT tracklets. This enhanced KLT feature will be fed as input
data to the CF for coherent motion detection.
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Figure 4. A spatio-temporal schematic example shows the final corrected tracklet tr1.

Finally, the proposed HTA framework is summarized in Algorithm 1. It consists of five
stages, including ROI, SPFL, PFL, OFL, and CFL. All the stages have an overall complexity
of cost estimation as O(N2), where N is the number of tracking points.

Algorithm 1: The proposed HTA algorithm.
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//Generate tracklets data  
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For t = 1 to T 
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//Filtering based on short path tracklets 
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If {𝑀𝑎𝑡𝑐ℎ_𝑇𝑟𝑡}  ≠ ∅ 

Select individual 𝐭𝐫𝑒𝑙
𝑠𝑝𝑓𝑙

 

//Filtering based on tracklet position  

 𝑀𝑎𝑡𝑐ℎ_𝑡𝑟𝑡 ← 𝑃𝐹𝐿_𝐶𝑜𝑛(𝐭𝐫𝑒𝑙
𝑠𝑝𝑓𝑙
, 𝑆𝑢𝑏𝐓𝐫𝑡+1→𝑡+𝑊

𝑠𝑝𝑓𝑙
) 

// Filtering based on tracklet orientation  

 𝑀𝑎𝑡𝑐ℎ_𝑡𝑟𝑡 ← 𝑂𝐹𝐿_𝐶𝑜𝑛(𝐭𝐫𝑒𝑙
𝑠𝑝𝑓𝑙
, 𝑆𝑢𝑏𝐓𝐫𝑡+1→𝑡+𝑊

𝑝𝑓𝑙
) 

// Filtering based pixel correlation for every 𝐭𝐫𝑒𝒍
𝑠𝑝𝑓𝑙

 

 𝑀𝑎𝑡𝑐ℎ_𝑡𝑟𝑡 ← 𝐶𝐹𝐿_𝐶𝑜𝑛(𝐭𝐫𝑒𝑙
𝑠𝑝𝑓𝑙
, 𝑆𝑢𝑏𝐓𝐫𝑡+1→𝑡+𝑊

𝑜𝑓𝑙
) 

 𝐭𝐫𝑠𝑟
𝑐𝑓𝑙
←  ↑ 𝑀𝑎𝑡𝑐ℎ_𝑡𝑟𝑡 

 𝐭𝐫𝑙
𝑛𝑒𝑤 ∶     𝐭𝐫𝑒𝑙

𝑠𝑝𝑓𝑙
 
  𝐶𝑜𝑛𝑛𝑒𝑐𝑡  
↔      𝐭𝐫𝑠𝑟

𝑐𝑓𝑙
 

End 

//Update new tracklets  

Enhanced KLT tracklets ← update (𝐭𝐫𝑙
𝑛𝑒𝑤) 

//Generate coherent motion clusters 

{𝐶𝑡
𝑗
} ← CF{𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐓𝐫} 

End 

5. Evaluation Metrics 

Evaluation analysis is a fundamental part of the clustering process because it indi-

cates the quality of the clustering results. It reveals to what extent these results are good 

if compared to other clustering results produced by other algorithms. There are different 

criteria to assess the goodness of the output clusters. It is worth mentioning that these 

evaluation metrics are used alternatively based on the purpose of the designed frame-

work. In this study, Purity, Normalized Mutual Information Index (NMI), Rand Index 

(RI), and F-measure (Fm) were used to evaluate the clustering outcomes. This section pro-

vides an overview of these evaluation metrics. 

Purity is an external evaluation criterion of cluster quality. It determines the domi-

nant labels in each cluster and describes the extent to which groups match the references 

[60]. Usually, good clustering solutions have high-purity values. Purity is estimated by 

using Equation (23), 
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5. Evaluation Metrics

Evaluation analysis is a fundamental part of the clustering process because it indicates
the quality of the clustering results. It reveals to what extent these results are good if
compared to other clustering results produced by other algorithms. There are different
criteria to assess the goodness of the output clusters. It is worth mentioning that these
evaluation metrics are used alternatively based on the purpose of the designed framework.
In this study, Purity, Normalized Mutual Information Index (NMI), Rand Index (RI), and
F-measure (Fm) were used to evaluate the clustering outcomes. This section provides an
overview of these evaluation metrics.

Purity is an external evaluation criterion of cluster quality. It determines the dominant
labels in each cluster and describes the extent to which groups match the references [60].
Usually, good clustering solutions have high-purity values. Purity is estimated by using
Equation (23),

purity(Ω,C) = 1
N ∑

k
max

j

∣∣ωk ∩ cj
∣∣ , (23)

where N is the number of observations (data points), Ω = {ω1, ω2, . . . , ωk} is the set of
clusters, and C =

{
c1, c2, . . . , cj

}
are the corresponding ground truth classes.

Rand index (RI) [61] is a clustering evaluation metric, which measures the similarity
between two clusters (i.e., partitions) by considering how each pair of data points is
assigned in each clustering. It equals the number of motion pairs that are either placed in
an entity or assigned to separate entities in both C and Ω, normalized by the total number
of mentioned pairs in each partition [62]. RI is obtained by using Equation (24) as follows,

RI(Ω,C) = TP + TN
TP + FP + FN + TN

, (24)

where a true positive (TP) decision assigns two points (pair of points) to the same cluster if
and only if they are similar. A true negative (TN) decision assigns two dissimilar points to
different clusters. The two types of errors are: a false positive (FP) decision assigns two
dissimilar points to the same cluster; and a false negative (FN) decision assigns two similar
points to different clusters.

Normalized Mutual Information (NMI) index [63] measures the information that
Ω and C share. NMI is based on the shared object membership with a scaling factor that
corresponds to the number of objects in the respective clusters. Formally, it is obtained by
using Equation (25),

NMI(Ω,C) = I(Ω;C)
[H(Ω) + H(C)]/2

. (25)

I(Ω;C) is the mutual information [64] between cluster and class labels. H(Ω) and
H(C) are the entropy of the cluster and class labels, respectively.

I(Ω;C) = H(Ω)− H(Ω|C ), (26)

H(Ω) = −∑
k

P(ωk)log(ωk), (27)

H(C) = −∑
j

P
(
cj
)
log
(
cj
)
, (28)

where P(ωk) and P
(
cj
)

are the probabilities of a document being in a cluster ωk and class cj.
I(Ω;C) in Equation (26) measures the amount of information by which our knowledge
about the classes increases [65].
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F-measure (Fm) [66] measures the accuracy using two statistics, namely precision P and
recall R. P is the ratio of true positive TP to all predicted TP + FP, as given in Equation (29).
The recall is the ratio of TP to all predicted TP + FN, as given in Equation (30),

P(Ω,C) = TP
TP + FP

, (29)

R(Ω,C) = TP
TP + FN

. (30)

TP refers to the positive data points that are accurately labelled by the algorithm.
FP denotes the negative data points that are incorrectly labelled as positives. Finally, the
positive data point, which is mislabelled as negative, is referred to as FP [66]. F-measure is
obtained by using Equation (31),

Fm(Ω,C) = 2PR
P + R

. (31)

6. Experimental Results

The purpose of the proposed HTA framework is to address the disconnected tracklets
problem of the input KLT features and set appropriate fixing among them to enhance
the performance of motion crowd clustering. In other words, HTA can be described as
an enhanced initialization strategy for trajectories before crowd detection. To validate
the effectiveness of the HTA algorithm, Coherent Filtering (CF) [36] is adopted to apply
and compare the collective motion detection on two different input KLT features. The
input features are: (1) raw KLT tracklets; and (2) enhanced KLT tracklets. The raw KLT
tracklets are the input features, which are extracted from the CUHK crowd dataset [67].
The enhanced KLT tracklets are the tracklets, which are produced by the proposed HTA
algorithm on the raw KLT features. Hence, the proposed HTA framework has been tested
on video clips from the CUHK crowd dataset. The performance of the motion crowd
clustering is evaluated by using qualitative and quantitative analysis methods, including
Purity, NMI, RI, and F-measure evaluation metrics. The parameter settings, which were
used for the HTA algorithm, are summarized in Table 2.

Table 2. Experimental parameter settings for the HTA algorithm.

Parameter Discerption Value

thavg Average threshold thavg = AvgL/ε, where ε = 0.5
thpos Position threshold 5
thori Orientation threshold 30◦

thcor Correlation threshold 0.5
FrDist Time/frame distance 5
W Temporal window stride 5

The FrDist and W represent a short period of frame distance processing and set as
used in [36]. Threshold parameters ε, thpos, thori, and thcor are adjusted by taking their average
value according to the experiments, which were carried out on the CUHK crowd dataset.

6.1. CUHK Crowd Dataset

The HTA framework has been tested on the CUHK crowd dataset [67]. It is a collection
of real videos with their raw KLT tracklets and ground truth. It includes crowd videos
with various densities, directions, and perspective scales, obtained from many different
environments, e.g., shopping malls, airports, streets, and public parks. Figure 5 shows
some samples of the frame scene and its KLT keypoints ground truth from the CUHK
crowd dataset. It consists of 474 video clips from 215 scenes. Some of these clips were
captured by the authors (55 clips) and the rest were collected from Pond5 and Getty Image.
The resolutions of the video clips varied, mutating from 480 × 360 to 1920 × 1080. The



Mathematics 2023, 11, 1075 14 of 21

frame rates are different as well, varying from 20 to 30 frames per second. It is worth noting
that only 300 video clips have their complete data (which are the video clip, the raw KLT
tracklet features, and the ground truth). The rest of the 174 video clips do not have their
ground truth and, therefore, cannot be used for quantitative evaluation.
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6.2. Disconnected Trajectories on Raw KLT Features

The HTA algorithm has been applied to the raw KLT tracklets of all 300 video clips in
the CUHK crowd dataset. Although the weak KLT tracklets have been previously filtered
and smoothed by the authors in CUHK, (2014), there are still many video clips that have
broken and disconnected KLT tracklets. As discussed in Section 1, this is due to a glitch in
the KLT features, which may occur due to some factors, such as frame rate, camera position,
and intensity of motion. However, not all 300 video clips contain broken trajectories.
Several clips completed smooth tracklets without any destruction. This indicates that the
performance of the proposed HTA algorithm depends on the amount of the discontinuous
tracklets in each video clip, which will be further investigated in the experimental results
in Sections 6.3 and 6.4.

To illustrate the idea and put it into perspective, Figure 6 shows some selected ex-
amples from the CUHK crowd datasets that have different discontinuous tracklets. For
example, video clip number 32 in the first line contains a total of 987 raw KLT tracklets,
presented in blue color in its plot. All those tracklets are stable and complete during their
lifetime and free of any broken trajectories. This is due to the nature of the scene, where the
crowd (the walking soldiers) are moving steadily in one direction. The other two examples,
i.e., video clips (No. 81 and No. 115) have a total number of raw KLT tracklets of 2091
and 1087, respectively. It is noticeable that the moving pedestrians in these two video clips
are moving in parallel with some different directions, which can, in turn, generate some
disconnected tracklets. The plots in Figure 6b show the presence of the broken tracklets in
red dots. The disconnected KLT tracklets are calculated in percentage with values of 10.8%
and 2.1% for both video clips (No. 81 and No. 115), respectively.

Based on the examination, which was carried out on 300 video clips of the CUHK
dataset, it was found that the presence of disconnected tracklets ranged from 0 to 11%, as
shown in Figure 7. The next sections discuss the impact of disconnected tracklets on the
performance of crowd clustering and detection.
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Figure 6. Selected examples from CUHK crowd dataset. (a) Video clips scene. (b) Plot of raw KLT
tracklets in blue color dots during video lifetime. The disconnected KLT tracklets (which are the
tracklet candidates to be connected) are represented in red color dots.
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Figure 7. The percentage of disconnected KLT tracklets (which are the tracklet candidates to be
connected) for 300 video clips from the CUHK crowd data set.

6.3. Qualitative Result Discussion of Motion Crowd Clustering Using HTA

In this section, two video clip examples from the CUHK crowd dataset were selected
for illustrative purposes. These video clips have a high percentage of disconnected KLT
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tracklets in their input raw data. These examples show the effectiveness of the proposed
HTA framework regarding the quality of crowd clustering, as shown in Figures 8 and 9.
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Figure 8. An example of the effect of applying the HTA algorithm on KLT tracklets of video clip
No. 16. Colored KLT points represent coherent moving clusters. (a) Scene from video clip No. 16—
frame 45. (b) Ground truth of video clip 16—frame 45. (c) The visual results of CF crowd motion
clustering using the raw KLT tracklet features. (d) The visual results of CF crowd motion clustering
using the enhanced KLT tracklet features by HTA algorithm.

The example in Figure 8 shows a common case that affects the KLT trajectories’ con-
sistency, which is the presence of some objects in front of the camera, partially hiding
the moving pedestrians, such as the presence of branches of some trees, as observed in
the image. This situation leads to the separation of several trajectories into small parts
during the lifetime of the scene. Figure 8a exhibits a sample scene of video clip No. 16,
which contains a 109-frame image sequence of 20 frames per second. Based on the input
data test of video clip No. 16, the raw KLT tracklets have some broken trajectories. The
percentage of broken tracklets is calculated as 7.41% of the total input raw KLT tracklets of
video clip No. 16. Thus, this calculated ratio is the target tracklets of the HTA algorithm
used to enhance the input KLT features. The scene in Figure 8b shows the ground truth
of the tracklets at frame 45 provided by the CUHK crowd dataset. Figure 8c,d show the
visual performance of crowd clustering by applying CF on raw and enhanced KLT tracklets,
respectively. As observed in Figure 8c, in the example by the red boxes, the moving KLT
points, which were generated by the CF using the input raw data, are separated into small
colored clusters. This is due to the presence of many disconnected tracklets that led to
the separation of the trajectories from the main cluster. On the other hand, in Figure 8d,
the level of clustering showed further improvement due to the connection of the broken
trajectories. This connection made the resultant clusters last longer without splitting over
time, as clarified in the example by the orange box. The enhanced KLT tracklets performed
better in terms of motion clustering consistency.
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Figure 9. An example of the effect of applying HTA algorithm on KLT tracklets of video clip No.
81. Colored KLT points represent coherent moving clusters. (a) Scene of video clip No. 81—frame
50. (b) Ground truth—frame 50. (c) The visual results of CF crowd motion clustering using the raw
KLT tracklet features. (d) The visual results of CF crowd motion clustering using the enhanced KLT
tracklet features by HTA algorithm.

The same situation occurred with the video clip No. 81, example in Figure 9. It has
some problems in the frame rate progressing, creating almost 10.83% of candidate broken
tracklets for the re-connection process. Figure 9a exhibits a sample scene of the video clip
that contains a 208-frame image sequence; 20 frames per second. The scene in Figure 9b
shows the ground truth of the tracklets in frame 50. Figure 9c,d show the visual performance
of crowd clustering by applying CF on raw and enhanced KLT tracklets, respectively. The
enhanced KLT tracklets performed better in terms of the motion clustering quality.

6.4. Quantitative Result Discussion of Motion Crowd Clustering Using HTA

In this section, the performance analysis of motion crowd clustering using the HTA
algorithm is evaluated on the CUHK crowd data. The metrics, which were used for evalua-
tion in these experiments, are Purity, NMI, RI, and F-measure. The experimental average
results on the whole dataset are divided into three categories based on the percentage
degree of candidate KLT tracklets’ presence, as reported in Table 3 and Figure 10.

The experimental results of index 1 were carried out on a total of 68 video clips that
have candidate KLT tracklets to be connected within the range, equal to or higher than
6%. The enhanced KLT tracklets by using the HTA algorithm outperformed the raw KLT
tracklets in terms of coherent motion clustering with these average values: Purity = 0.89,
NMI = 0.47, RI = 0.82, and F-measure = 0.84. The experimental results of index 2 were
carried out on 91 video clips that have candidate KLT tracklets to be connected within the
range of less than 6% and greater or equal to 3%. An improvement was found with the
following average results values: Purity = 0.87, NMI = 0.48, RI = 0.79, and F-measure = 0.79.
The experimental results of index 3 were carried out on a total of 141 video clips that have
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candidate KLT tracklets to be connected in less than 3%. However, no significant progress
was found in the overall average. This is because the disconnected tracklets had no effect,
and they were not broadly present during the clip’s lifetime.

Table 3. Average experimental results (for 300 video clips) with Purity, NMI, RI, and Fm on the
CUHK crowd dataset.

Index Video Clips with a Percentage of
Disconnected Tracklets

CF on Raw KLT CF on Enhanced KLT

Purity NMI RI Fm Purity NMI RI Fm

1 68 video clips with (≥6%) 0.85 0.44 0.79 0.81 0.89 0.47 0.82 0.84
2 91 video clips with (≥3% & <6%) 0.84 0.44 0.76 0.77 0.87 0.48 0.79 0.79
3 141 video clips with (<3%) 0.86 0.51 0.79 0.82 0.86 0.51 0.79 0.82
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Figure 10. The performance of motion crowd clustering by using the proposed HTA algorithm.
The average of the experimental results of Purity, NMI, RI, and F-measure for video clips that have
candidate KLT tracklets to be connected equal or higher than 6% (index 1), candidate tracklets to be
connected in the range less than 6% and greater or equal 3% (index 2), and candidate tracklets to be
connected less than 3% (index 3).

Although the CUHK crowd dataset contains video clips with smoothed KLT tracklets,
there is a percentage of the tracklets that can be considered broken tracklets. By under-
standing the results presented previously, it is obvious that this improvement shows the
efficiency when the number of disconnected tracklets is large enough. This is clear from bar
graphs in Figure 10, index 1, and index 2 compared to index 3. It is also worth mentioning
that the CUHK crowd data does not contain the full ground truth for all video frames. For
each video clip, there is only one frame available with its ground truth for evaluation. This
does not provide an adequate result for the evaluation; therefore, it is considered one of the
shortcomings of the data in terms of assessment.

To recap, it can be concluded that the enhanced KLT tracklet features, which were
improved by the proposed HTA algorithm, have significantly improved the efficiency of
crowd clustering in contrast to using the raw KLT tracklets features in terms of Purity, NMI,
RI, and F-measure of the obtained clustering solutions. This improvement underscores
efficiency when the number of disconnected tracklets is large enough. The case of the ratio
of the disconnected tracklets, which is more than 3%, is considered in this study.

7. Conclusions

In this paper, the effect of disconnected tracklets on coherent motion filtering (CF) is
investigated from the visual point of view. The disconnected tracklets can have a significant
impact on collective motion detection. Based on the CNI behaviour study, a rich set of
tracklets properties were designed, including trajectory positions, paths, orientations, and
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pixel correlations. A robust hierarchical tracklet association algorithm is proposed to
improve the input KLT features for CF. The algorithm allows searching for broken KLT
tracklets that are usually found in video clips. This reduces the negative impact of this
disconnection by associating them using the hierarchy association process, which gives
tracklets a longer life in the video clip. The experimental results showed that the enhanced
KLT tracklet features by applying the proposed HTA algorithm have significantly improved
the efficiency of crowd clustering in contrast to using the raw KLT tracklets only as the
input features in terms of Purity, NMI, RI, and F-measure.

For future work, based on examining the working mechanism of the proposed HTA
framework, it is noticeable that this framework requires some parameters to be known in
advance, such as ε, thpos, thori, and thcor. These parameters depend on the nature of the
video clip. Hence, one of the ideas to improve the current research work is to tune these
parameters automatically without prior knowledge. This can be done by extracting some
characteristics from each video clip that describe the nature of the crowd in the video. This
addition can provide the capability for the proposed algorithm framework to become fully
unsupervised and more truly intelligent while solving real-world problems. In addition,
the proposed algorithm is designed based on studying the CNI concepts, thereby making it
operate better in the CF algorithm. However, a generalized HTA algorithm is required to
be designed considering most of the similarity-based clustering methods.
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