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Abstract: This paper is devoted to studying the influence of the structure of a complex system on
its integral risk. When solving risk management problems, it often becomes necessary to take into
account structural effects, which most often include risk transfer and failure propagation. This study
discusses the influence of the position of the elements of a protected system inside a fixed structure
of the “star” type on its integral risk. The authors demonstrate that the problem of the optimal
placement of elements in such a structure from the point of view of minimizing the risk cannot be
precisely solved by analytical methods and propose an algorithm for solving it with bounded errors.
For the case of equal expected damages in case of a successful attack of a system element, the authors
calculate upper estimates for the relative error of solving the placement problem using the proposed
algorithm and also propose a methodology for rapid risk assessment for systems with a “star” type
structure. Finally, for the particular case when the risks of elements are in a certain ratio, the authors
have found an exact solution to the problem of the optimal placement of elements.

Keywords: complex systems; complex networks; risk; network structure; risk management; risk
minimization algorithms; problem of optimal placement of elements

MSC: 91B05

1. Introduction

Many complex real-world systems, such as power grids, the Internet, transport net-
works, and networks of complex information systems, exhibit properties due to their struc-
ture when random or deliberate attacks occur. To describe these properties, researchers
often use risk management models based on complex networks. In this case, it is possible
to focus both on the structure of the system as a whole and on quantitative assessments of
risks and/or expected losses in the event of an adverse event of uncertainty. It should also
be noted that these phenomena can be considered both in statics and dynamics. Table 1
presents the classification of structural properties and lists the models and methods used in
their study.

Table 1. Models and methods for investigating properties arising from the structure of a complex
system, manifested in random or deliberate attacks.

Static View Dynamic View

Complex network properties Topology
Statistics

Synchronization
Consensus

Pinning Control

Risk and loss assessment Robustness
Vulnerability Cascaded Failures
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When considering the intrinsic properties of a network in statics, the subject of study
is the change in its properties when removing vertices or edges. Various topological or
statistical metrics are used to describe the properties. Among the former, indicators of
centrality [1–3], efficiency [4–6], and clustering coefficient [7–9] are most often used. Among
the latter, self-organized criticality is often involved [10–12].

In the dynamic approach, one usually studies the phenomena of convergence of the
node trajectories (synchronization [13–15], consensus [16–18]), as well as instruments for
controlling it (pinning control [19–21]).

In the case of studying complex networks that reflect real objects, the need arises for a
quantitative assessment of the damage resulting from the realization of an adverse event
of uncertainty. When considering a network in statics, these include vulnerability and
reliability [21–23]. Reliability measures the extent to which a network is able to withstand
such an event without degrading its performance. Vulnerability, in turn, is defined as the
ability of the network to function continuously in the event of random failures or deliberate
attacks.

Considering a network in dynamics involves studying a scenario where a disruption
in the functioning of one node leads to a decrease in reliability and an increase in the
vulnerability of related nodes, the sequential failure of several nodes can cause a cascading
failure [24–26].

A related class of problems are resource allocation problems for risk management. As
a rule, their formulations are variations of the classical Nash bargaining problem [27]. The
basic concepts of its solution were shaped by Nash himself [28], and later a monotonic
solution was obtained based on an alternative system of axioms [29]. These solutions with
various modifications are still used for risk management today (see, for example, [30,31]).

A similar axiomatic approach can be applied to risk analysis in a dynamic system.
In this case, as a rule, the problem in one way or another is reduced to a static one. For
example, [32] solves the problem of managing economic risks for a finite set of enterprises
under various scenarios. Another study solves the problem of risk management in a
complex system with a given mutual influence of elements by analyzing converging multi-
stage cognitive games [33]. Nevertheless, such studies as the above are extremely rare. It
appears that the reason for this is the complexity of the synthesis of solution algorithms
that ensure monotonicity, i.e., guaranteeing that the allocation of a resource to reduce the
risk of one element will not lead to an increase in the risk value for another element due to
the influence of the structure.

This paper is part of a research devoted to the study of the influence of the position of
the elements in a protected system of a given structure on the integral risk of the system.
The purpose of the research is to find methods for solving the problem of optimal resource
allocation in order to minimize the integral risk of systems with elements that mutually
affect each other. The basic model for describing such an influence is a complex network
with a perimeter.

The exact solution of such a problem in general cannot be obtained by computationally
simple methods. Therefore, we focused on finding ways to solve it, providing some
predetermined accuracy and ease of implementation. At the same time, it is important
that the proposed methods are based on rules and assessments. Only in this case, one can
numerically assess the quality of a particular solution. For this reason, we do not consider
several approaches, e.g., stochastic methods.

To formulate the basic principles for constructing solutions to the problem of resource
allocation minimizing risk in systems with elements that mutually affect each other, it is
necessary to have an idea of how the eigen risks of the elements of the system should
relate to each other depending on the distance from the perimeter. To obtain such an
idea, we consider the problem of the optimal placement of elements with known eigen
risks inside a certain predefined structure. This problem becomes more difficult with the
increasing complexity of the structure’s topology. Therefore, it is reasonable to first examine
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its solution for the simplest topology (chain structure), then move on to a more complex
version (“star”), then to a tree structure, and, finally, to an arbitrary one.

In our previous work, simple chain structures were investigated [34]. Here, we discuss
more complex structures of the “star” type with a single-vertex perimeter. The main result
of this work is an algorithm for solving the problem of the pseudo-optimal placement of
elements of a protected system in the attack structure of the “star with m rays” type with
elements of equal “cost” (in other words, the values of the expected damage for all elements
of the system are assumed equal).

The structure of the material presented in this work is as follows: In Section 2, we intro-
duce the necessary definitions and formulate a general statement of the problem. Section 3
contains a discussion concerning several possible heuristic approaches to its solution in
the particular case of equality of damages and counterexamples to them. In Section 4, we
propose a number of restrictions that are reasonable from a practical standpoint, making
it possible to obtain an approximate optimal solution for the case of elements with equal
damages. We construct the upper estimates of the error of the solution in Section 5. In
Section 6, a methodology for rapid risk assessment of systems with a “star” type structure
is proposed. Finally, in Section 7, we give an exact solution for the case when the expected
damages of the elements are different, but their risks are connected by a given ratio.

2. General Problem Statement

Suppose that a protected system includes n elements (objects, so far of arbitrary nature)
s1, . . . , sn ∈ S, n ∈ N. Let us also assume that two numbers are assigned to each element:
p0

i ∈ (0, 1] is the eigen probability of a successful attack on the ith element;
ui > 0, u ∈ R+ is the damage that will be inflicted if the ith element is successfully
attacked.

Definition 1. The eigen risk of the ith element is defined as the quantity

ρ0
si
= uip0

i . (1)

Let us set the attack structure Wm = 〈G(V, E), T〉, T ⊆ V, where G(V, E) is a graph with
a set of vertices V and a set of edges E, and T is a subset of V called the perimeter. In this
paper, we will consider structures with a perimeter that includes exactly one vertex.

Definition 2. A structure of the type of “star with m rays” will be defined as a structure Wm =
〈G(V, E), T〉, such that

V =

{
{v0} ∪

m⋃
b=1

lb⋃
l=1

{vbl}
}

; (2)

E =

{
m⋃

b=1

{
(v 0, vb1) ∪

lb⋃
l=2

(
vb(l−1), vbl

)}}
; (3)

T ={v0}. (4)

Here, lb ∈ N is the number of vertices in the bth ray, which is a simple chain starting
at the vertex vb1. For all such vertices, the perimeter v0 is an adjacent vertex. In general, lb
is not bounded. Figure 1 shows a star structure with four rays of length 3 each.
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Definition 3. If for the attack structure Wm = 〈G(V, E), T〉 there is a one-to-one mapping M: V→
S, then we will call it a mapping of the attack structure Wm to the set S.

Definition 4. The one-to-one mapping M−1: S→ V, the inverse of the previously defined mapping
M: V→ S, will be called a placement of the elements of S in the attack structure Wm.

Note that the criterion for the existence of such a mapping will be the equality between
the number of vertices in the graph G(V, E) and the number of elements of the protected
system. If the number of vertices is infinite, then the set S must be countable.

Definition 5. The local risk of an element of the protected system mapped to the vertex vbl of the
attack structure of the type “star with m rays” is defined as the value

ρM(vbl)
= uM(vbl) ∏

v ∈ 〈v0, vbl〉
pM(v), (5)

where 〈v0, vbl〉 is a simple path connecting the perimeter vertex v0 to the vertex vbl.

The local risk of an element mapped to vertex v0 is equal to its eigen risk. Note that in
the considered case, a simple path always exists and is unique.

Definition 6. The integral risk of a system with the set S of protected elements, mapped to the
attack structure of the “star with m rays” type Wm using a one-to-one mapping M−1: S→ V, is
defined as the value

ρ
(

S, Wm, M−1
)
= ρM(vo)

+
m

∑
b=1

lb

∑
l=1

ρM(vbl)
. (6)

Suppose that the protected system includes a set of elements S = {s1, s2, . . . , sn}, n ∈ N
with their corresponding eigen probabilities of a successful attack P =

{
p0

s1
, p0

s2
, . . . , p0

sn

}
and damages U ={us1 , us2 , . . . , usn}. Suppose also that the expected attack has a structure
of the “star with m rays” type Wm = 〈G(V, E), T〉, where ∑m

b=1 lb= n − 1. Then, the problem
of minimizing the integral risk of the protected system is to find such a placement M−1 of
the elements of S in the Wm structure that

ρ
(

S, Wm, M−1
)
→ min. (7)

For the special case m = 1, the general solution is given in [34]. However, even for
m = 2, it is not possible to find a criterion for the ordering of vertices that minimizes the
integral risk. Therefore, in what follows, we will formulate a number of assumptions that
allow us to solve this problem for real systems with acceptable accuracy. However, first, let
us consider several heuristic approaches to finding an algorithm for solving problem (7).
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3. Heuristic Algorithms for Solving the Problem of Minimizing Integral Risk

Let us assume that the expected damage during a successful attack on each of the
elements is estimated equally, that is, usi= u ∀i ∈ {1, . . . , n}. Then, problem (7) takes the
form

ρ
(

S, Wm, M−1
)
= u

pM(v0)
+

m

∑
b=1

lb

∑
l=1

∏
v ∈ 〈v0, vbl〉

pM(v)

→ min. (8)

Based on general considerations, it seems that the optimal placement of elements
is such that the higher the probability of a successful attack, the further away from the
perimeter the element should be situated. This is congruent with the result obtained earlier
in [34] for a simple chain structure. Recall it:

Definition 7. The nodes si, sj ∈ S, i, j ∈ N, i 6= j are not strictly ordered in ascending
(descending) order of local risk and write si 4 sj (si < sj) if, given the attack structure W1 (in

the sense of Definition 2) for any placements M−1
1 , M−1

2 such that ∃p1, q1, p2, q2:
{

p1 < q1
p2 > q2

,

si= M1
(
vp1

)
= M2

(
vp2

)
, sj= M1

(
vq1

)
= M2

(
vq2

)
, there holds the inequality ρ

(
S, W1, M−1

1

)
≤ ρ

(
S, W1, M−1

2

)
(ρ
(

S, W1, M−1
1

)
≥ ρ

(
S, W1, M−1

2

)
).

Statement 1. Let S ={s1, . . . , sn}, n ∈ N. Then, ∀ i < n

si 4 si+1 ⇔
ui

ui+1
≤

p0
i+1
(
1 − p0

i
)

p0
i
(
1 − p0

i+1
) ; si < si+1 ⇔

ui

ui+1
≥

p0
i+1
(
1 − p0

i
)

p0
i
(
1 − p0

i+1
) . (9)

In the considered particular case of equality of damages, this statement means that
the eigen probabilities of a successful attack by placed elements should increase (more
precisely, not decrease) with distance from the perimeter.

Let us formulate the following:

Statement 2. For each placement M−1: S → V that minimizes integral risk, the following holds:
if for arbitrary b, c, l : b, c ∈ {1, . . . , m}, l ∈ N there are vertices M(vbl), M

(
vc(l+1)

)
in

the Wm structure, then pM(vbl)
≤ pM(c(l+1)).

If this statement was proved correct, it would become possible to simplify the problem
by considering, separately, the subsets of vertices located at a fixed distance from the
perimeter. Unfortunately, this statement is incorrect. Let us consider a fairly simple
counterexample for a two-ray attack structure.

Let the protected system include a set S = {s i}11
i=1 of elements with the following

eigen probabilities of a successful attack: p0
1= p0

2= 0.01, p0
3= p0

4= p0
5= p0

6= 0.3, p0
7= 0.4,

p0
8= p0

9= p0
10= p0

11= 0.5. Let us define a structure W2 with l1= l2= 5.
Counterexample 1. First, let us construct a placement M−1

0 that simultaneously satis-
fies the conditions from Statements 1 and 2 (Figure 2a). We obtain

ρ
(

S, W2, M−1
0

)
= 1452.35u·10−5. (10)
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Figure 2. An example of a placement M−1
0 satisfying the conditions of both Statements 1 and 2 (a),

and a placement M−1
1 satisfying the condition of Statement 1 but not Statement 2 and at the same

time providing a lower value of integral risk (b).

Now, let us construct a placement M−1
1 , which differs from M−1

0 in that M−1
1 (v23) =

M−1
0 (v14) while M−1

1 (v14)= M−1
0 (v23) (Figure 2b). We obtain

ρ
(

S, W2, M−1
1

)
= 1448.825u·10−5 < 1452.35u·10−5= ρ

(
S, W2, M−1

0

)
. (11)

The resulting placement (Figure 2b) satisfies the condition of Statement 1 but not
the condition of Statement 2. Since it provides a lower value of integral risk, Statement 2
is false.

Note that the probabilities of a successful attack of the elements mapped to the vertices
v11 and v21 differ greatly (in the example above, by thirty times). Thus, the integral
risk in one of the rays turns out to be much less than in the other, which causes the
effect illustrated by the counterexample. Hence, the idea naturally arises to construct the
placement iteratively, gradually moving away from the center, so that the intermediate risk
values on the rays are approximately equal. For the given system, this will be the mapping
M−1

2 (Figure 3).
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The resulting integral risk is

ρ
(

S, W2, M−1
2

)
= 1447.715u·10−5 < 1448.825u·10−5= ρ

(
S, W2, M−1

1

)
, (12)

which is even less than for the map M−1
1 . However, this mapping is also not a solution to

problem (2), since there is the following:
Counterexample 2. Let us construct a placement M−1

3 (Figure 4), which differs from
M−1

2 in that M−1
3 (v22)= M−1

2 (v15), whereas M−1
3 (v15)= M−1

2 (v22).
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two vertices vpj and vqj from this set. Let us check under what conditions the following 
inequality will be satisfied for the mapping M 1: S → V that minimizes integral risk: 

p
M vpj

0  ≤ p
M vqj

0 . (14) 

For notation convenience, let us denote 𝔭 = p
M vpj

0 , 𝔮 = p
M vqj

0 . For the remaining ver-

tices, instead of pM vbl
0 , b < m, l < lb, b, l, lb ∈ ℕ, we will write plb, and instead of pM v0

0 , 
p0. Let us also introduce a notation for the integral risk of a subset of the attack structure, 
which is a simple chain and includes vertices vbl, vb l+1 , …, vblb: 

 ρ pbl, …, pblb
= u pM vik

0
i

k = l
lb

i = l . (15) 

Let us calculate the difference in the values Δ of integral risk for the cases when the 
elements are mapped to the vertices vpj, vqj with eigen probabilities of a successful attack, 
respectively, equal 𝔭 and 𝔮 (case 1), and vice versa (case 2). Recall that 𝔭 ≤ 𝔮. 

Δ = up0 pp1⋅…⋅pp j 1 𝔭 + pp1⋅…⋅pp j 1 𝔭ρ pp j+1 , …, pplp
+ pq1⋅…⋅pq j 1 𝔮 + pq1⋅…⋅pq j 1 𝔮ρ pq j+1 , …, 

pplq
– pp1⋅…⋅pp j 1 𝔮 + pp1⋅…⋅pp j 1 𝔮ρ pp j+1 , …, pplp

– pq1⋅…⋅pq j 1 𝔭 – pq1⋅…⋅pq j 1 𝔭ρ pq j+1 , …, 
pplq

= up0 𝔭 – 𝔮 pp1⋅…⋅pp j 1 1 + ρ pp j+1 , …, pplp
– pq1⋅…⋅pq j 1 1 + ρ pq j+1 , …, pplq

. 

(16) 

If Δ ≤ 0, then the integral risk will be less than for the placement from case 1. Other-
wise, it is the same as in case 2. Due to the fact that 𝔭 − 𝔮 ≤ 0, and u, p0 > 0, this inequality 
holds if, and only if, 

pp1⋅…⋅pp j 1 1 + ρ pp j+1 , …, pplp
– pq1⋅…⋅pq j 1 1 + ρ pq j+1 , …, pplq

 ≥ 0 ⟺ (17)

0.01u

0.01u

0.3u

0.4u

0.3u

0.5u

0.3u 0.3u

0.5u

0.5u

0.5uv0 ← s1

v11 ← s3 v12 ← s5 v13 ← s6 v14 ← s4 v15 ← s10

v21 ← s2 v22 ← s7 v23 ← s8 v24 ← s9 v25 ← s11

M−1M3

Figure 4. Example of a placement that is a solution to problem (2).

The resulting integral risk is

ρ
(

S, W2, M−1
3

)
= 1446.65u·10−5 < 1447.715u·10−5= ρ

(
S, W2, M−1

2

)
. (13)

Thus, the proposed heuristic also does not provide a solution to the problem.
In conclusion, let us attempt to construct a criterion for placing elements in a subset of

vertices located at a distance j from the perimeter, that is, {vbj}
m
b=1

. We arbitrarily choose
two vertices vpj and vqj from this set. Let us check under what conditions the following
inequality will be satisfied for the mapping M−1: S → V that minimizes integral risk:

p0
M(vpj)

≤ p0
M(vqj)

. (14)

For notation convenience, let us denote p= p0
M(vpj)

, q= p0
M(vqj)

. For the remaining

vertices, instead of p0
M(vbl)

, b < m, l < lb, b, l, lb ∈ N, we will write plb, and instead

of p0
M(v0)

, p0. Let us also introduce a notation for the integral risk of a subset of the attack
structure, which is a simple chain and includes vertices vbl, vb(l+1), . . . , vblb :

ρ
(

pbl, . . . , pblb

)
= u

lb

∑
i=l

i

∏
k=l

p0
M(vik)

. (15)

Let us calculate the difference in the values ∆ of integral risk for the cases when the
elements are mapped to the vertices vpj, vqj with eigen probabilities of a successful attack,
respectively, equal p and q (case 1), and vice versa (case 2). Recall that p ≤ q.

∆ = up0

(
pp1· . . . ·pp(j−1)p+pp1· . . . ·pp(j−1)pρ

(
pp(j+1), . . . , pplp

)
+pq1· . . . ·pq(j−1)q+pq1· . . . ·pq(j−1)qρ

(
pq(j+1), . . . , pplq

)
– pp1· . . . ·pp(j−1)q + pp1· . . . ·pp(j−1)qρ

(
pp(j+1), . . . , pplp

)
− pq1· . . . ·pq(j−1)p − pq1· . . . ·pq(j−1)pρ

(
pq(j+1), . . . , pplq

))
= up0(p − q)

(
pp1· . . . ·pp(j−1)

(
1 + ρ

(
pp(j+1), . . . , pplp

))
− pq1· . . . ·pq(j−1)

(
1 + ρ

(
pq(j+1), . . . , pplq

)))
.

(16)

If ∆ ≤ 0, then the integral risk will be less than for the placement from case 1.
Otherwise, it is the same as in case 2. Due to the fact that p− q ≤ 0, and u, p0 > 0, this
inequality holds if, and only if,
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pp1· . . . ·pp(j−1)

(
1 + ρ

(
pp(j+1), . . . , pplp

))
− pq1· . . . ·pq(j−1)

(
1 + ρ

(
pq(j+1), . . . , pplq

))
≥ 0

⇔
pp1·...·pp(j−1)
pq1·...·pq(j−1)

≥
1+ρ

(
pq(j+1),...,pplq

)
1+ρ

(
pp(j+1),...,pplp

) (17)

The resulting relation tells us that the optimal placement of elements in the subset of
vertices {vbj}

m
b=1

depends both on the placement of elements in vertices which are located
closer to the perimeter and further away relative to the considered ones. Thus, the iterative
construction of optimal placement is impossible, and it seems that the exact solution of
problems (7) and (8), even in the particular case of equality of expected damages, is possible
only by an exhaustive search of placements.

Since the number of possible permutations of elements is expressed in terms of a
factorial, an exhaustive search is practically impossible even for systems with a relatively
small number of elements. Therefore, in what follows, we will look for a possibility to
approximately solve problem (8) by a computationally simple algorithm with some error
estimated from above.

4. Approximate Solution to the Problem of the Optimal Placement of Elements

As in the previous section, let us consider a special case of equality of the values of the
expected damage, that is, solve problem (8). From the standpoint of practice, the expression

pM(v0)
+

m

∑
b=1

lb

∑
l=1

∏
v ∈ 〈v0, vbl〉

pM(v) (18)

can be interpreted as a value characterizing the security of the system as a whole. It is
quite reasonable to assume that the more protected elements the system includes, the more
attractive it is for an attacker. Therefore, the better protected each element individually is,
the more elements there are in the system.

For the system containing a single element, the expression (18) will be exactly equal to
the probability that it will be successfully attacked. Thus, the value of this expression does
not exceed one. Let us extend this restriction to all the systems under consideration and
introduce the concept of the marginal eigen risk.

Definition 8. The marginal eigen risk of an element of the protected system with the attack structure
Wm= 〈G (V, E) , T〉 is defined as the quantity

ρ0
max =

u
1+
√

m
. (19)

It is easy to verify that if ∀i ρ0
i = ρ0

max, i ∈ {1, . . . , n}, n < ∞, then

pM(v0)
+

m

∑
b=1

lb

∑
l=1

∏
v ∈ 〈v0, vbl〉

pM(v) =
ρ0

max
u

+
m

∑
b=1

lb

∑
l=1

∏
v ∈ 〈v0, vbl〉

ρ0
max
u

< 1, (20)

whereas for lb = ∞ ∀b ∈ {1, . . . , m}, m ≤ ∞, this expression is equal to one.
Now, let us consider how integral risk behaves with the gradual complication of the

attack structure and the protected system. In the simplest case, when the system consists of a
single element s1, its placement in the attack structure W1= G(V ={v0}, E =∅), T = {v 0}
is unique, and the integral risk of the system under given constraints does not exceed u

2 .
If there are n elements in the protected system, and the attack structure includes m = n

− 1 rays, including one edge each, then the upper estimate of the integral risk introduced by
the element v0 is equal to ρ0

max = u
1+
√

n − 1
, and the contribution of the elements mapped
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to the vertices vb1, b =1, n − 1 will be no more than u(n − 1)
(

ρ0
max
u

)2
= u(n − 1)

(1+
√

n − 1)
2 .

Note that the first expression tends to zero as n→ ∞, and the second to u. Further, for
convenience, let us say that the ray has length k if the path from the perimeter vertex to its
hanging vertex includes k edges.

Finally, consider a variant of the attack structure with m =
∣∣∣n − 1

2

∣∣∣ rays. In the case of
even n, one of the rays will have length 1, while the others will have length 2. For odd n, all
rays will have length 2. The upper estimate of the integral risk introduced by the elements

mapped to the vertices vb2, b =1, m will be no more than um
(

ρ0
max
u

)3
= um

(1+
√

m)
3 . This

value also tends to zero as m → ∞ .
This leads to two important conclusions. First, the more rays the attack structure has,

the less influence on the integral risk of the system is exerted by the elements mapped to
the vertices vbl with l ≥ 2. Second, for m ≥ 3, the increase in risk on the set of vertices
{v bl}

m
b=1, l ≥ 3 does not exceed ten percent of the maximum possible value. Specific

values for small m and l are given in Table 2.

Table 2. Upper estimates for the risk increment in a structure with m rays on subsets of vertices
that are away from the perimeter by 1–3 edges, as well as the corresponding upper estimates for the
integral risk values; rounding is to the fourth digit with excess.

Number of Rays
m

ρ0
max

Subset of Vertices

{v0} {vb1}m
b=1 {vb2}m

b=1 {vb3}m
b=1

1 u
2

0.5u
(0.5u)

0.25u
(0.75u)

0.125u
(0.875u)

0.0625u
(0.9375u)

2 u
1+
√

2
0.4143u

(0.4143u)
0.3432u

(0.7574u)
0.1422u

(0.8995u)
0.0589u

(0.9584u)

3 u
1+
√

3
0.3661u

(0.3661u)
0.402u

(0.768u)
0.1472u

(0.9151u)
0.0539u
(0.969u)

4 u
1+
√

4
0.3334u

(0.3334u)
0.4445u

(0.7778u)
0.1482u
(0.926u)

0.0494u
(0.9754u)

5 u
1+
√

5
0.3091u

(0.3091u)
0.4775u

(0.7865u)
0.1476u

(0.9341u)
0.0456u

(0.9797u)

Note that for the perimeter vertex, as well as the vertices {vb1}m
b=1, located at a

distance of 1 from it, the solution of the problem of the optimal placement of elements
of the protected system is trivial due to the need to fulfill the criterion of the ordering of
elements proved in [34]. Namely, in the particular case under consideration, an element
with a minimum eigen risk (minimum probability of a successful attack) should be mapped
to the perimeter, whereas to the vertices {vb1}m

b=1, m elements from the remaining ones
with the lowest eigen risk, starting from the number b corresponding to the longest ray.

Thus, the most interesting practical standpoint is the solution of the problem of the
optimal placement of elements of the protected system in a subset of the vertices of the
attack structure, which are separated from the perimeter by two edges, that is, {vb2}m

b=1.
Note also that the quantity um

(1+
√

m)
n for fixed values n ≥ 4 (that is, corresponding to

subsets {vb3}m
b=1, {vb4}m

b=1 and so on) monotonically decreases with the growth of m. At
the same time, the first derivative of the expression um

(1+
√

m)
3 has a root m = 4; therefore,

the upper estimate for the risk increment reaches maximum if the attack structure has four
rays. This fact allows us to further limit ourselves to considering such structures as the
“least favorable” in the sense of finding the optimal placement of elements to minimize the
integral risk. The values of deviation from the optimal solution will be maximal precisely
for m = 4.

For an approximate solution to problem (8), we propose to use the following algorithm:

1. Select the element with the lowest eigen risk and map it to the vertex-perimeter v0.
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2. From the remaining ones, select m elements with the lowest eigen risks and map them
to the vertices {vb1}m

b=1 so that the lengths of the rays corresponding to these vertices
depend inversely on the eigen risk of the element mapped to the vertex.

3. For each of the subsets of vertices {vb2}m
b=1, {vb3}m

b=1, . . . , successively select k ≤ m
elements with the lowest eigen risks from the remaining ones and place them at the
vertices of the corresponding subset in an arbitrary way.

In the next section, we will construct upper estimates of the error of solving problem
(8) by using this algorithm.

5. Upper Estimates of Errors in Solving the Problem of the Optimal Placement of
Elements

To obtain estimates of the error in solving the problem of the optimal placement of
elements in the attack structure of the “star with m rays” type, we will conduct a numerical
experiment consisting of the following: Let us successively generate attack structures with
the number of rays m from 2 to 11, each of which has a length lb ≥ 3. The number of rays is
limited because of the computing power available to us for the experiment.

Let us introduce the following restrictions:

u = 1;
p0

M(v0)
≤ p0

M(vbl)
∀b ∈ {1, . . . , m}, l < lb;

p0
M(v0)

> 0;
p0

M(vbl)
> 0 ∀b ∈ {1, . . . , m}, l ≤ lb;

p0
M(v0)

≤ 1
1 +
√

m ;

p0
M(vbl)

≤ 1
1 +
√

m ∀b ∈ {1, . . . , m}, l < lb;

p0
M(vblb

)
≤

∞
∑

l = lb

(
1

1 +
√

m

)l+1
.

(21)

Next, let us generate integral risk expressions for all placements obtained by permuta-
tions of elements mapped into subsets {vb1}m

b=1 and then (separately) {vb2}m
b=1. Then, let

us consider all possible absolute values of the difference of these expressions and, for each
of them, search for a global maximum. Dividing the resulting value by the minimum of the
integral risk from these two expressions subtracted from each other, we obtain the relative
difference between them. The maximum of relative differences will give us a numerical
estimate of the error in solving the problem of the optimal placement of elements of the
protected system in the attack structure.

The results of the experiment are summarized in Table 3. They indicate that the value
of the relative error varies within small limits. In this case, the increase in the relative error
of solving problem (8) on the vertices located at a distance of two edges from the perimeter
is 6.07% in the least favorable case.

Note that the relative error increments for structures with an even number of rays
are always greater than those for structures with an odd number of rays that is greater
by one. This effect is explained in the following way: Suppose that there is an optimal
placement M−1

0 : S → V. Then, inside each subset {vbl}m
b=1 ∈ V for a fixed l, criterion (17)

is fulfilled. Since this is a pairwise comparison criterion, we can order and number the
elements mapped to the subset under consideration with numbers from 1 to k ≤ m (some
vbl may not exist).
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Table 3. Numerical estimates for the relative error of solving the problem of the optimal placement of
elements in subsets of the vertices of the attack structure; rounding is to the fourth digit with excess
(* is an unreliable value due to overflow).

Number of
Rays

m

Subset of Vertices

{vb1}m
b=1 {vb2}m

b=1 {vb3}m
b=1 {vb4}m

b=1 {vb5}m
b=1 {vb6}m

b=1
m⋃

b=1

∞⋃
l=3

{vbl}

2 0.2072 0.0583 0.0132 0.0037 0.0012 0.0004 0.0226
3 0.1548 0.0434 0.0088 0.0022 0.0007 0.0002 0.0139
4 0.2 0.0607 0.0107 0.0024 0.0006 0.0002 0.0161
5 0.1709 0.0515 0.0085 0.0018 0.0005 0.0002 0.0124
6 0.1899 0.0607 0.0091 0.0018 0.0004 0.0001 0.0129
7 0.1707 0.0542 0.0078 0.0015 0.0003 * 0.0108
8 0.1807 0.0601 0.008 0.0014 0.0003 * 0.0109
9 0.1667 0.0551 0.0071 0.0012 0.0002 * 0.0095
10 0.1726 0.0593 0.0072 0.0012 * * 0.0095
11 0.1619 0.0553 0.0065 0.001 * * 0.0085

In order to construct a mapping M−1: S → V with the maximum possible deviation
(increment) of the integral risk obtained by permutations of elements inside the subset
{vbl}m

b=1 ∈ V, it suffices to map elements into it in reverse order. At the same time, for

odd k, the element with the number
∣∣∣ k

2+1
∣∣∣ will remain in its place, while the number

of pairwise permutations will be the same for (k − 1) elements. Due to the previously
introduced restriction on the maximum value of the eigen risk, the contribution of each of
these pairwise permutations will decrease with an increase in the value of k.

It should be noted that on the sets {vbl}m
b=1, l ≥ 3, the value of the relative error

drops sharply, and one can talk about the boundedness of the sum of errors. Recall that
earlier in Table 2, the values of the absolute maximum increase in risk for subsets of vertices
{vbl}m

b=1 were given under the given limits of the marginal eigen risk. Since the risk cannot
be zero, the upper estimate of the risk increase always exceeds the upper estimate of the

relative error. The former, in turn, is calculated as u
(

1
1+
√

m

)l+1
, and the infinite sum of

such terms converges: ∑∞
l=0 u

(
1

1+
√

m

)l+1
= u√

m . The last column of Table 3 shows the
sums of such series that majorize relative errors. Starting from m = 3, the total relative error
in the non-optimal placement of elements of the protected system in vertices separated
from the perimeter by three or more edges does not exceed two percent and decreases with
an increase in the number of rays in the attack structure.

Note also that in all cases, the maximum relative error is achieved when both elements
with a very small eigen risk (the probability of a successful attack on such elements in the
experiment will be equal to the machine epsilon) and elements with a marginal eigen risk
are simultaneously present in the system. In this regard, another series of experiments were
conducted where the spread of eigen risks was limited.

Definition 9. The residual eigen risk for the protected system, which includes a set of elements
s1, . . . , sn ∈ S, n ∈ N, is defined as the quantity

ρres: ρ0
si
≥ ρres ∀i ∈ {1, . . . , n}. (22)

Let us require the residual eigen risk to be ρ0
max

1000 , ρ0
max
100 , ρ0

max
50 , ρ0

max
10 . The results of numeri-

cal experiments are shown in Table 4.
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Table 4. Numerical estimates of the relative error of solving the problem of the optimal placement of
elements in subsets of vertices of the attack structure at a given threshold of residual risk; rounding is
to the fourth digit with excess.

Number of Rays
m

Subset of Vertices {vb1}m
b=1 Subset of Vertices {vb2}m

b=1

Residual Eigen Risk Residual Eigen Risk

ρ0
max

1000
ρ0

max
100

ρ0
max
50

ρ0
max
10

ρ0
max

1000
ρ0

max
100

ρ0
max
50

ρ0
max
10

2 0.2064 0.1995 0.192 0.1398 0.0581 0.0565 0.0547 0.0417
3 0.1542 0.1489 0.1433 0.1041 0.0432 0.0419 0.0404 0.0301
4 0.1993 0.193 0.1861 0.1379 0.0605 0.0587 0.0567 0.0425
5 0.1702 0.1647 0.1586 0.1168 0.0513 0.0497 0.0479 0.0354
6 0.1893 0.1834 0.177 0.1322 0.0605 0.0586 0.0565 0.0419
7 0.1701 0.1646 0.1587 0.1178 0.054 0.0522 0.0502 0.0368
8 0.1801 0.1745 0.1685 0.1265 0.0599 0.0579 0.0557 0.041
9 0.1661 0.1609 0.1552 0.1158 0.0549 0.053 0.0509 0.0371

10 0.172 0.1668 0.1611 0.1214 0.059 0.057 0.0548 0.0401
11 0.1613 0.1563 0.1508 0.113 0.055 0.0531 0.051 0.0369

Under the restriction ρres = ρ0
max

1000 , the error values differ little from the case when
ρ0

si
> 0. However, if the spread of eigen risks is small, then the value of the relative error is

noticeably reduced. For example, if ρ0
si
≥ ρ0

max
10 , then with any placement of the elements

of the protected system at the vertices {vb2}m
b=1, the integral risk will exceed the minimum

by less than 5%.

6. Methodology for Rapid Risk Assessment of Complex Systems with a “Star”
Type Structure

Let us consider the question of assessing the risks of a certain complex system that
includes a set S of protected elements placed in the attack structure of the type of “star
with m rays” Wm. Assume that the defender does not know both the eigen probabilities of
a successful attack on each of the protected elements and the values of damage inflicted
by an attacker in the event of a successful attack on any element. At the same time, let us
assume that they know the values pmin and pmax, 0 < pmin<

1
2 , 0 < pmax ≤

1
2 , whereas

pmin ≤ p0
i ≤ pmax ∀i = 1, 2, . . . , n, n ∈ N (23)

Then, for m = 1, the estimate for the integral risk ρ1 of this system will have the
following form:

ρ−1 = u
n

∑
l=1

(pmin)
l ≤ ρ1 ≤ u

n

∑
l=1

(pmax)
l= ρ+1 , (24)

where u is some estimate of the “average” damage. Note that these sums will be finite even
for a system with a countable set of protected elements, provided that pmax ≤

1
2 .

Now, suppose that the attack structure has two rays with approximately the same
lengths l1 and l2, that is, |l1 − l2| ≤ 1, l1+l2+1 = n. Then, the value ρ2 of the integral risk
of such a system can be estimated from below and from above in terms of pmin and pmax,
respectively. Let us first write down the expression for the estimate from below:

ρ−2 = u

(
pmin+2pmin·

| n − 1
2 |
∑

l=1
(pmin)

l+pmin

(
n − 1 − 2

∣∣∣n − 1
2

∣∣∣)(pmin)
| n − 1

2 |+1

)
=

u

(
pmin+2

| n − 1
2 |+1
∑

l=2
(pmin)

l +
(

n − 1 − 2
∣∣∣n − 1

2

∣∣∣)(pmin)
| n − 1

2 |+2

)
.

(25)
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The value n − 1 − 2
∣∣∣n − 1

2

∣∣∣ will be zero for odd n and 1 for even. In the first case, we
will get two rays of the same length, and in the second, their lengths will differ by one. For
the upper estimate, the expression will be the same up to the replacement of pmin by pmax.

Now, let us write down an expression for the lower estimate of the integral risk of a
system with a structure that includes an arbitrary finite number of rays m:

ρ−m= u

pmin+m
| n − 1

m |+1

∑
l=2

(pmin)
l +

(
n − 1 − m

∣∣∣∣n − 1
m

∣∣∣∣)(pmin)
| n − 1

m |+2

. (26)

Let us estimate how much the estimate changes when the number of rays increases
to (m + 1). To achieve this, let us write down an expression for the lower estimate of the
integral risk for such a structure:

ρ−m+1= u

pmin + (m + 1)
| n − 1

m+1 |+1

∑
l=2

(pmin)
l +
(

n − 1 − (m + 1)
∣∣∣n − 1

m+1

∣∣∣)(pmin)
| n − 1

m+1 |+2

 =

u

pmin+m
| n − 1

m+1 |+1

∑
l=2

(pmin)
l +
| n − 1

m+1 |+1

∑
l=2

(pmin)
l +
(

n − 1 − (m + 1)
∣∣∣n − 1

m+1

∣∣∣)(pmin)
| n − 1

m+1 |+2

.

(27)

It is rather difficult to algebraically estimate the value
∣∣ρ−m+1− ρ−m

∣∣, so let us investigate
visually what happens when moving from a “star with m rays” to a “star with (m + 1) rays”
(Figure 5). Recall that integral risk is the sum of the local risks of elements of the protected
system. The specific values of the local risks depend on the position of the elements in the
structure, but when constructing the upper and lower estimates, the values of the eigen
risks are the same for all elements.

The values of local risks will be higher, the lower the value of the second index
of the vertex. At the same time, the vertices with the same second indices will have
the same values of the local risks. When a new (m + 1)th ray is added,

∣∣∣n − 1
m+1

∣∣∣ vertices
v(m+1)1, v(m+1)2, . . . , v(m+1)| n − 1

m+1 |
appear in the structure. Vertices with indices from v11 to

vm| n − 1
m+1 |

will be present both in a structure with m rays and in a new one with an additional
ray added. In the structure with m rays, the remaining vertices will have second indices
larger than

∣∣∣n − 1
m+1

∣∣∣, while n − 1 − (m + 1)
∣∣∣n − 1

m+1

∣∣∣ of them will have the same indices in
both structures (and, accordingly, the same local risks).

These arguments lead us to the fact that the upper and lower estimates of the inte-
gral risk monotonically increase with the increase in the number of rays in the structure.
Noticing that

∀z ∈ N, l > 1 (pmin)
l− (pmin)

l+z ≤ (pmax)
l− (pmax)

l+z, (28)

we discover that the quantity ρ+m− ρ−m for pmin < pmax also monotonically increases with
the growth of m. When pmin= pmax, the equality of the upper and lower estimates is
achieved.
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7. Solving the Problem for Elements with Different Damage Values

Earlier, we considered a particular case when the damage from a successful attack
on elements is estimated the same, that is, usi= u ∀i ∈ {1, . . . , n}. Let us assume that
the damages are different. At the same time, let us require that the following relation be
fulfilled:

1 − p0
si

usi p0
si

=
1 − p0

sj

usjp0
sj

∀i, j ∈ {1, . . . , n}. (29)

It is easy to make sure that for each one-ray structure of the form W1 ={
G

(
V =

{
v0, v11, . . . , v1l1

}
, E =

{
(v 0, v11) ∪

l1⋃
l=2

(
v1(l−1), v1l

)})
, T ={v0}

}
, 2 < l1

≤ n − 1, this relation ensures the equality of integral risks for any set of corresponding
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one-to-one mappings M−1 =

{
M−1

t :
∼
S → V

}
t∈T

,
∼
S ⊆ S, where T is some set of indices.

Let us show that for such elements there exists an exact solution to problem (7).
First, let us note that any structure of the “star with m rays” type can be divided into

m structures of the type W1 as follows: Let Wm= G(V, E), T be defined as in Definition 2.
Then, let us define W1

1= G(V1, E1), T1, W2
1= G(V2, E2), T2, . . . , Wm

1 = G(Vm, Em), Tm,
while

V1 = {v0} ∪
l1⋃

l=1

{v1l}, E1 =

{
(v 0, v11) ∪

l1⋃
l=2

(
v1(l−1), v1l

)}
, T1 = {v0}, (30)

whereas for the remaining b =2, m

Vb =
lb⋃

l=1

{vbl}, Eb =
lb⋃

l=2

{(
vb(l−1), vbl

)}
, Tb = ∅. (31)

Then, V =
m⋃

b=1
Vb, E =

m⋃
b=1

Eb, T = T1 =
m⋃

b=1
Tb and Wm =

m⋃
b=1

Wb
1 . For a given map-

ping M : V → S , due to it being one-to-one, one can find such a partition of the set of
protected elements S1, . . . , Sm: ∀b, d ∈ {1, . . . , m}, b 6= d Sb, Sd ⊂ S, Sb ∩ Sd = ∅
that

V =
m⋃

b=1

M−1(Sb), (32)

and the quantity ρ
(

S, Wm, M−1
)

can be written as

ρ
(

S, Wm, M−1
)
= ρ

(
S1, W1

1, M−1
)
+p0

M(v0)

m

∑
b=2

ρ
(

Sb, Wb
1 , M−1

)
. (33)

Now, let us show that when the relation (17) is fulfilled for any placement M−1: S → V
such that p0

M(v0)
= min

i=1, n

{
p0

si

}
, the integral risk ρ

(
S, Wm, M−1

)
will reach a minimum.

For convenience, let us renumber the protected elements so that p0
i ≤ p0

i+1∀i < n, i ∈ N.
Then, p0

M(v0)
= p0

1 and

ρ1= ρ
(

S, Wm, M−1
)
= ρ

(
S1, W1

1, M−1
)
+p0

1

m

∑
b=2

ρ
(

Sb, Wb
1 , M−1

)
. (34)

Now, consider another placement M′−1, resulting from M−1 by permutation of two
elements: s1 and any other sk, 1 < k ≤ n, that is, M−1(s1) = M′−1

(sk), M−1(sk) =

M′−1
(s1), M−1(si) = M′−1

(si) ∀i 6= k, i ≤ n, i ∈ N. Without loss of generality, we
assume that M′−1

(sk) is in the structure W1
1.

Let us write down the value of the integral risk for placement M′−1:

ρk= ρ
(

S, Wm, M′−1
)
= ρ

(
S1, W1

1, M′−1
)
+p0

k

m

∑
b=2

ρ
(

Sb, Wb
1 , M′−1

)
. (35)

Note that due to relation (17),

ρ
(

S1, Wb
1 , M′−1

)
= ρ

(
S1, Wb

1 , M−1
)
∀b ∈ {1, . . . , m}. (36)

Since p0
1 ≤ p0

k, then ρ1 ≤ ρk, which means that the placement M−1 is the solution of
problem (7).
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8. Discussion

In this study, we propose an algorithm for solving the problem of the pseudo-optimal
placement of elements of a protected system in the structure of an attack of the “star with
m rays” type in the particular case of equal damages during a successful attack on an
element. While the optimal placement problem can generally be solved only by exhaustive
search, the proposed algorithm allows solving it in linear time with some estimated error
depending on the number of rays in the attack structure.

To construct upper estimates of the solution errors, we experimentally calculated them
for small structures, consisting of 2 to 11 rays of a length of 4 to 6 elements. The parameters
of the structures were limited by the computing power available to us on the one hand
and the precision of the machine representation of floating-point numbers on the other. At
the same time, even such a small experiment clearly visualizes the intuitive idea that the
relative error generally decreases with an increase in the number of rays in the structure.
Thus, to obtain the upper estimates, it is sufficient to consider the values obtained for the
minimum non-degenerate “star” of two rays. Additionally, we clarified the upper estimates
for the error of solving the problem with a bounded limiting eigen risk for different levels
of residual risk in a particular case (with equal damages).

Furthermore, we proposed a method of rapid risk assessment of systems with the
considered attack structure in a situation where the defender does not know neither the
values of the eigen probabilities of a successful attack of elements nor the values of the
expected damages of them. At the same time, the defender presumably knows the values
of the residual and marginal risks, and they are also able to imagine some average value
of damage. We investigated the behavior of the difference between the upper and lower
integral risk estimates and found that it increases with the number of rays in the structure
of the system. Note that the relative error of the algorithm of the sub-optimal placement of
elements proposed above decreases with an increase in the number of rays in the “star”.
Thus, the more difficult the system’s risk is to evaluate, the better the algorithm works.

Finally, we proposed an exact solution to the problem of the optimal placement of
elements with various damages but with a restriction on the ratio of their eigen risks (29).
Namely, the ratio of the probability that an element will not be successfully attacked to
the value of its eigen risk must be equal for all elements of the system. Meaningfully,
this condition reflects the natural requirement that the higher the expected damage to an
element, the better it should be protected. The fulfillment of this condition makes the
elements neutral to their location inside the ray, i.e., their rearrangement does not affect the
integral risk of a subsystem consisting of this ray alone.

The solution to the problem is to put an element with the lowest eigen probability of
its successful attack into the vertex-perimeter, which is common to all rays. This solution
is not intuitive because this element will also have the maximum value of the expected
damage among all elements. However, this solution provides the minimum integral risk
for the system. The given example illustrates that the eigen probability of a successful
attack of an element (and, accordingly, the security of the element) is more important than
the expected damage when it comes to the perimeter.

9. Conclusions

The obtained results can be used in risk management in complex networks. The
conducted numerical experiments allow a reasonable conclusion to be drawn that one
should focus primarily on reducing the vulnerability of the perimeter, as well as nodes
directly accessible from it. The nodes located farther away do not have a significant impact
on the level of risk of the system as a whole. The algorithm proposed in this paper allows
for solving the problem of minimizing integral risk with any predetermined accuracy for
systems having a “star” type structure with a single-vertex perimeter. In the future, we plan
to generalize the proposed algorithm for application to systems with a tree-like structure
and, in prospect, an arbitrary topology.
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The results obtained so far do not suggest a wide application in practice. They can be
used, for instance, to manage risks in small computer networks, but such problems usually
arise when protecting large networks with complex topologies. Nevertheless, the obtained
results are the foundation for the transition to the study of more complex structures. We
plan to thoroughly discuss the practical aspects in subsequent papers devoted to risk
management in complex networks of arbitrary topology.
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