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Abstract: This paper presents a novel switching mode control scheme for the six-DOF hovering con-
trol of underactuated quadrotor unmanned aerial vehicles (QUAVs) with strong coupling. Through
this paper, the full six states of the position and attitude of the QUAV can be controlled to the special
target configuration in a fixed time. First, a continuously differentiable fixed time controller with a
state constraint was designed for the position system. Second, a fixed-time integral sliding mode
controller was designed for the attitude subsystem. Thirdly, a switching law was designed to switch
the above two types of controllers a limited number of times during hovering control. Additionally,
the crash problem is fully discussed during the entire control process. In summary, the full-state hover
mission was completed. The simulation experiments verify the effectiveness of the control algorithm.

Keywords: fixed-time control; flight control; quadrotor unmanned aerial vehicles; special posture;
switching mode

MSC: 68T40; 70E60; 93B12; 93B53; 93C35; 93C85; 93D05; 34A34

1. Introduction
1.1. Background and Motivations

The quadrotor unmanned aerial vehicle (QUAV) is a kind of rotor micro-QUAV
that combines the characteristics of nonlinearity, underactuation, strong coupling, and
multivariability, etc. Its mechanical structure is simple, compact, and flexible, and it has
important military and civil value [1]. Therefore, an increasing amount of scholars focus
on the QUAV flight control, such as hovering control and tracking control. Among them,
hovering control is one of the most basic and essential flight control methods for making the
QUAV reach the target position first and then hovering in a specified attitude. For example,
hovering control is indispensable for aerial performances or the delivery of goods using the
QUAV in life. Therefore, it is valuable to design a controller with an excellent performance
to control the QUAV to accomplish hovering tasks [2].

The QUAV can directly control the attitude angle and flight height by adjusting
the rotational speeds of the four propellers during the flight, whereas the horizontal
position can only be controlled indirectly through the coupling relationship between the
QUAV attitude angle and the horizontal position. However, in addition to coupling and
underactuation, external environments such as wind and magnetic fields can also affect the
flight of the QUAV, which can lead to a crash event [3]. All of these factors make the design
of a hovering controller for quadrotors challenging.

At present, many scholars have designed various controllers for the above problem,
such as dual-loop controllers [4], robust backstepping controllers based on fuzzy compensa-
tion [5], and backstepping adaptive controllers (BACs) [6]. Although they can accomplish
hover control to some extent, they are unable to control both the position and attitude to
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a specified configuration at the same time. Therefore, the focus of this paper is to design
controllers with a superior performance to perform the hovering control of QUAVs while
simultaneously reaching special positions and attitudes without crashing.

1.2. Literature Review

Up until now, a number of linear and nonlinear control methods have been reported
to control quadrotor UAV flight control. With the development of artificial intelligence,
some scholars proposed an artificial neural network (ANN) algorithm. An adaptive neural
trajectory controller was set up to finish the control task in [7]. Rao et al. proposed a
cascaded fuzzy neural net control method for position control that effectively reduces the
overshoot and stabilization time [8]. Wang et al. proposed a non-singular fast terminal
sliding mode control strategy to achieve the asymptotic stabilization of the error system [9].
Li et al. designed a generalized proportional integral observer-based finite-time composite
control strategy that effectively solves the attitude deviation problem caused by wind
disturbance [10]. However, these control methods can only achieve an asymptotic or
finite-time stabilization of the system. Although the system state will eventually reach the
equilibrium point, the convergence time cannot be determined, and its upper bound is
related to the initial state, which will increase infinitely as the initial state tends to infinity.
Both the uncertainty of the initial state and the infinity of time bring great obstacles to the
application of control methods in practice.

To solve this problem, the concept of fixed-time stability was first proposed by
Polyakov, which mainly shows that the convergence time of the system is only related
to the system parameters and is independent of the initial state [11]. This important fea-
ture has laid an essential theoretical foundation for scholars to design fixed-time control
algorithms that are more applicable in practical engineering. To better resist disturbances,
a robust tracking control scheme based on a fixed-time perturbation observer was pro-
posed in [12,13]. In [14], a combination of a fixed-time and sliding mode control observer
was designed to effectively deal with ground effects and blade damage in the attitude
subsystem. In [15], an active fault-tolerant control scheme based on fixed-time linear
self-anti-disturbance control was designed. Based on the homogeneity theory and the
Lyapunov stability method, a double-loop fixed-time controller was designed for attitude
control in [16]. Based on the design idea of internal and external separation, a fixed-time
output feedback trajectory tracking control strategy was designed by [17]. However, the
influence of the altitude constraint existing in the flight control process of the QUAV has
been neglected in all of the previous papers.

In fact, due to the coupling nature of the QUAV system, the altitude will keep changing
with other states during the flight. Therefore, the control process should ensure that its
flight altitude is always higher than the safety altitude; otherwise, it may make the QUAV
crash. However, the current literature on the flight control of QUAVs hardly considers it,
except for [18], which designs a trajectory optimization algorithm based on the Gaussian
pseudospectral method of altitude that gives an altitude constraint. However, it should
be noted that this work is not fixed time, which means that the convergence time has
uncertainty. For this shortcoming, the fixed-time control algorithm with constraints is
considered in this paper.

It is well known that sliding mode control algorithms play a significant role in the
control of nonlinear systems. Therefore, many scholars have combined fixed-time the-
ory with sliding mode control and proposed various new control strategies. Based on
the appointed fixed-time sliding mode variables and adaptive techniques, an improved
adaptive sliding mode law was designed [19]. A flatness-based fixed-time sliding mode
control strategy was proposed for the quadrotor trajectory tracking problem subject to
external disturbances [20]. A new continuous non-singular terminal sliding mode control
was designed so that the sliding motion was fixed-time stable and not affected by the initial
conditions of the system [21]. Ref. [22] proposed a new integral-type sliding mode adaptive
technique based on fixed-time control law to suppress system perturbations and actuator
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failures. However, this work only considers the attitude angle control and ignores the
importance of position control. Further studies will be seen in this research.

To be able to control more states of this multivariable system, and to better accomplish
the control tasks, scholars must fully analyze the model structure of the QUAV. The original
system can be seen as a dynamic system that is composed of two subsystems: one is a
dynamic subsystem composed of three position variables, and the other is a dynamic
subsystem composed of three angle variables. A non-singular fast terminal sliding mode
control (NFTSMC) algorithm was designed in [23] based on the extended state observer
(ESO) in order to complete the control task of three attitude angles, but the position control
was not analyzed. Researchers carried out further research, and a novel adaptive robust
control approach was proposed that can realize altitude control based on attitude angle
control [24]. In reality, position control is very essential for hovering. Because the attitude
subsystem can be decoupled into three attitude angle subsystems for separate control,
attitude control is relatively easy. In contrast, for the position subsystem, three position
coordinates have only one control input, and when the attitude angle changes, the position
coordinates also change; thus, it is difficult to complete the control task of the three states of
the position. Therefore, scholars have fully analyzed the coupling between the position and
the attitude angle, and they have finally realized that a total of four states of the position
and yaw angle can be controlled to a target value [21,25,26]. However, the roll angle and
pitch angle cannot be freely controlled due to coupling, and they can only be controlled to
certain unknown angles, which are derived from the position controller [27–29]. In order to
overcome this challenge, this research starts from hovering control and combines the theory
of homogeneity with the fixed-time control method to conduct a deep study. According
to the requirement of stability, the conditions where six configuration variables can be
completely stabilized are given in this research. Then, it is devoted to designing a new
scheme for solving six state control problems of QUAVs.

1.3. Contribution

Motivated by the above research on QUAV control algorithms, this paper implements
six-DOF hovering control for a given desired posture in a fixed time. The main contributions
are as follows.

(1) The position and attitude control of the QUAV achieve simultaneous stability. Dif-
ferent from the article [30], which only achieves the asymptotic stabilization of the
position and yaw angle four-state control error system, the algorithm designed in this
paper can completely control the configuration of the QUAV so as to realize hovering
in a finite time at the equilibrium point that can be simultaneously stabilized.

(2) A novel switching mode control algorithm is designed. Compared with the work
in [31], which only analyzes the position and attitude subsystems separately, this
paper not only analyzes the overall system control process in detail but also realizes
the full-state control of the position and attitude to the target posture.

Furthermore, this switching control method consists of a fixed-time controller with
constraints and a fixed-time integral sliding mode controller (FTISMC), which has never
been designed in UAV control before. Compared with [32], in addition to allowing the
system to achieve fixed-time stability, it also ensures that the altitude always meets the
no-crash requirement, and further improves the control performance by eliminating the
steady-state error with the help of the integral term.

(3) To avoid a crash, the altitude change of the QUAV during the whole flight control pro-
cess is analyzed in detail. The second-order differentiable fixed-time control algorithm
with constraints is designed in the position loop to avoid the crash effectively.

1.4. Paper Organization

The paper is organized as follows: The QUAV system model, the research questions,
and some necessary preliminaries are proposed in Section 2. The controller design details
and stability analysis are given in Section 3. Simulations and comparative tests are per-
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formed in Section 4. The conclusions are given in Section 5. In addition, some important
lemmas and proofs are presented in the Appendix A.

Notations: Throughout this paper, for a vector x = (x1, . . . , xn)T ∈ Rn, we denote
x̄j = (x1, . . . , xj)

T ∈ Rj, j = 1, . . . , n. For any a > 0 and x ∈ R, the function dxea is defined
as dxea = xa for x > 0; dxea = 0 for x = 0; dxea = −|x|a for x < 0; and the function dxca is
defined as dxca = |x|asign(x), where:

sign(x) =


1, x > 0
[−1, 1], x = 0
−1, x < 0.

The value of sign(x) takes a random value of between [−1, 1] when x = 0. Further-
more, for the convenience of writing, the arguments of the functions are omitted whenever
no confusion arises in the context.

2. Model Description and Problem Formulation
2.1. Model of QUAVs

The QUAV is an underactuated system with four inputs and six outputs. The theoreti-
cal model of a QUAV is shown in Figure 1, which establishes the ground coordinate system
and the body-fixed coordinate system. The earth-based coordinate system {E} (Oe, xe, ye, ze)
and the body-fixed coordinate system {B} (Ob, xb, yb, zb) are introduced to describe the posi-
tion {x, y, z} and the attitude angles {φ, θ, ψ} of the QUAV. In addition, the power system
of the drone mainly consists of four micro-motors and propellers [33]. This subsection
combines physical laws and mathematical methods to model the dynamics of the QUAV.

Figure 1. The theoretical model of QUAV.

Define the angular velocities of the four rotors as ω1, ω2, ω3, ω4; the total lift in the zb
direction as U1, and the torques around the body frame axis as U2, U3, and U4 [34].

U1(t) = b
m (ω2

1(t) + ω2
2(t) + ω2

3(t) + ω2
4(t)),

U2(t) = lb
Jx
(−ω2

2(t) + ω2
4(t)),

U3(t) = lb
Jy
(−ω2

1(t) + ω2
3(t)),

U4(t) = d
Jz
(−ω2

1(t) + ω2
2(t)−ω2

3(t) + ω2
4(t)),

(1)

where m is the mass, b denotes the lift coefficient, d denotes the antitorque coefficient, and
l is the length of the quadrotor arm. Jx, Jy, and Jz are the moments of inertia in Table 1.
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Table 1. Parameters of QUAV dynamics.

Parameter Meaning[
x y z

]T Coordinates in the inertial frame[
φ θ ψ

]T Roll, pitch, and yaw angles[
Jx Jy Jz

]T Inertial moments, along with given directions[
ω1 ω2 ω3 ω4

]T Angular velocities of the four rotors[
U1 U2 U3 U4

]T Thrust and torques, along with given directions[
m g

]T Mass and gravitational acceleration[
b d l

]T Lift coefficient, antitorque coefficient, and length of the quadrotor arm

In order to simplify the problem, the external inference factors such as the air resistance
and gyro effect are ignored. Considering the QUAV as a rigid body and its structure as
symmetrical, the model of QUAV can be obtained as in [21,35]:

ẍ = U1(cosφsinθcosψ + sinφsinψ),
ÿ = U1(cosφsinθsinψ− sinφcosψ),
z̈ = U1cosφcosθ − g,
φ̈ = 1

Jx
(Jy − Jz)θ̇ψ̇ + U2,

θ̈ = 1
Jy
(Jz − Jx)φ̇ψ̇ + U3,

ψ̈ = 1
Jz
(Jx − Jy)φ̇θ̇ + U4,

(2)

where x, y, and z represent the position in the inertial frame; g is the gravity coefficient; and
φ, θ, and ψ represent the roll angle, pitch angle, and yaw angle, respectively.

To simplify the dynamics model, the following definitions are introduced:

x1 = φ(t), x2 = φ̇(t), x3 = θ(t), x4 = θ̇(t),

x5 = ψ(t), x6 = ψ̇(t), x7 = x(t), x8 = ẋ(t),

x9 = y(t), x10 = ẏ(t), x11 = z(t), x12 = ż(t).

(3)

Thus, the model of the QUAV (2) can be rewritten as follows:

φ̈ = ẍ1 = ẋ2 = a1x4x6 + U2,
θ̈ = ẍ3 = ẋ4 = a2x2x6 + U3,
ψ̈ = ẍ5 = ẋ6 = a3x2x4 + U4,
ẍ = ẍ7 = ẋ8 = U1(cosx1sinx3cosx5 + sinx1sinx5),
ÿ = ẍ9 = ẋ10 = U1(cosx1sinx3sinx5 − sinx1cosx5),
z̈ = ẍ11 = ẋ12 = U1cosx1cosx3 − g,

(4)

where ai are the standard parameters for i = 1, 2, 3, and

a1 =
Jy − Jz

Jx
, a2 =

Jz − Jx

Jy
, a3 =

Jx − Jy

Jz
.

2.2. Problem Formulation

In this research, the hovering problem of special postures is fully considered. The re-
ports in [30,31,36] also study the QUAV hover control problem and accomplish the task
of controlling a total of four states of the position and yaw angles to the target attitude.
However, the roll angle and pitch angle are limited by the output of the position controller
and cannot be freely controlled. Therefore, the control objective of this research is to design
a controller that generates torque to allow the position and attitude of QUAV to hover
steadily in the desired position and attitude. In addition, in order to ensure that the UAV
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will not fall from a high place to the ground, the safe flight height H0 is given. It is required
that the flight altitude of the four-rotor UAV is always greater than the given safe altitude;
that is, there will be no crash.

Give the desired trajectory {xT , yT , zT , φT , θT , ψT}. Since hovering is in a fixed posture,
the desired trajectory is a constant. By using Equation (3), it is clear that the control errors
in the position loop and attitude loop can be defined as Equation (5), respectively:

e1(t) = x1(t)− φT , e2(t) = x2(t),

e3(t) = x3(t)− θT , e4(t) = x4(t),

e5(t) = x5(t)− ψT , e6(t) = x6(t),

e7(t) = x7(t)− xT , e8(t) = x8(t),

e9(t) = x9(t)− yT , e10(t) = x10(t),

e11(t) = x11(t)− zT , e12(t) = x12(t).

(5)

Therefore, the control objective is to design a controller so that the errors converge to
zero in a fixed time with no crash, i.e., ei converges to zero in a fixed time for i = 1, 2, . . . , 12,
and no crash.

3. Controller Design and Stability Analysis

It is known that the QUAV system (4) is controllable according to the literature [37]
controllability proof. It is easy to see from the form of the system (4) that the states of
the three attitude angle equations are completely controllable, and that it is not difficult
to control them. The difficulty is that there is only one control input U1 for the three
position coordinate equations, which are nonlinear coupled by the sine cosine of the three
attitude angles. It may need to be maintained at three special attitude angles to become
controllable. Therefore, our control idea is to design a switching rate, switching back and
forth between three position equation controls and the three attitude equation controls, and
finally achieving the given value of six position and attitude variables.

Next, the control laws of the two subsystems are designed, respectively, and then the
switching law is designed.

3.1. Controller Design of the Position Subsystem

First, we will discuss what position and attitude the QUAV can hover at. Second,
we will discuss how to satisfy this condition. Third, if the condition is satisfied, we will
determine how to design the controller U1 in order to make the three position coordinates
converge to the ideal value in a fixed time.

First, the problem of QUAV hovering to a position is considered. The desired fixed po-
sition {xT , yT , zT} is presented. Obviously, ẋT = ẏT = żT = 0. Using Equations (4) and (5),
it can be obtained that the control errors of the position subsystem can be expressed as:

ė7 = e8,
ė8 = U1(cosφsinθcosψ + sinφsinψ),
ė9 = e10,
ė10 = U1(cosφsinθsinψ− sinφcosψ),
ė11 = e12,
ė12 = U1cosφcosθ − g.

(6)

The equilibrium of the dynamic system above must meet:
U1(cosφsinθcosψ + sinφsinψ) = 0,
U1(cosφsinθsinψ− sinφcosψ) = 0,
U1cosφcosθ − g = 0.

(7)
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According to Equation (7), it is easily seen that U1 6= 0 and Equation (8) can be obtained.{
cosφsinθcosψ + sinφsinψ = 0,
cosφsinθsinψ− sinφcosψ = 0.

(8)

The two equations of Equation (8) are equivalent to sinφ = 0 and sinθ = 0. It can
be concluded that φ = θ = 0 or φ = θ = kπ, where k is an integer. This means that the
true values of φ and θ must be zero when hovering. In other words, if the hovering angles
of the φ and θ ideals given in advance are not zero, it is impossible to achieve the e7 and
e9 convergence to zero. Therefore, the ideal attitude angles given by the hovering of the
QUAV must meet φ = 0 and θ = 0. ψ is not limited. In summary, this means that the
attitude angle of this kind of QUAV when hovering must be {φT , θT , ψT} = {0, 0, ψT}.

The control problem of the position control subsystem (6) is discussed below.
For the position error subsystem (6), the virtual control input signals a(t), b(t), and c(t) in

the x, y, and z directions are defined:
a(t) = U1(cosφsinθcosψ + sinφsinψ),
b(t) = U1(cosφsinθsinψ− sinφcosψ),
c(t) = U1cosφcosθ − g.

(9)

If a(t), b(t), and c(t) can be designed arbitrarily, the system (6) is a state that is a fully
controllable system composed of three fully decoupled second-order integrators. Their
fixed-time control is not difficult to obtain.

Theorem 1. Consider the position error subsystem (6) with Equation (9); then, give the set
Ω={w|w ∈ R, |w| <σ}, where σ is a positive constant. If the continuous fixed-time controllers
are set as: 

a(t) =
∫ t

0 dτ
∫ τ

0 (−β4x(z̄4x)dζ4xer5x ds,
b(t) =

∫ t
0 dτ

∫ τ
0 (−β4y(z̄4y)

⌈
ζ4y
⌉r5y ds,

c(t) =
∫ t

0 dτ
∫ τ

0 (−β4z(z̄4z)dζ4zer5z ds,

(10)

where the parameters r5x, r5y, and r5z; functions β4x(·), β4y(·), β4z(·), ζ4x, ζ4y; ζ4z are selected as
given in Lemma A1 in Appendix A.1; and zix, ziy, and ziz denote the i− 1-th-order derivative of the
position errors e7(t), e9(t), and e11(t), respectively; then, for all initial values e7(0), e9(0), e11(0) ∈ Ω,
the following properties are established.

(i) The states e7(t), e9(t), and e11(t) all stay in the sets Ω for any t ≥ 0, respectively.
(ii) The position error ei(t), i = 7, 8, . . . , 12 is regulated to zero in a fixed settling time T.

See Appendix A.3 for the proof of Theorem 1.

Remark 1. In some references, Equation (10) is often written in the following form:
a(t) = −β4x(z̄4x)dζ4xer5x ,
b(t) = −β4y(z̄4y)

⌈
ζ4y
⌉r5y ,

c(t) = −β4z(z̄4z)dζ4zer5z .

None of the above three expressions can be differentiated, especially at the origin, or are even
discontinuous. When the QUAV is controlled to the ideal position, the angle of the QUAV is
required to be controlled to the attitude angle, which requires that it is second-order steerable. Thus,
here, we use the second integral.
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Remark 2. The controller designed in comparison [35] is discontinuous, and the virtual control law
designed in this paper is continuous and differentiable, which lays the foundation for the smoothness
required for the attitude angle to reach a special attitude angle.

The above theorem shows that if the virtual controller can be designed as a(t), b(t),
and c(t), as defined in Equation (10), the hovering of three position coordinates can be
completed. The following discusses what kind of situation a(t), b(t), and c(t) can be
designed in order to look like Equation (10). Consider the necessity first.

Assuming that a(t), b(t), and c(t) are given according to Equation (10), consider
whether U1(t), φ(t), θ(t), and ψ(t) can satisfy Equation (9). According to the mathematical
derivation, Equation (9) is equivalent to Equation (11).

acosψ + bsinψ = U1cosφsinθ,
asinψ− bcosψ = U1sinφ,
c + g = U1cosφcosθ.

(11)

For a given a(t), b(t), and c(t), they depend only on the position and their derivative in-
formation, and are independent of the angle variable. We will consider how U1(t), φ(t), θ(t),
and ψ(t) satisfy Equation (11).

Proposition 1. Equation (11) has a solution in the following form.
U1(t) =

√
a2 + b2 + (c + g)2,

φd(t) = 0,

θd(t) = atan2(
√

a2+b2

U1
, c+g

U1
),

ψd(t) = atan2( b√
a2+b2 , a√

a2+b2 ).

(12)

The properties of the arctangent function are described in Appendix A.2, Property A1.
Additionally, see Appendix A.4 for the proof of Proposition 1.

The above proposition shows that, as U1(t) is designed according to Equation (12),
U2(t), U3(t), and U4(t) can be designed so that φ(t), θ(t), and ψ(t) are equal to the three
angles φd(t), θd(t), and ψd(t), respectively, given by Equation (12) within a fixed time. After
that time, Equation (11) is established, and, thus, Equation (9) is established. In this way, if
a(t), b(t), and c(t) are provided by Equation (10), it can be seen from Theorem 1 that the
position errors of the three position coordinates converge to zero in a fixed time.

Remark 3. Compared to the virtual control inputs designed in [25,38], which are not second-order
differentiable, the virtual control inputs a(t), b(t), and c(t) designed in this work are continuously
second-order differentiable. Therefore, the target attitude angles θd(t)andψd(t) are also continuously
second-order differentiable, which lays the foundation for subsequent attitude control.

According to the above analysis, in the flight control process, the three attitude angles φ(t), θ(t),
and ψ(t) should be controlled to φd(t), θd(t), and ψd(t) in a fixed time, as shown in Equation (12)
at first. Each of the three attitude angles is a second-order system relative to its control input.
In order to control the three angles to an ideal value of φd(t), θd(t), and ψd(t), respectively, the
second derivative of φd(t), θd(t), and ψd(t) with respect to time must exist. The previous research
only noticed that seeking a solution of the equation system (11), i.e., the form of (12), did not consider
that the subsequent control implementation requires a second derivative, which is the reason for why
we propose a double-integral fixed-time controller (10) in the article.

Next, consider how to design U1(t), U2(t), U3(t), and U4(t) so that the three attitude
angles can reach the desired attitude angles satisfying Equation (12) in a fixed time.



Mathematics 2023, 11, 994 9 of 28

3.2. Controller Design of the Attitude Subsystem

In this subsection, the fixed-time integral sliding mode controller is designed to com-
plete the attitude angle tracking control task. U1(t) is designed according to Equation (12).
Now, consider the design problem for U2(t), U3(t), and U4(t).

Consider three expected attitude angles φd(t), θd(t), and ψd(t), which satisfy Equation (12).
The dynamic equation of the attitude angle error can be expressed based on Equations (4) and (5)
as follows: 

ė1 = ẋ1 − φ̇d = e2,
ė2 = ẍ1 − φ̈d = a1x4x6 + U2 − φ̈d,
ė3 = ẋ3 − θ̇d = e4,
ė4 = ẍ3 − θ̈d = a2x2x6 + U3 − θ̈d,
ė5 = ẋ5 − ψ̇d = e6,
ė6 = ẍ5 − ψ̈d = a3x2x4 + U4 − ψ̈d.

(13)

For the attitude error subsystem (13), define the following integral sliding surfaces as:

se1(t) = e2(t) + k1

∫ t

0
(de1(τ)c$1 + de1(τ)c+ de1(τ)c$

′
1)dτ

+ k2

∫ t

0
(de2(τ)c$2 + de2(τ)c+ de2(τ)c$

′
2)dτ,

se3(t) = e4(t) + k3

∫ t

0
(de3(τ)c$3 + de3(τ)c+ de3(τ)c$

′
3)dτ

+ k4

∫ t

0
(de4(τ)c$4 + de4(τ)c+ de4(τ)c$

′
4)dτ,

se5(t) = e6(t) + k5

∫ t

0
(de5(τ)c$5 + de5(τ)c+ de5(τ)c$

′
5)dτ

+ k6

∫ t

0
(de6(τ)c$6 + de6(τ)c+ de6(τ)c$

′
6)dτ,

(14)

where the parameters ki, $i, and $′i, (i = 1, . . . , 6) are selected as given in Appendix A.1,
Lemma A2.

To solve this tracking problem, the following fixed-time sliding mode control scheme
is developed.

Theorem 2. Considering the attitude error subsystem (13), the following fixed-time integral sliding
mode controllers are set as:

U2(t) = −k1(de1c$1 + de1c+ de1c$
′
1)− k2(de2c$2 + de2c+ de2c$

′
2)

− k1(dse1c
1+ 1

µ + dse1c+ dse1c
1− 1

µ )− a1x4x6 + φ̈d,

U3(t) = −k3(de3c$3 + de3c+ de3c$
′
3)− k4(de4c$4 + de4c+ de4c$

′
4)

− k3(dse3c
1+ 1

µ + dse3c+ dse3c
1− 1

µ )− a2x2x6 + θ̈d,

U4(t) = −k5(de5c$5 + de5c+ de5c$
′
5)− k6(de6c$6 + de6c+ de6c$

′
6)

− k5(dse5c
1+ 1

µ + dse5c+ dse5c
1− 1

µ )− a3x2x4 + ψ̈d,

(15)

where ρ > 0 and µ > 1 are constants, such that the origin of system (13) is fixed-time stable for any
initial condition.

Remark 4. From the composition of the above three controllers, we can see that, here, the second
derivatives of φd, θd, and ψd with respect to time are required. It can be deduced from (12) that the
second derivative of a, b, and c is also required. This is the reason for why we use the double integral
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in Equation (10) of Theorem 1: because the integrand of Equation (10) is not differentiable. However,
many previous studies only used the (10) integrand as virtual control inputs, which are difficult to
implement in practice.

Proof. Due to the symmetry, we only need to prove that e1 and e2 meet the conclusion
of the theorem. The proof consists of two steps. We first show that the system can reach
se1 = 0 in a fixed time under the controller (15). Then, we will prove that the tracking errors
e1 and e2 converge to zero in a fixed time during the sliding motion se1 = 0.

(1) The candidate Lyapunov function of the φ-subsystem is considered as:

V(e1) = |se1 |. (16)

It is worth noting that the definition of V̇ becomes nontrivial when se1 = 0. This is
because the right-hand side of (16) becomes discontinuous. Then, the concepts of Filippov
solutions and the set-valued Lie derivative need to be applied [39]. Then, we have:

V̇ ∈ sign(se1)ṡe1 |se1∈S0 + sign(se1)ṡe1 |se1∈S1 ,

where S0 = {se1 = 0} and S1 = {se1 6= 0} are two sets. In the sense of Filippov, the case
in which se1 = 0 holds for isolated time instants with zero measure can be disregarded in
these time instants. If se1 = 0 holds along an interval of time with positive measure, then
ṡe1 = 0 holds at these time instants. Thus, the time derivative of V can be evaluated as:

V̇ = sign(se1)ṡe1 .

Considering the integral sliding surface se1 in Equation (14), we obtain:

V̇ = sign(se1)ṡe1

= sign(se1)(ė2 + k1(de1c$1 + de1c+ de1c$
′
1) + k2(de2c$2 + de2c+ de2c$

′
2))

= sign(se1)(a1x4x6 + U2 − φ̈d + k1(de1c$1 + de1c+ de1c$
′
1)

+ k2(de2c$2 + de2c+ de2c$
′
2)).

(17)

Substituting U2 into Equation (17) yields:

V̇ = −k1(|se1 |
1+ 1

µ + |se1 |+ |se1 |
1− 1

µ )

≤ −k1(|se1 |
1+ 1

µ + |se1 |
1− 1

µ )

≤ −k1V1+ 1
µ − k1V1− 1

µ .

(18)

From Lemma A3 in Appendix A.1, the system will reach the sliding surface si = 0 in a
fixed time Tr, where Tr ≤ πµ

2k1
.

(2) When se1 ≡ 0, ṡe1 = 0 can be obtained and the reduced close-loop dynamics for
t ≥ Tr can be deduced as:

ė1 = e2,

ė2 = −k1(de1c$1 + de1c+ de1c$
′
1)− k2(de2c$2 + de2c+ de2c$

′
2).

(19)

According to Lemma A2 in Appendix A.1, system (19) is fixed-time stable at the origin,
i.e., there exists a constant Ts that is independent of the initial conditions, such that ei → 0
for all t ≥ Tr + Ts, i = 1, 2.

Thus, the tracking errors of the roll angle φ converge to zero and remain zero at a fixed
time Tφ ≥ Tr + Ts.

Similar to the above proof, it can be proven that the proposed controllers also guarantee
the QUAV to track its desired trajectory in the θ and ψ attitude channels.
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For the three-attitude angle tracking subsystems composed of Equations (13)–(15), there must
exist a fixed time T = max{Tφ, Tθ , Tψ} so that the tracking errors have ei ≡ 0, i = 1, . . . , 6
as t > T.

3.3. Switching the Control Law for the Full Closed Loop

In the previous two sections, the control laws of the position subsystem and attitude
subsystem are designed, respectively, which can make QUAV realize the position and
attitude control. However, the position error tracking can be completed only when three
special attitude angles are required, and these special attitude angles are not necessarily the
ideal attitude angles that we want. The ideal attitude angle cannot achieve the convergence
of the position tracking error. Therefore, it is necessary to design a switching rate between
the two subsystems to realize the final and complete simultaneous tracking of all six
pose variables.

It is easy to know that, in the overall control of QUAV position and attitude, the
altitude is always changing, and it is very likely to crash during descent. Therefore, it is
necessary to analyze whether the QUAV will crash in the process of altitude change. Given
the safe take-off height H0, the initial take-off altitude of the QUAV satisfies z(0) ≥ H0.
Additionally, the desired altitude zT is always higher than the safe take-off altitude H0.
Then, it is convenient to derive the following proposition.

Proposition 2. If the initial height error e11(0) meets |e11(0)| < zT − H0, then the QUAV will
not crash during flight under the control of controller (10).

Proof. Firstly, considering the following altitude subsystem:

ė11(t) = e12(t), ė12(t) = c(t). (20)

It follows from Theorem 1 that the state e11(t) of system (20) always satisfies the state
constraint under the control of controller (10). Therefore, when the initial height error e11(0) has:

|e11(0)| = |z(0)− zT | < zT − H0,

σ = zT − H0. According to Theorem 1, the height error e11(t) always satisfies:

|e11(t)| = |z(t)− zT | < zT − H0, ∀t ≥ 0. (21)

Equation (21) is equivalent to:{
z(t)− zT < zT − H0,
zT − z(t) < zT − H0.

(22)

Thus, it is easy to obtain H0 < z(t) < 2zT − H0, which makes the QUAV altitude meet
the condition of no crash during flight.

The proof is completed.

Through the above analysis, we can find that the selection of H0 is very important. If the
given QUAV fuselage height is Hb, the safe take-off height H0 should meet Hb ≤ H0 < zT.
The initial take-off height z(0) should meet z(0) ≥ H0. Therefore, in order to prevent the
initial take-off height from being too high to be realized, H0 should not be selected as too
large a value.

Based on the above analysis, the switching controller is designed in the following
three steps.

Step 1: For the given ideal positions xT , yT , and zT , e7, e8, . . . , e12 are defined according
to Equation (5); a, b, and c are defined according to Theorem 1, U1; φd, θd, and ψd are defined
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according to Equation (12); and se1 , se2 , and se3 are specified by (14). U2, U3, and U4 are given
by (15). Taking control law (23), where e1, e2, . . . , e6 are defined according to Equation (13),

U1(t) =
√

a2 + b2 + (c + g)2,

U2(t) = −k1(de1c$1 + de1c+ de1c$
′
1)− k2(de2c$2 + de2c+ de2c$

′
2)

− k1(dse1c
1+ 1

µ + dse1c+ dse1c
1− 1

µ )− ρsign(se1)− a1x4x6 + φ̈d,

U3(t) = −k3(de3c$3 + de3c+ de3c$
′
3)− k4(de4c$4 + de4c+ de4c$

′
4)

− k3(dse3c
1+ 1

µ + dse3c+ dse3c
1− 1

µ )− ρsign(se3)− a2x2x6 + θ̈d,

U4(t) = −k5(de5c$5 + de5c+ de5c$
′
5)− k6(de6c$6 + de6c+ de6c$

′
6)

− k5(dse5c
1+ 1

µ + dse5c + dse5c
1− 1

µ )− ρsign(se5)− a3x2x4 + ψ̈d.

(23)

It is well known that the QUAV drops from time to time. In the process of U2, U3, and
U4, designed in accordance with the Theorem 2 attitude angle, in a fixed time to achieve
{φ, θ, ψ} = {φd, θd, ψd}, the height of the QUAV varies with the angle at the same time.
However, since the attitude angles do not meet the conditions (12) at this stage, U1 designed
by Equation (10) and Theorem 1 can only control the position to approach the desired
position. Hence, to avoid the loss of the QUAV in the process control, the change in height
has to be analyzed.

At the beginning, the initial take-off altitude of the QUAV satisfies z(0) > H0. Thus, it
is easy to obtain:

|e11(0)| = |z(0)− zT | < zT − H0

According to Proposition 2, the QUAV will not crash during flight.
Then, there exists t ≥ T1 such that φ, θ, and ψ converge to φd, θd, and ψd, respectively,

and they remain unchanged. According to the above discussion, this design can ensure
that the QUAV height is within the safe range. When t ≥ T1, we have:

e1 = φ− φT ≡ 0, e2 = φ̇− φ̇T ≡ 0,
e3 = θ − θd ≡ 0, e4 = θ̇ − θ̇d ≡ 0,
e5 = ψ− ψd ≡ 0, e6 = ψ̇− ψ̇d ≡ 0.

(24)

When t ≥ T1, continue to step 2.
Step 2: Continue with the given control law (23). When U2, U3, and U4 ensure that

three attitude angles are stabilized at φT , θd, and ψd, Equation (12) holds, then U1 starts to
control the position to the desired position.

In the process of height control, the QUAV can descend first and then ascend to the
desired altitude. To avoid a crash, it is necessary to ensure that the height of the QUAV still
meets the condition z(t) ≥ H0 in the process of position control.

When the attitude angles are controlled in Step 1, the height of the QUAV always
meets z(t) > H0 in t ∈ [0, T1]. Therefore, the initial error value of the flight height in
Step 2 meets:

|e11(T1)| = |z(T1)− zT | < zT − H0.

Then, according to Proposition 2, the QUAV will also not crash during flight.
Thus, there exist Tx such that x, y, and z converge to xT , yT , and zT , respectively, and

they remain unchanged in t ≥ T1 + Tx.
Then, when T ≥ T1 + Tx, the position errors converge to zero, and the virtual control

inputs a = b = c = 0 can be known from Equation (10). From Equation (12), it can be
known that the pitching angle is θd = 0. Since the control law (23) has always been adopted,
U2 has been controlling θ to converge to θd. Thus, there exists Tθ , such that θ converges to
θd = θT = 0 and remains unchanged in t ≥ T2 = T1 + Tx + Tθ .
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e3 = θ − θT ≡ 0, e4 = θ̇ − θ̇T ≡ 0,
e7 = x− xT ≡ 0, e8 = ẋ− ẋT ≡ 0,
e9 = y− yT ≡ 0, e10 = ẏ− ẏT ≡ 0,
e11 = z− zT ≡ 0, e12 = ż− żT ≡ 0.

(25)

When t ≥ T2, continue to step 3.
Step 3: On the basis of the previous control, there is the attitude angle φ = θ = φT =

θT = 0, so the position subsystem (26) can be obtained.
ẍ(t) = 0,
ÿ(t) = 0,
z̈(t) = U1(t)− g.

(26)

Switch the control law U1, U2, U3, and U4, as shown in Equation (27), where e5 = ψ− ψT.
At this moment, only the yaw angle is not yet controlled to the desired attitude angle ψT .

U1(t) = g,

U2(t) = −k1(de1c$1 + de1c+ de1c$
′
1)− k2(de2c$2 + de2c+ de2c$

′
2)

− k1(dse1c
1+ 1

µ + dse1c+ dse1c
1− 1

µ )− ρsign(se1)− a1x4x6,

U3(t) = −k3(de3c$3 + de3c+ de3c$
′
3)− k4(de4c$4 + de4c+ de4c$

′
4)

− k3(dse3c
1+ 1

µ + dse3c+ dse3c
1− 1

µ )− ρsign(se3)− a2x2x6,

U4(t) = −k5(de5c$5 + de5c+ de5c$
′
5)− k6(de6c$6 + de6c+ de6c$

′
6)

− k5(dse5c
1+ 1

µ + dse5c+ dse5c
1− 1

µ )− ρsign(se5)− a3x2x4 + ψ̈T ,

(27)

Then, there exists t ≥ T3 = T2 + Tψ, such that ψ stabilizes to the desired value ψT and
remains unchanged. {

e5 = ψ− ψT ≡ 0,
e6 = ψ̇− ψ̇T ≡ 0.

(28)

At this time, x and y are not affected and the tracking errors remain zero; then, the
control input U1 = g makes the z state maintain stability.

When t ≥ T3, the control objective is achieved and there will be no crash during
flight control.

Summing up the above process, the following results can be obtained.

Theorem 3. For the dynamic model of QUAV (2), the given desired trajectory {xT , yT , zT , 0, 0, ψT}
and the safe take-off height H0, the switching tracking controllers (23) and (27) allow the QUAV to
accurately track the desired trajectory and result in no crash, i.e., the position and attitude tracking
errors and its derivatives converge to zero with no crash in a fixed time T3.

Remark 5. The function sign(x) in the designed controller will cause obvious chattering in
the control process; thus, the saturation function sat(x) replaces sign(x) in the controllers to
avoid chattering:

sat(x) =

{
1, s > δ
s
δ , |s| ≤ δ.

(29)
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Remark 6. The switching mode control adopted in this paper refers to the control law that switches
the position and attitude, respectively, according to the state change in the whole control process of the
QUAV. Here, if the other sliding mode control is adopted, the problem will be complicated. In addition,
the fixed-time integral sliding mode control law is designed in the attitude subsystem control problem
in this paper. In order to solve the problem of chattering caused by sliding mode control, we adopted an
effective method. On the one hand, adding an integral term in the controller design process is conducive
to weakening the chattering. On the other hand, the saturation function sat(x) is used instead of the
sign function to weaken the chattering of the attitude subsystem [40].

4. Simulation Results

In this section, the effectiveness of the controller proposed in this paper is veri-
fied by a numerical simulation. Give the desired trajectory as [xT , yT , zT , φT , θT , ψT ]

T =
[8, 6, 12, 0, 0, 0]T . In the simulation experiment, the body model parameters of the QUAV
are set as m = 0.468 kg, g = 9.81 m/s2, Jx = Jy = 0.0049 kg·m2, and Jz = 0.0088 kg·m2 in [31].
The initial state of the QUAV is [x, y, z, φ, θ, ψ]T = [0, 0, 2, π

3 , π
4 , 3π

4 ]T , where the safe take-off
height is H0 = 2. With the help of MATLAB/SIMULINK, different controllers are used for
the two subsystems of the position and attitude. The effectiveness of the control strategy
designed in this paper is further proven by the design’s comparative experiment.

4.1. Attitude Tracking Control under FTISMC

The switching controller proposed in this paper requires the attitude subsystem to
control the attitude angles φ, θ, and ψ to φd, θd, and ψd, respectively, and so the effectiveness
of the attitude controller FTISMC is proven first. Four different controllers were used for
the simulation experiments, which are FTISMC, non-singular fast terminal sliding mode
controller (NFTSMC) [23], finite-time controller (FC) [41], and proportional differential
controller (PD). The control parameters used in the experiment are shown in Table 2.
Figure 2 shows the simulation results of the attitude angle tracking error under the control
of different controllers. In Figures 3 and 4, the attitude angle and angular velocity under
the control of different controllers vary with time. From Figures 2–4, it can be seen that
the attitude subsystem controlled by FTISMC has a faster convergence speed compared to
other controllers. Among them, the subsystems controlled by FC and PD converge similarly
and more slowly.

Table 2. The control parameters in the experiments.

Controller Control Parameters

FTISMC
k1 = k3 = k5 = 3.1, k2 = k4 = k6 = 2, $1 = $3 = $5 = 0.6,

$′1 = $′3 = $′5 = 1.667, $2 = $4 = $6 = 0.75, $′2 = $′4 = $′6 = 1.25, µ = 1.5,
ρ = 1, δ = 0.05

NFTSMC
k1 = k2 = k5 = k6 = k9 = k10 = 0.5, k3 = k7 = k11 = 0.8, k4 = k8 = k12 = 1,
λ1 = λ3 = λ5 = 7, λ2 = λ4 = λ6 = 5, q1 = q2 = q3 = 5, p1 = p2 = p3 = 3

FC
ap1 = ap2 = ap3 = 4.5, ad1 = ad2 = ad3 = 5.5, b1 = b3 = b5 = 0.75,

b2 = b4 = b6 = 0.857

PD kp1 = kp2 = kp3 = 3, kd1 = kd2 = kd3 = 4
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Figure 2. Attitude angle tracking error of different controllers.
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Figure 3. Attitude angle tracking trajectories of different controllers.

Additionally, Figure 5 shows the simulation comparison results of the attitude subsys-
tem control of the inputs designed in this paper. Table 3 clearly shows the performances
of different controllers through three performance metrics: stabilization time, maximum
overshoot, and peak time. The FTISMC stabilization time is faster, the maximum overshoot
is acceptable, and the overall control performance is better, as seen in Figure 5 and Table 3.
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Figure 4. Attitude angle tracking trajectories of different controllers.
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Table 3. Summary and comparison of attitude subsystem controllers performances.

Attitude Controller Settling Time(s) Maximum Overshoot Peak Time(s)

Schemes U2 U3 U4 U2 U3 U4 U2 U3 U4

FTISMC 2.174 2.288 2.283 2.647 0.3961 0.9306 0.506 1.447 0.6305
NFTSMC 2.288 2.754 3.531 1.672 0.959 1.072 0.7174 1.403 1.15
FC 4.14 3.74 3.652 0.752 0.079 0.313 0.602 2.062 1.054
PD 4.14 3.94 3.829 0.71 0.074 0.293 0.791 2.062 1.174

Next, the parameter sensitivity of FTISMC is analyzed. The integral gains k1 and k2
determine the returned value of the integral element in the sliding mode variable se1 in (14).
According to (19), the fixed time Tr is inversely proportional to k1. A larger k1 can increase
the convergence rate of se1 , as well as the amplitude of the integral element in (14), but
it may also cause severe chattering. Similarly, a smaller k2 reduces the convergence time
but leads to a smaller overshoot. Additionally, the larger parameters ρ and µ will result in
larger dithering. Thus, we have to choose the right parameters for the experiment.

Taking the φ−subsystem as an example, when FTISMC chooses different parameters
k1 and k2, the simulation results of the roll angle control are shown in Figures 6–9. When
k1 = 3.8 and k2 = 2, although the trajectory converges the fastest, the overshoot is too
large. Additionally, when k1 = 1.6 and k2 = 2, although the overshoot is smaller, the
convergence speed is the slowest. Therefore, the parameters k1 = 3.1 and k2 = 2 are chosen
for the comprehensive experimental comparison. As can be seen by Figures 10–13, the
attitude angle control results do not significantly change with different parameters µ and ρ.
Therefore, the controller is not sensitive to the selection of these two parameters.
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Figure 6. φ of different k1 and k2.
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Figure 7. φ̇ of different k1 and k2.
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Figure 8. eφ of different k1 and k2.
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Figure 12. eφ of different µ and ρ.
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4.2. Position Tracking Control under a Continuous Fixed-Time Controller

To prove the effectiveness of the continuous fixed-time controller with the constraints
proposed in this paper, a comparative test was designed. In the position subsystem, three
different controllers were used for the simulation experiments, which are the fixed-time
controller proposed in this paper, the finite-time controller [41], and the traditional PD
controller. The simulation parameters are shown in Table 4. According to [42], we chose

function βn(x̄n) =
1+∑n

i=1 |xi |2
2 in Appendix A.1, Lemma A1. Figure 14 shows the simulation

results of three different controllers in the position subsystem. Then, Figure 15 shows the
simulation comparison results of the position subsystem control input. Similarly, Table 5
shows the control performances of different control inputs U1 according to three metrics:
stabilization time, maximum overshoot, and peak time.

Table 4. The control parameters in the experiments.

Controller Control Parameters

fixed-time controller σ = 10, v = −0.2, p = 2, l = 3

finite-time controller kp1 = kp2 = kp3 = 4.5, kd1 = kd2 = kd3 = 5.5,
a1 = a3 = a5 = 0.75, a2 = a4 = a6 = 0.857

traditional controller kp1 = kp2 = kp3 = 3, kd1 = kd2 = kd3 = 4
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Figure 14. Position tracking errors of different controllers.
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Table 5. Summary and comparison of attitude subsystem controllers performances.

Position Controller U1 Settling Time(s) Maximum Overshoot Peak Time(s)

fixed-time controller 3.022 5.43 0.046
finite-time controller 4.836 0.23 0.184
traditional controller 3.654 3.06 0.498

In order to verify that the proposed fixed-time controller has fixed-time character-
istics, three sets of different initial states were selected for the simulation experiments.
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These three sets of randomly selected initial conditions are I1:[x0, y0, z0]
T = [3,−2, 20]T ,

I2:[x0, y0, z0]
T = [12, 1, 6]T , and I3:[x0, y0, z0]

T = [5, 9, 8]T , respectively, and the parameters
were selected to remain the same. The position tracking error simulation results are shown
in Figure 16. It is obvious that the fixed-time controller can obtain a very fast convergence
speed, and the convergence time is basically the same under the three different initial states.
According to the simulation results, it is clear that the convergence time of the proposed
control method does not depend on the initial value of the system.
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Figure 16. Position tracking error of different initial values.

In the switching control designed in this paper, through a theoretical analysis, it can
be known that the control input of the attitude angle subsystem has only a small change in
the switching process, so that the change process from the three attitude angles φ, θ to the
target attitude angle φT , θT , and ψT is a continuous change process. It can be clearly seen
from Figure 15 that the control input of the position subsystem changes from U1 in (23) to
U1 = g after switching.

In addition, the control inputs U1, U2, U3, and U4 are related to the rotor speeds
ω1, ω2, ω3, and ω4 by Equation (1), which gives:

ω2
1

ω2
2

ω2
3

ω2
4

 =
1
4


1 0 −2 −1
1 −2 0 1
1 0 2 −1
1 2 0 1




m
b U1
Jx
lb U2
Jy
lb U3
Jz
d U4

, (30)

where m, b, l, d, Jx, Jy, and Jz are parameters. The control inputs U1, U2, U3, and U4 can be
obtained by Theorem 3, and the real control rotor speeds ω1, ω2, ω3, and ω4 can be obtained
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by Equation (25). In the actual flight control process, the overall control of the QUAV can
be completed by controlling the rotor speeds ω1, ω2, ω3, and ω4.

In summary, it can be seen from Figures 2 and 14 that the quadrotor can quickly
complete the hovering task of six states of the position and attitude under the switching
control scheme designed in this paper. Through the simulation image, we can also see
that the altitude tracking error of the QUAV is constantly decreasing, thus verifying the
conclusion that there will be no crash.

5. Conclusions

In this article, a novel switching mode control law was proposed to control the position
and attitude of QUAVs so that their six states can be stabilized at a given particular posture
point for a fixed time. For the position subsystem, a continuously differentiable fixed-time
controller with a double-integral form was designed, and, for the attitude subsystem, a
fixed-time attitude controller was designed; finally, the whole flight switching controller
was presented and the crash problem was analyzed in detail by switching the mode control
law. In addition, simulations were designed to compare the experiments with existing
research methods. The experiments show that the proposed control method can control
the error to converge to zero within 3 s. Additionally, the sensitivity of the controller
parameters was analyzed through simulation experiments, and it was proven that the
switching mode control algorithm improves the control performance without depending
on the initial state. The readers can refer to the parameters in Section 4 when reproducing
the simulation experiment. However, the system model established in this paper does not
take into account the effects of external disturbances and air resistance. In future work,
influence factors such as the gyro moment, air resistance, and external interference will
be fully considered so that the QUAV can still achieve full state control while remaining
under influence.
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Appendix A

Appendix A.1. Some Relevant and Important Lemmas

Lemma A1 ([42]). Consider the following system:{
ẋi(t) = xi+1(t), i = 1, 2, . . . , n− 1
ẋn(t) = u(t)

(A1)

with the initial condition x(0) = x0, where x(t) = (x1, . . . , xn)T ∈ Rn and u(t) ∈ R are the
system state and input, respectively. Define a set of continuous virtual controllers x∗1 , . . . , x∗n,
shown as:
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x∗1 = 0, ζ1 = dx1e
1
r1 − dx∗1e

1
r1 ,

x∗i = −βi−1(x̄i−1)dζi−1eri , ζi = dxie
1
ri − dx∗i e

1
ri , (i = 1, 2, . . . , n)

(A2)

with constants v ∈ (− 1
n , 0) and ri = 1 + (i − 1)v, and continuous scalar functions β j(x̄j) >

0, j = 1, . . . , i− 1, where x̄j ∈ Γσ
j :

Γσ
j = {x̄j(t) : x̄j(t) ∈ Rj, |x1(t)| < σ}, j = 1, . . . , i− 1.

If the controller u(t) of system (A1) is designed as:

u(t) = −βn(x̄n)dζnern+1 (A3)

with design parameters l1 > 0, l2 > 0 and −v < p < 2− 2v, satisfying:

2(v− 2)
l1v

+
(2− v)2

2+p
2−v n

p+v
2−v

l2(p + v)
< T, (A4)

then, for all x1(0) ∈ Ω, where Ω = {w|w ∈ R, |w| < σ} is a constraint and σ is a positive
constant, the following properties are established.

(i) The state x1(t) stays in the set Ω for all t ≥ 0.
(ii) All states of the whole closed-loop system can be adjusted to zero within a fixed time T.

Remark A1. This is the result of the fixed-time stabilization design of multiple series integrators,
where the time T is independent of the initial value of the system.

Lemma A2 ([43]). Consider the system (A1), and x0 ∈ Rn represents the initial condition of the
system. If the controller is designed as:

u(t) = −
n

∑
i=1

ki(dxic$i + dxic+ dxic$
′
i ). (A5)

where the parameters $i, $′i, (i = 1, 2, . . . , n) are calculated by:

$n−j =
$

(j + 1)− j$
,

$′n−j =
2− $

j$− (j− 1)
, (j = 0, 1, . . . , n− 1).

(A6)

If $ ∈ (ε, 1) and the parameters ki > 0, (i = 1, 2, . . . , n) are chosen to ensure that the n-order
polynomials sn + knsn−1 + · · ·+ k1 and sn + 3knsn−1 + · · ·+ 3k1 are Hurwitz, then there exists
a positive real number ε in the interval ( 1

2 , 1) such that the origin of system (A1) is fixed-time stable
for any initial condition x0 ∈ Rn.

Remark A2. Compared with Lemma A1, the fixed-time control law designed by Lemma A2 has no
constraints and is more general.

Lemma A3 ([11,44]). Consider the following system:

ẋ(t) = f (t, x), x(0) = x0, (A7)

where x ∈ Rn and f : R+ ×Rn → Rn is a nonlinear function.
If there exists a continuous radially unbounded and positive definite function V(x) such that

V̇(x) ≤ −αVp − βVq (A8)
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for some α, β > 0, p > 1, 0 < q < 1, then the origin of this system (A5) is globally fixed-time
stable and the settling time function T can be estimated by:

T ≤ Tmax :=
1

α(p− 1)
+

1
β(1− q)

. (A9)

In addition, if p = 1 + 1
µ and q = 1− 1

µ with µ > 1 are selected, the settling time function T
can be estimated using a less conservative bound:

Tmax :=
πµ

2
√

αβ
. (A10)

Appendix A.2. The Properties of the Arctangent Function

In the following, an angle calculation function often encountered in the robotics
textbook [45], namely, the arctangent function, abbreviated atan2, is defined as follows:

atan2(a, b) =



arctan( a
b ), b > 0

arctan( a
b ) + π, a ≥ 0, b < 0

arctan( a
b )− π, a < 0, b < 0

π
2 , a > 0, b = 0
−π

2 , a < 0, b = 0
unde f ined. a = 0, b = 0

This function establishes the one-to-one correspondence between the plane points and
angles in the complex plane. This function has the following characteristics.

Property A1. Consider the following inverse function z = atan2(a, b), where z ∈ (−π, π], and
a and b represent the constant values of the x-axis coordinates and y-axis coordinates, respectively.
The following two conclusions hold.

(1) If the constant c > 0 is chosen, then there is:

z = atan2(
a
c

,
b
c
) = atan2(a, b),

(2) If the constant c < 0 is chosen, then there is:

z = atan2(
a
c

,
b
c
) =



atan2(a, b)− π, a > 0, b > 0
atan2(a, b) + π, a ≤ 0, b > 0
atan2(a, b), b < 0
−π

2 , a > 0, b = 0
π
2 , a < 0, b = 0
unde f ined. a = 0, b

Remark A3. After analyzing the situation when the non-zero constant c takes different values, it
is easy to obtain Property A1 based on the property of inverse function 2.

Appendix A.3. The Proof of Theorem 1

It can be seen from (16), (19), and (20) that the structures of the three subsystems
controlled by a(t), b(t), and c(t) are the same. We only need to prove one. Taking the z-axis
direction as an example, the stability analysis of the system is as follows.
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At first, the z-error subsystem is transformed by defining z1z(t) = e11(t), z2z(t) =
e12(t), z3z(t) = c(t), z4z(t) = ċ(t), ż4z(t) = u(t), and then the fourth-order integrator
system is given: 

ż1z(t) = z2z(t),
ż2z(t) = z3z(t),
ż3z(t) = z4z(t),
ż4z(t) = u(t).

(A11)

Define a set of continuous virtual controllers z∗1z(t), . . . , z∗4z(t), shown as:

z∗1z(t) = 0,

ζ1z(t) = dz1z(t)e
1

r1z − dz∗1z(t)e
1

r1z ,

z∗iz(t) = −βi−1(z̄(i−1)z)dζi−1(t)eriz ,

ζiz(t) = dziz(t)e
1

riz − dz∗iz(t)e
1

riz , (i = 1, 2, 3, 4)

(A12)

with constants v ∈ (− 1
n , 0), riz = 1 + (i − 1)v for i = 1, . . . , 4, and smooth functions

β j(z̄jz) > 0 for j = 1, . . . , 4, where there is z̄jz ∈ Γσz
jz :

Γσz
jz = {z̄jz(t) : z̄jz(t) ∈ Rj, |zjz(t)| < σz}.

For all zjz(0) ∈ Γσz
4z, if the controller u of system (A11) is designed as:

u(t) = z∗5z(t) = −β4(z̄4z)dζ4z(t)er5z (A13)

with design parameters l1 > 0, l2 > 0 and −v < p < 2− 2v satisfying:

2(v− 2)
l1v

+
(2− v)2

2+p
2−v n

p+v
2−v

l2(p + v)
< Tz, (A14)

it follows from Lemma A1 that the closed loop system composed of (6), (9), and (10) is
stable for a fixed time.

According to (10), u(0) = 0 and u̇(0) = 0. Integrating the controller u(t) with a double
gives z3z(t) = c(t), as shown in Equation (10). Therefore, the second-order system (6) is
also fixed-time stable when using the controller c(t), i.e., there exists a constant Tz that is
independent of the initial conditions, such that e11(t)→ 0, e12(t)→ 0 and e11(t) ∈ Ωe11 for
all t ≥ Tz.

Similar to the above proof, it can be proven that the proposed controllers also guarantee
the QUAV to track its desired trajectory in the x and y position channels.

The proof is completed.

Appendix A.4. The Proof of Proposition 1

Because φd = 0, it is only necessary to check:

acosψd + bsinψd = U1sinθd (A15a)

asinψ− bcosψ = 0 (A15b)

c + g = U1cosθd (A15c)
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From Equation (12), it is clear that

sinθd =

√
a2 + b2

U1
, cosθd =

c + g
U1

, sinψd =
b√

a2 + b2
, cosψd =

a√
a2 + b2

.

Therefore, there are:

acosψd + bsinψd =
a2

√
a2 + b2

+
b2

√
a2 + b2

=
√

a2 + b2

= U1 ·
√

a2 + b2

U1

= U1sinθd.

Thus, (A15a) is established.
In addition,

asinψd − bcosψd =
ab√

a2 + b2
− ab√

a2 + b2
= 0.

Therefore, (A15b) is established.
Then, consider:

U1cosθd = U1 ·
c + g
U1

= c + g.

Thus, (A15c) is established, so Equation (11) holds.
The proof is completed.
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