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Abstract: This paper presents two new fault models for networked systems. These fault models are
more realistic and generalized for networked systems in the sense that they can represent the effects
of fault at the node and network levels. At the network layer, the uncertain effects of the network lines
are modeled using a Markov chain with complex transition probabilities simultaneously with the
stochastic behavior of the network using a Bernoulli process. A new output feedback-based controller,
which is two-mode dependent and considers network uncertainties and output measurements for
gain calculation, is presented. Using the tools of robust control and stochastic stability, linear matrix
inequality-based sufficient conditions are derived. The proposed controller successfully maintains the
system’s performance by tolerating the effects of simultaneous sensor and actuator faults, ensuring the
stability of networked loops. Simulation results verify the applicability of the presented fault-tolerant
control against multiple simultaneous faults.

Keywords: fault modeling; networked systems; fault-tolerant control; stochastic stability; Markovian
jump system

MSC: 97M50

1. Introduction

We encounter Networked Control Systems (NCSs) in several applications, for instance,
in the automobile and manufacturing industries, airplanes, and tele-health monitoring.
In these applications, NCSs offer many benefits such as cost reduction, easy installation,
reduced maintenance, and maximum efficiency with reliability. Along with these benefits,
NCSs include many challenging issues due to limited bandwidth and the utilization of
shared resources by NCS components. These issues include network-induced random time
delays due to queuing, processing, transmission, and propagation time at different nodes
and links. The packets may also suffer from uncertain data packet dropouts due to network
traffic. These uncertainties can significantly degrade the performance of systems if not
addressed adequately. To address these issues, researchers have focused their efforts on
this in the last few years [1–4].

To model these network-induced uncertainties, researchers have used the Markov
chain and Bernoulli process [2–5]. The Markov chain, used in the most of the literature,
requires complete knowledge of Transition Probabilities (TPs). In practical applications,
these are costly and very hard to obtain, in some cases, even impossible. It is, therefore,
very important to consider partly known TPs in the Markov chain. This is why stability
criteria are proposed for Markovian jump systems (MJSs) with partially known TPs in [6,7],
and results with less conservative outcomes are presented in [8–10]. The conditions for
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the stability and stabilization of NCSs with partially known TPs are presented in [11].
Markov-based modeling of time-delay with partly known TPs is important when all the
data packets reach the destination. In practical applications, data packets may drop out
due to the network traffic in the shared network links. It is worthwhile to mention that
in the literature, researchers only addressed either the time-delay or the packet drop
out in networked systems. The inadequate modeling of network uncertainties during
the controller design process makes the controller strategies very limited in practical
engineering. We address both the network’s main impurities simultaneously.

In addition to the communication network impurities, faults may occur in sensors,
actuators, and/or process components [12–18], making the control of networked systems
more challenging. These faults can degrade performance, lead to instability, and even cause
fatalities [18]. In networked systems, the effects of faults may propagate from one node to
other nodes. These propagated effects of faults increase the severity of local node faults [19].
To the authors’ knowledge, in the literature on networked systems, the propagated effects
of faults at the network level, along with network’s main uncertainties, must still be
addressed. For this purpose, we proposed two new fault models that are more generalized
for networked systems. These fault models mathematically represent the magnitude of
node-level and network-level faults simultaneously with their propagated effects and the
network’s main impurities. Immediate maintenance and repair are not always available, so
fault tolerance has received great attention both in academia and practice [20,21]. Motivated
by these challenges, researchers have reported Fault-Tolerant Control (FTC) strategies for
sensor or actuator faults [17,18,22,23]. In the aforementioned literature, researchers have
addressed a single fault or a single type of fault at a time; that is, either multiple sensor faults
or multiple actuator faults with either time-delay or packet loss. Assuming the occurrence
of a single fault or single type of multiple faults at a time makes the diagnostic and
tolerance algorithm very limited in use. In practice, actuator and sensor faults may develop
simultaneously due to poor networked environments. To the best of our knowledge, very
few researchers have addressed the issue of multiple types of simultaneous fault tolerance
in networked systems. Excellent work is done in [20] on double-fault, investigating the
guaranteed cost FTC in networked systems using the piecewise delay method. The authors
modeled the system with a constant time-delay, which is a conservative approach from a
practical point of view. Secondly, the state feedback control requires the information of all
states of the system, which are, in practice, very difficult to obtain.

Driven by the mentioned challenges in the literature survey, an FTC is proposed for the
tolerance of faults at the node and network levels, along with network-induced uncertain
effects. Contributions in the article can be summarized as follows: (1) We propose two
new fault models for networked systems that cover the effects and magnitude of faults
at the node and network levels, simultaneously with propagated faulty effects and the
network’s major impurities. (2) To adequately model the major network-induced time
delay, we use the Markov chain with partially known TPs, simultaneously with the packet
dropouts using the Bernoulli process. In the literature, time-delay with partial TPs and
packet loss is not addressed with simultaneous multiple types of faults. (3) A two-mode
dependent controller is proposed, which considers network-induced effects along with
sensor measurements for a gain calculation to address multiple types of simultaneous
generalized faults. (4) In comparison with work in the literature, simultaneous sensor
and actuator faults are addressed for networked systems, using an LMI with the help of
the proposed two-mode dependent output feedback controller.

The subsequent sections of the script are organized as follows. Section 2 is dedicated
to problem formulation, first presenting the fault models for networked systems, and then
modeling uncertain network-induced imperfections. Section 3 is dedicated to presenting
the proposed FTC design for NCSs based on the Markov jump system and Bernoulli process.
Lastly, Section 4 presents the simulated study of the proposed FTC discussed for the DC
motor to ensure its effectiveness and the applicability of the system.
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Notation: The occurrence probabilities are defined as P(·). The notation (· · · ) denotes
ψ wherever we show quadratic forms ψT P(· · · ). All the used symbols are defined in the
respective sections, and I represents an identity matrix. We provided a key table (Table 1)
for symbols and notation at the end of the manuscript for better understanding.

Table 1. Notation used throughout the manuscript.

Notations Used

Notation Description

Φ Actuator Faults
Ψ Sensor Faults
ρ Partially Known TPM of Markov Chain
τk Time-Delay
τ1 Maximum Time-Delay
I Identity Matrix of Compatible Dimensions
τkca Time-Delay from Controller-to-Actuator link
τksc Time-Delay from Actuator-to-Controller link
α(k) Binary Random Vector for Packet Dropout in S/C link
ᾱ(k) Expected Binary Random Vector for Packet Dropout in S/C link
β(k) Binary Random Vector for Packet Dropout in C/A link
β̄(k) Expected Binary Random Vector for Packet Dropout in C/A link
ζk Solution of Augmented State equation
ζ(k) Augmented State Vector
K(τk, ᾱ) Controller’s Gain

2. Problem Formulation

Consider a networked environment, as shown in Figure 1, where six nodes are con-
nected in a network. There is one faulty node that affects the neighboring connected
nodes as the faulty effects propagate via network links. Each node of the network is a
complete process, i.e., a plant with sensors and actuators. This process can be controlled
over networks, as demonstrated in Figure 2. The controller controls the plant from a remote
location in the presence of faults and disturbances via a communication network. Plant
dynamics are given as described in Equation (1).

x(k + 1) = Ax(k) + BuF(k) + Hw(k)

y(t) = Cx(k)
(1)

Here, the state vector is x(k) ∈ Rn, the control input is uF(k) ∈ Rm, and the external
disturbance is w(k) ∈ Rn, which belong to l2[0, ∞), where l2[0, ∞) is the space of finite-
energy discrete-time signals. The output is y(k) ∈ Rp, where the constant matrices A, B, H,
and C are of compatible dimensions. Additionally, the output matrix has a full-row rank.
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Figure 1. Control over communication network.

Figure 2. Control over communication network.

2.1. Proposed Fault Models for Networked Systems

The fault models used in the existing research are either the constant faults model,
probabilistic fault model, or generalized fault model. Only in the generalized fault model is
time-delay considered for networked systems [20]. In a practical networked environment,
packet dropout can not be ignored. Additionally, the propagated effects of fault from the
neighboring connected node are also required to be incorporated into the fault models.
To incorporate the faulty effects into the fault models at the node and network levels,
we proposed two fault models for sensors and actuators in a networked environment.
The sensor fault model is presented as:

yF(k) = Ψα̂(k)y(k− τk) + f (·) (2)

where
Ψ = diag(ψ1, ψ2, · · · , ψm) (3)

is the faults matrix such that ψl ∈ [0, 1]. The l given in subscript indicates the status of each
individual sensor as
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ψl =


1, Normal operation of lth sensor
0, complete failure of lth sensor
else, Partial operation of lth sensor

(4)

The range of l is from 1 to m. The network-induced uncertainties are α̂(k) and τksc; these
are the random variables for data packets dropout and random time-delays, respectively.

α̂(k) = diag(α̂1(k), α̂2(k), · · · , α̂m(k)) (5)

where every α̂1(k), α̂2(k), up to α̂m(k), is a binary random variable. τksc is the time-delay in
the sensor-to-controller network links. The function f (·) represents the faulty effects that
propagate from the neighboring connected nodes.

Similarly, the proposed actuator fault model is given as:

uF(k) = Φβ̂(k)u(k− τkca) + g(·) (6)

where
Φ = diag(φ̄1, φ̄2, · · · , φ̄m) (7)

is the faults matrix for the actuator such that φ̄l ∈ [0, 1]. The l given in subscript indicates
the status of each individual actuator as

φl =


1, Normal operation of lth actuator
0, complete failure of the lth actuator
else, Partial operation of lth actuator

(8)

The range of l is from 1 to m. The network-induced uncertainties are β̄(k) and
τkca; these are the random variables for data packets dropout and random time-delays,
respectively.

β̂(k) = diag
(

β̂1(k), β̂2(k), · · · , β̂m(k)
)

(9)

where every β̂1, β̂2, up to β̂m, is a binary random variable and τkca is the time-delay in the
controller-to-actuator network links. The function g(.) represents the faulty effects that
propagate from the neighboring connected nodes.

Remark 1. The overall network-induced uncertainties τk = τkca + τksc, ᾱ(k) = α̂(k) + β̂(k) are
considered here, instead of the separate induction of uncertainties from sensor-to-controller links
and controller-to-actuator links. Similarly, for the calculation of the controller’s gain, the propagated
effects are neglected to avoid computational complexity.

2.2. Network-Induced Uncertainties Modeling

The lump delay τk = τkca + τksc and the packet loss ᾱ(k) are mathematically modeled
as below.

2.2.1. Time-Delay Modeling

The exchange of measurement and control data between the plant and the controller
occurred via a shared communication network, as shown in Figure 2. The data packets
may experience random time-delays or even drop while traversing through the network.
We consider random variation in τk in the range

τk ∈ {0, 1, · · · , τ1} (10)

The time-delays τk are modeled with a Markov chain θ with a partially known Transition
Probabilities Matrix (TPM) ρ. There are N number of delay states, i.e, θ ∈ {1, 2, · · · , N},
where θ = 1 corresponds to τk = 0, θ = 2 corresponds to τk = 1, and so on. Let ρ denote
the partially known TPM of the Markov chain, given as:
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ρ = [ρij] (11)

where ρij = P(τk+1 = j|τk = i) for all i, j ∈ θ and Στ1
j=1ρij = 1, ρij ≥ 0. For example,

if τ1 = 3, the partial known TPM ρ is given as below.

ρ =


ρ00 ρ01 ? ρ03
? ρ11 ρ12 ?

ρ20 ρ21 ? ρ23
ρ30 ? ρ32 ?

 (12)

where the ? in the matrix are the unknown time-delay states’ transition probabilities, and
the remaining entries are known TPs. Let θi

uk, θi
k represent the column indices that are used

for the unknown and known values in the ith row of the above matrix, respectively. Here,
θ = θk + θuk for all i ∈ θ. The known entries, θk, of TPM can be rewritten as:

θk = (ki
1, · · · , ki

m) (13)

where 1 ≤ m ≤ τ1.
The ki

m ∈ N+ represents the mth known TP with the index ki
m in the ith row of the TPM.

The restriction of complete knowledge of TPs for practical applications is often difficult to
satisfy. Furthermore, the TP matrix covers the two different cases: completely known and
completely unknown TPs in the Markov chain.

2.2.2. Packet Dropout Modeling

To adequately model the network-induced uncertainties, we model the packet dropout
along with time-delay while using complex TPs. We model the packet dropouts with a
binary random vector α̂(k), where α̂(k) denotes the packet dropouts in the communication
link. α̂i(k) = 1 implies that the packet is successfully delivered via the ith link, and α̂i(k) = 1
denotes that the packet has dropped out, where i ranges from 1 to m. The following
probabilities are assumed for α̂i(k):

E[α̂i(k)] = Pr(α̂i(k)) = ᾱ(k) (14)

where E is the expected value and Pr(α̂i(k)) is the probability of packet propagation in
the channels. Pr(α̂i(k)) = 1 implies that the packet has a maximum chance of successful
propagation, while the other case means that the packet is lost. The missing parameter is
described via the Bernoulli process.

Remark 2. Time-delay tk is taken into account for the case where Pr(α̂i(k)) = 1, which means the
controller can only use the delayed version of the output if the data packet is successfully transmitted
and propagated over the network link. We assume zero time-delays for the case of Pr(α̂i(k)) = 0,
which means that the packet has dropped out. It is very important to note that in most of the
literature, the time-delay is only addressed if complex transition probabilities are used. In practical
engineering, the packet dropout cannot be ignored in the network links, as the components of NCSs
utilize shared communication channels, which may result in packet loss. This packet dropout leads
to performance degradation.

2.3. Output Feedback-Based Controller Design

The remotely located controller was chosen to be the output feedback and is based,
static, and two-mode-dependent, as given below.

u(k) = K(τk, ᾱ(k))yF(k) (15)

u(k) = K(τk, ᾱ(k))Ψᾱ(k)Cx(k− τk) (16)

K(τk, ᾱ(k)) is the gain of the controller.
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Remark 3. The control law u(k) given in Equation (7) clearly demonstrates that it depends on the
sensor’s measured output, network-induced time-delay, packet dropout, and the fault matrix Ψ. The
controller’s gain K tolerates the effects of fault.

The augmented vector for states is ζ(k) = [xT(k), xT(k − 1), xT(k − 2), ..., xT(k −
τk)]

T ∈ R(τ+1)n. Substituting 2, 6, and 16 in 1, the model of the closed-loop system
with sensor and actuator faults, communication delays, and packet dropouts is obtained as:

ζ(k + 1) =
(

Ā + B̄ΦK(τk, ᾱ(k))Ψᾱ(k)C
)
ζ(k) + Ĥw(k) (17)

The above derived system in Equation (17) is a close-loop stochastic system with
multiple types of faults that are sensor and actuator faults, one data packet dropout mode
ᾱ(k), and one time-delay mode τk, where the probabilities of transitions are described using
the Markov chain with partially known TPs and the stochastic parameter ᾱ(k) using the
Bernoulli process. In the above Equation (17),

Ā =


A 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

, B̄ =


B
0
0
...
0



C̄ =
[
0 · · · Cτk+1 0 · · · 0

]
, H̄ =


H
0
0
...
0


I is the identity matrix of completable dimensions.

3. Fault-Tolerant Control for Networked System

Definition 1. The stochastic Markovian jump system given in Equation (17) is stable with any
initial condition ζ(0), τ0, α̂(0) if the following inequality is fulfilled.

E{Σ∞
k=0||ζk||2|ζ(0), τ0, α̂(0)} ≤ ∞ (18)

here, ζk is the solution of the augmented state equation given in Equation (17) at time k under the
initial conditions ζ(0), τ0, α̂(0).

Theorem 1. For a closed-loop system, as in (17), there exists an output-based feedback control of
the form given in Equation (16), if there exist matrices Xi > 0, Ri, Gi, Qi, satisfying−GT

i XiGi 0 Ξ13
0 −I Ξ23

ΞT
13 ΞT

23 Ξ33

 < 0

where

Ξ31 =



√
ρiki

1
{ĀGi + B̄ΦKi(τk, ᾱ(k))Ψᾱ(k)RiC̄}

...√
ρiki

m
{ĀGi + B̄ΦKi(τk, ᾱ(k))Ψᾱ(k)RiC̄}√

1− ρi
k{ĀGi + B̄ΦKi(τk, ᾱ(k))Ψᾱ(k)RiC̄}


,
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Ξ23 =



√
ρiki

1
{H̄}

...√
ρiki

m
{H̄}√

1− ρi
k{H̄}


,

Ξ33 = diag{Xki
1
, · · · ,−Xki

m
,−Xj}

According to the definition, Ki(τk, ᾱ(k))C̄Gi = RiC̄, it is derived, so that

Ki(τk, ᾱ(k)) = RiQ−1

Proof. For proof, we chose the Lyapunov candidate as

V(τk, α(k)) = ζT(k)Pi(τk, α(k))ζ(k) (19)

E[∆V(τk, α(k))]

= E[ζT(k + 1){ΣN
k=0ρij P̄j(τk + 1, ᾱ(k + 1))}ζ(k + 1)]

− ζT(k)Pi(τk, α(k))ζ(k)

P̄j = {ΣN
k=0ρijPj(τk + 1, α(k + 1))}

(20)

then,

E[∆V(τk, α(k))] ≤ ζT(k){(ĀGi + B̄ΦK(τk, ᾱ(k))Ψᾱ(k)RiC̄)T P̄j(· · · )}ζ(k)
+ ζT(k){(ĀGi + B̄ΦK(τk, ᾱ(k))Ψᾱ(k)RiC̄)T P̄j H̄}w(k) + w(k)T{H̄T P̄j(ĀGi

+ B̄ΦK(τk, ᾱ(k))Ψᾱ(k)RiC̄)}ζ(k)w(k)T H̄T P̄jH̄w(k)− ζT(k)Piζ(k)

(21)

It can be verified that ∆V ≤ 0, which implies E{Σ∞
k=0||ζk||2|ζ(0), τk0, α(0)} ≤ ∞. This

inequality ensures the stochastic stability for the close-loop Equation (9). We defined the

main augmented states vector as ξ =

[
ζ(k)
w(k)

]
and wrote Equation (10) as

Ξ0 =

[
ˆΞ11 − Pi ˆΞ12

ˆΞ12
T H̄T P̄j H̄

]
ˆΞ11 = {(ĀGi + B̄ΦKi(τk, ᾱ(k))Ψᾱ(k)RiC̄)T P̄j(· · · )}

ˆΞ21 = {(ĀGi + B̄ΦKi(τk, ᾱ(k))Ψᾱ(k)RiC̄)T P̄jH̄}

We conducted pre- and post-multiplication of diag(GT
i , I) to Ξ0 and defining Xi = P−1

i ,
K(τk, α(k))C̄Gi = RiC̄, and then used the Schur complement. Next, network-induced
uncertain impurities were introduced to Ξ0, which resulted in the following inequality that
is given in the theorem. −GT

i XiGi 0 ?
0 −I ?

Ξ31 Ξ32 Ξ33

 < 0

The controller gain is derived from the definition Ki(τk, α(k))C̄Gi = RiC̄, and it is
derived that

Ki(τk, ᾱ(k)) = RiQ−1
i

Lemma 1. There exist nonsingular matrices Qi for the output matrix C̄ with rank p such that
QiC̄ = C̄Gi. For this, there exist full-rank matrices Gi that satisfy the condition given below as
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Gi = Vi

[
Gi1 0
Gi2 Gi3

]
VT

i = Vi1Gi1VT
i1 + Vi2Gi2VT

i1 + Vi2Gi3VT
i2

where Qi = UTσG−1
i1 σ−1U. The U is calculated using the SVD of C̄ matrix. C̄ = UC̄Vi =

UC̄[Vi1Vi2] = UC̄[σ 0], where σ are the singular nonzero values of C̄.

Corollary 1. Let ε1 > 0, ε2 > 0, γ > 0, and ν > 0 be the known scalars. Then, the system
given in (17) is a fault-tolerant, stochastically stable system if there exist Xi > 0, Ri, Gi1, Gi2,
Gi3, Qi, and Li(τk) such that the LMI hold, and the desired FTC K(τk, α(k)) can be achieved by
K(τk, α(k)) = RiUTΣG−1

i Σ−1U.

Proof. If there exist matrices Gi1, Gi2, and Gi3 satisfying the equation given in Lemma 1
and there exist nonsingular matrices Qi that satisfy QiC̄ = C̄Gi, then, consequently, it is
equivalent to:

QiUT [σ 0]VT
i = UT [σ 0]VT

i Gi

The post-multiplication of Vi, (VT
i Vi = I to orthogonal matrix Vi) results in:

QiUT [σ 0] = UT [σ 0]VT
i GiVi

It can be readily derived that

[QiUTσ 0] = [UTσGi1 0]

and Qi = UTσGi1σ−1U. The controller equation is Ki(τk, ᾱ(k)) = RiQ−1
i . The desired gain

is equal to:
Ki(τk, ᾱ(k)) = RiUTσGi1σ−1U

4. Simulation Results

A numerical example is given below with simulation results to validate the applicabil-
ity of the proposed FTC design.

A DC motor system is shown in Figure 3 in a networked environment, where the
state-space representation for the DC motor system is given below. The state variable Ia(t)
is the armature winding current and ω(t) is the motor rotational speed. The inputs are
armature winding input voltage ea(t) and load torque Tl(t), where the physical parameters
are in Table 2. The signal chosen for external disturbance is w(k) = [1/(1 + k2)] ∈ l2[0, ∞)].

d
dt

[
Ia(t)
ω(t)

]
=

[
− R

L −Kb
L

K
J − B

J

][
Ia(t)
ω(t)

]
+

[
− 1

L 0
0 − 1

J

][
ea(t)
Tl(t)

]
by using the physical parameters of Table 2 and the application of the zero-order hold
method of discretization on the inputs with a sampling period of 0.05, the discrete-time
system with the initial conditions is described as:

A =

[
0.2379 −0.0022

8.96 0.9223

]
, B =

[
0.158 1.642
1.643 −1131

]
, C =

[
0 1

]
, x0 =

[
0.7 −0.7

]
to demonstrate the simultaneous sensors and actuator faults in the networked environment,
we considered the following sensor and actuator faults.

yF(k) = diag(1, 0.7)ᾱ(k)y(k− τk),

uF(k) = diag(1, 0.7)u(k)
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the value 0.7 denotes that the sensor and actuator are 30 percent faulty, meaning they
are working at 70 percent. Probabilities of the stochastic variable ᾱ(k) for data packet
dropouts are given in Figure 4 with the probability E[a(k)] = ᾱ(k) = 0.7. τ1 = 3 is the
maximum time-delay in the network links that are shown in the same Figure 4. The
transition probability matrix ρ for the time-delays τk using the Markov chain is given as

ρ =


0.3 0.54 ? 0.25
? 0.17 0.98 ?

0.65 0.36 ? 0.29
0.3 ? 0.85 ?

, α̂i(0) = I(2)

where the ”?” in the matrix are unknown transition probabilities. The Markov evolution of
control mode is shown in Figure 5.

Table 2. Numerical values for the state space equation of DC motor.

DC Motor Parameter

Parameter Description Value

J Inertia of the rotor 42.6× 10−6 kgm2

R Electrical resistance 0.170 ohm
L Electrical inductance 4.67H
B Damping coefficient 47.3× 10−8

K Torque constant 14.7× 10−3 Nm/A
Kb Back-EMF constant 14.7× 10−3 Vs/rad

Figure 3. Networked DC motor control system.
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Figure 4. Network-induced stochastic faults α(k) with ᾱ(k) = 0.6 and time-delay τk = 3.

Figure 5. Evolution of Markov chain.

This 30 percent sensor fault is applied at k = 7, as shown in Figure 6. The proposed
FTC technique successfully tolerates its effects and stabilizes the states. The 70 percent
actuator fault is applied at k = 15 simultaneously with the sensor fault. The states are
still stable, even in the presence of simultaneous sensor and actuator faults. To show the
applicability of the proposed FTC, we increased the magnitude of sensor and actuator
faults up to 70 percent. The proposed FTC tolerates the simultaneous effects of 70 faults, as
shown in Figure 7.
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Figure 6. Tolerance of 30 percent sensor and actuator simultaneous faults.

Figure 7. Case 2: Multiple (sensor and actuator) types of simultaneous faults. Fault level is 70 percent.

Comparative Analysis: To compare the results of the proposed FTC with conventional
controllers, we simulated the aforementioned data as they were, with a conventional
controller. The results are given in Figure 8, which demonstrates that the conventional
controller is unable to tolerate the effects of faults and cannot stabilize the states of the DC
motor in the presence of faults in a networked environment. Gain matrices are given for
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the case when we consider 70 percent simultaneous sensor and actuator faults under the
proposed FTC in a networked environment.

K1 =

[
−0.0587
−0.0199

]
, K2 =

[
−0.0587
−0.0199

]
, K3 =

[
−0.0150
−0.0242

]
, K4 =

[
−0.1857
−0.1912

]

Figure 8. State response of the networked DC motor system under normal FTC.

5. Conclusions

This research proposed two new fault models for sensors and actuators in a networked
environment, along with a new FT-NCS scheme. The proposed fault models adequately
address the faulty effects at the node and network levels. In these fault models, network-
induced time-delay and packet dropouts are modeled simultaneously using the Markov
chain with complex TPs and Bernoulli process, respectively. The FT-NCS scheme is an
output feedback-based strategy where the controller depends on the networked affected
output of the system. The proposed scheme successfully tolerates the effects of simulta-
neous sensor and actuator faults. A numerical example together with simulation results
verifies the performance and stochastic stability of the networked systems. Designing a
dynamic controller gain can further improve the tolerance capability of the proposed FTC
design for practical applications.

Author Contributions: Conceptualization, M.A.A.; Methodology, A.M. (Atif Mahmood); Software,
A.S.K.; Formal analysis, A.M. (Atif Mahmood) and A.Q.K.; Resources, N.U., A.M. (Alsharef Moham-
mad) and A.N.; Writing—original draft, A.M. (Atif Mahmood); Writing—review & editing, A.M.
(Atif Mahmood). All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deanship for Research and Innovation, Ministry of Education
in Saudi Arabia through the project number: IFP22UQU4290235DSR217.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to the Deanship for Research and Inno-
vation, Ministry of Education in Saudi Arabia for funding this research work through the project
number: IFP22UQU4290235DSR217.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 996 14 of 14

Abbreviations
The following abbreviations are used in this manuscript:

NCS Networked Control System
FTC Fault-Tolerant Control
TP Transition Probabilities

References
1. Kang, W.; Cheng, J.; Wang, B.; Park, J.; Fardoun, H.M. Event-triggered reliable control for Markovian jump systems subject to

nonuniform sampled data. J. Frankl. Inst. 2017, 354, 5877–5894. [CrossRef]
2. Zhang, T.; Gao, J.; Li, J. Event-triggered Hin f filtering for discrete-time Markov jump delayed neural networks with quantizations.

Syst. Sci. Control. Eng. 2018, 6, 74–84. [CrossRef]
3. Qu, H.; Wei, N.; Li, M.; Li, Y. Observer-based guaranteed cost control for networked control systems with packet dropout and

nonlinear disturbance. Trans. Inst. Meas. Control 2020, 30, 3039–3053. [CrossRef]
4. Bahreini, M.; Farsangi, M.M.; Lee, K.Y. Output feedback stabilization of networked brushless dc motor with random delay via

Markovian jump systems. IFAC-Pap. Line 2015, 30, 55–60. [CrossRef]
5. Xu, Z.; Ni, H.; Reza Karimi, H.; Zhang, D. A Markovian jump system approach to consensus of heterogeneous multiagent systems

with partially unknown and uncertain attack strategies. Int. J. Robust Nonlinear Control 2020, 30, 3039–3053. [CrossRef]
6. Li, Y.; Yu, Z.; Liu, Y.; Ren, J. Stochastic Stabilization for Discrete-Time Markovian Jump Systems With Time-Varying Delay and

Two Markov Chains Under Partly Known Transition Probabilities. IEEE Access 2021, 9, 26937–26947. [CrossRef]
7. Zhang, X.; Lu, W. Stability and stabilization analysis of Markovian jump systems with generally bounded transition probabilities.

IEEE Access 2020, 13, 8416–8434.
8. Sun, H.-J.; Zhangp, Y.; Wu, A.-G. Stochastic stability analysis of Markovian jump linear systems with incomplete transition

descriptions. IEEE Access 2018, 12, 1974–1982. [CrossRef]
9. Zhang, Y.; He, Y.; Wu, M.; Zhang, J. Stabilization for Markovian jump systems with partial information on transition probability

based on free-connection weighting matrices. IEEE Access 2011, 47, 79–84. [CrossRef]
10. Qiu, L.; Shi, Y.; Xu, B.; Yao, F. Robust stochastic stability and delayed-state-feedback stabilisation of uncertain Markovian jump

linear systems with random time delays. IET Control Theory Appl. 2015, 9, 1878–1886. [CrossRef]
11. Zhang, J.; Peng, C.; Fei, M.-R.; Tian, Y.-C. Output feedback control of networked systems with a stochastic communication

protocol. J. Frankl. Inst. 2017, 9, 3838–3853. [CrossRef]
12. Tan, C.; Li, L.; Zhang, H. Stabilization of networked control systems with both network-induced delay and packet dropout.

Automatica 2015, 59, 194–199. [CrossRef]
13. Nazir, M.; Khan, A.Q.; Mustafa, G.; Abid, M. Robust fault detection for wind turbines using reference model-based approach. J.

King Saud Univ.-Eng. Sci. 2017, 29, 244–252. [CrossRef]
14. Bahreini, M.; Zarei, J. Robust finite-time fault-tolerant control for networked control systems with random delays: A Markovian

jump system approach. Nonlinear Anal. Hybrid Syst. 2020, 36, 100873. [CrossRef]
15. Khan, A.S.; Khan, A.Q.; Iqbal, N.; Sarwar, M.; Mahmood, A.; Shoaib, M.A. Distributed fault detection and isolation in second

order networked systems in a cyber–physical environment. ISA Trans. 2020, 103, 131–142. [CrossRef]
16. Mahmood, A.; Khan, A.Q.; Mustafa, G.; Ullah, N.; Abid, M.; Khan, A.S. Remote Fault-Tolerant Control for Industrial Smart

Surveillance System. Math. Probl. Eng. 2021, 2021, 1–12. [CrossRef]
17. Shen, M.; Yan, S.; Zhang, G. A new approach to event-triggered static output feedback control of networked control systems. ISA

Trans. 2016, 65, 468–474. [CrossRef] [PubMed]
18. Liu, X.; Ma, G.; Pagilla, P.R.; Ge, S.S. Dynamic output feedback asynchronous control of networked Markovian jump systems.

IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 2705–2715. [CrossRef]
19. Ye, Z.; Zhang, D.; Cheng, J.; Wu, Z.-G. Event-Triggering and Quantized Sliding Mode Control of UMV Systems Under DoS Attack.

IEEE Trans. Veh. Technol. 2022, 71, 8199–8211. [CrossRef]
20. Mohsen, B.; Jafar, Z. Robust fault-tolerant control for networked control systems subject to random delays via static-output

feedback. ISA Trans. 2019, 153–162.
21. Bahreini, M.; Zarei, J.; Razavi-Far, R.; Saif, M. Robust fault-tolerant control of uncertain networked control systems subject to

random delays and data packet dropouts. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; Volume 9, pp. 2459–2464.

22. Zhu, Q.; Lu, K.; Zhu, Y. Guaranteed Cost Fault-Tolerant Control of Double-Fault Networked Control Systems: 304 Piecewise
Delay Method. IEEE Trans. Syst. Man Cybern. Syst. 2019, 2019. [CrossRef]

23. Zhu, Q.; Lu, K.; Zhu, Y. Observer-based feedback control of networked control systems with delays and packet dropouts,
Automatica. J. Dyn. Syst. Meas. Control 2016, 59, 194–199.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.jfranklin.2017.07.026
http://dx.doi.org/10.1080/21642583.2018.1531360
http://dx.doi.org/10.1177/01423312221105140
http://dx.doi.org/10.1016/j.ifacol.2015.12.353
http://dx.doi.org/10.1002/rnc.4923
http://dx.doi.org/10.1109/ACCESS.2021.3053865
http://dx.doi.org/10.1049/iet-cta.2017.1445
http://dx.doi.org/10.1016/j.automatica.2010.09.009
http://dx.doi.org/10.1049/iet-cta.2014.1138
http://dx.doi.org/10.1016/j.jfranklin.2016.02.009
http://dx.doi.org/10.1016/j.automatica.2015.06.026
http://dx.doi.org/10.1016/j.jksues.2015.10.003
http://dx.doi.org/10.1016/j.nahs.2020.100873
http://dx.doi.org/10.1016/j.isatra.2020.03.014
http://dx.doi.org/10.1155/2021/9927113
http://dx.doi.org/10.1016/j.isatra.2016.08.014
http://www.ncbi.nlm.nih.gov/pubmed/27592082
http://dx.doi.org/10.1109/TSMC.2018.2827166
http://dx.doi.org/10.1109/TVT.2022.3175726
http://dx.doi.org/10.1155/2019/6348727

	Introduction
	Problem Formulation
	Proposed Fault Models for Networked Systems
	Network-Induced Uncertainties Modeling
	Time-Delay Modeling
	Packet Dropout Modeling

	Output Feedback-Based Controller Design

	Fault-Tolerant Control for Networked System
	Simulation Results
	Conclusions
	References

