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Abstract: This article presents a hybrid backstepping consisting of two robust controllers utilizing the
approximation property of a radial basis function neural network (RBFNN) for a quadrotor with time-
varying uncertainties. The quadrotor dynamic system is decoupled into two subsystems: the position
and the attitude subsystems. As part of the position subsystem, adaptive RBFNN backstepping
control (ANNBC) is developed to eliminate the effects of uncertainties, trace the quadrotor’s position,
and provide the desired roll and pitch angles commands for the attitude subsystem. Then, adaptive
RBFNN backstepping is integrated with integral fast terminal sliding mode control (ANNBIFTSMC)
to track the required Euler angles and improve robustness against external disturbances. The
proposed technique is advantageous because the quadrotor states trace the reference states in a short
period of time without requiring knowledge of dynamic uncertainties and external disturbances. In
addition, because the controller gains are based on the desired trajectories, adaptive algorithms are
used to update them online. The stability of a closed loop system is proved by Lyapunov theory.
Numerical simulations show acceptable attitude and position tracking performances.

Keywords: quadrotor; radial basis function neural network; backstepping; adaptive control; integral
fast terminal sliding mode control

MSC: 93-10

1. Introduction

Quadrotors have a simple mechanical structure and lighter weight, which enable
them to perform aggressive operation, hovering, vertical take-up, and landing [1,2]. Many
remarkable applications are accomplished using quadrotor platforms, such as aerial cine-
matography, mapping, payload delivery, and rescue mission surveillance, to name just a
few [3–5]. A control system architecture for achieving the practical application of quadro-
tors is one of the key problems that must be discussed. Without a strong control system,
the quadrotors would be seriously limited in operation. Therefore, several studies on the
design of the quadrotor control system have been carried out.

In the early stages of quadrotor control research, linear control techniques such as
linear quadratic regulator (LQR) and proportional derivative integral (PID) control [6–11]
were adopted. Both PID and LQR are linear control strategies and were used to stabilize
the quadrotor attitude and position by linearizing the dynamics of the quadrotor near some
operating points. As a result, the performances of the quadrotor, such as the robustness
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against dynamic uncertainties and environmental disturbances and trajectory tracking
accuracy, were poor [12]. With the advancement of control methods and the wide applica-
tions of quadrotors, several nonlinear control technologies have been developed and have
accomplished effective performances.

One of the popular nonlinear control strategies is backstepping control, which has
been widely applied to nonlinear systems in recent years. This technique guarantees the
asymptotic stability of nonlinear systems through a recursive design procedure. A back-
stepping control method was applied to the Lagrangian model of a quadrotor [13]. In [14],
backstepping and proportional derivative (PD) controllers were used for the quadrotor
attitude and position control, respectively. In [? ], a flight controller was designed based
on a fractional-order backstepping control. The downside of a backstepping controller
is that it requires an accurate model of the system. In order to account for the uncertain
parameters, an adaptive backstepping controller has been implemented for a quadrotor
with varying parameters [16–18]. In [19], an adaptive finite time backstepping controller
was designed for a quadcopter UAV.

Another popular nonlinear control technique applied to the quadrotors is sliding
mode control. A sliding mode control is a robust control scheme that counters uncertainties
and disturbances [20–22] in dynamic systems. In a conventional sliding control strategy,
it is assumed that the upper bounds of the disturbances are known. Unlike backstepping
control, sliding mode control has a simple structure and is easier to implement. In [23], an
integral sliding mode controller was proposed to control a quadrotor with uncertainties
and external disturbances. In [24], a sliding mode attitude controller was proposed for
a quadrotor with time-varying mass. In [25], a second-order sliding mode control of an
uncertain quadrotor was investigated. A sliding mode control with exponential reaching
law and disturbance compensator was successfully applied to a quadrotor [26]. A robust
fast terminal sliding mode controller was developed for a quadrotor [27–29]. A nonsingular
terminal sliding mode controller was proposed in [30] for orientation and position tracking
of a quadrotor with rotor failure. In [31], a trajectory tracking control of a quadrotor was
achieved with a sliding mode controller and a robust integral of the signum error controller.
Chattering-reduction sliding mode control of quadrotor was studied [32]. For a better
suppression of disturbances, adaptive algorithms were used to estimate and compensate
the upper-bounds of the disturbances. An adaptive fault tolerant controller was suggested
for attitude control of a quadrotor [33]. An adaptive sliding mode controller was devised
for the differential flat quadrotor model [34]. A finite time adaptive integral sliding mode
controller was presented for an uncertain quadrotor [35]. In [36], an adaptive sliding mode
controller was developed to counter external disturbances and and enhance the altitude
tracking of the quadrotor. Recently, combinations of backstepping and sliding mode control
approaches have gained attention. Robust trajectory control of a quadrotor was studied
using a chattering free backstepping sliding mode controller [37]. A robust backstepping
sliding mode controller was presented in [38] to accomplish a trajectory tracking control of
a quadrotor. An adaptive backstepping fast terminal sliding mode controller was proposed
for robust position and the attitude tracking of a quadrotor [39].

Another way of estimating disturbances in dynamic systems is by employing distur-
bance observers. In [40], a nonlinear disturbance observer-based control was proposed
for a quadrotor to accurately land on a moving target. In [41], a high-gain observer-based
controller was suggested for quadrotor control. In [42], a fixed time disturbance observer-
based attitude controller was studied for aggressive maneuvering and disturbance rejection.
In [43], a sliding mode observer was utilized for obstacle avoidance and robust trajectory
tracking of a quadrotor. A backstepping sliding mode control with actuator fault observer
was presented in [44]. A robust backstepping controller combined with extended state
observer was used to tackle the trajectory tracking problem of a quadrotor in [45]. In [46],
a disturbance observer-based altitude controller was used to facilitate accurate landing
of a quadrotor on a vertically moving apron. In [47–49] an active disturbance rejection
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control strategy was employed for trajectory tracking of quadrotor irrespective of the
external disturbances.

Over the years, RBFNN and fuzzy logic systems have been widely used as function
approximators in control system design [50]. A Fuzzy-Padé approximation controller was
presented for the attitude tracking of a quadrotor [51]. In [52], a fuzzy approximator was
used together with sliding mode control to compensate for faults. In [53], a robust fuzzy
integral backstepping trajectory tracking controller was implemented for a quadrotor with
input constraints. In [54–56], an adaptive RBFNN sliding mode control was suggested
for attitude and position tracking of a quadrotor. In [57], attitude and position tracking
controllers using RBFNN were applied to a coaxial octorotor. In [58], an adaptive robust
controller with neural-disturbance estimator was proposed for a quadrotor to track a
moving object. A neural backstepping controller was devised for a quadrotor to land on
ship deck [59].

To stay current with the rapid advancements in technology, quadrotor control strate-
gies must continue to develop in order to fulfill the demanding safety standards. To further
improve the tracking performance of the quadrotor in various applications, the authors
in [23] proposed a hierarchical control structure consisting of integral sliding mode con-
trol (ISMC) and backstepping sliding mode control (BSMC) to stabilize the position and
attitude, respectively, of the quadrotor in the presence of disturbances. In [31], proportional-
derivative sliding mode control (PD-SMC) and robust integral of the signum error control
(RISE) were designed for the position and attitude of the quadrotor, respectively. However,
in [23,31], the authors assumed that the disturbances are bounded by known positive
terms. This assumption is too strict, because, in practical applications, the disturbances
due to wind gusts and dynamic uncertainties are time-varying, and their upper bounds
cannot be obtained accurately. Moreover, refs. [23,31] used discontinuous reaching laws
that introduce chattering. Therefore, designing a new hierarchical control architecture
that tackles the aforesaid issues while considering less computational complexities is an
interesting problem to investigate.

Motivated by the aforesaid discussion, this work presents a new robust hybrid back-
stepping control scheme for a quadrotor under model uncertainties and disturbances. The
quadrotor is partitioned into an inner loop and an outer loop. An ANNBC is designed
for the outer loop position control. For the inner loop, an ANNBIFTSMC is designed for
attitude control. The hybrid control structure, ANNBC-ANNBIFTSMC, has characteristics
such as low computational burden, robustness against disturbances, fast convergence, and
high tracking precision compared to some control techniques. The main contributions of
this article are summarized as follows:

1. Unlike the ISMC [23] and PD-SMC [31] that were utilized to control the position of
the quadrotor, this paper paper proposes an ANNBC to control the position of the
quadrotor and generate the desired roll and pitch angles. The derivatives of the virtual
controllers along with lumped time-varying disturbances are approximated with a
single RBFNN to lessen the computation cost. Moreover, contrary to [23,31] where
the controller gains are fixed, here, the controller gains are adjusted online in order to
improve the tracking accuracy.

2. In contrast to BSMC and RISE, respectively, designed in [23,31] to control the atti-
tude of the quadrotor, this work develops an ANNBIFTSMC strategy for the attitude
subsystem to attain quick and smooth tracking of the desired angles despite the
time-varying disturbances. A single RBFNN is utilized to approximate the uncertain
nonlinear functions along with the disturbances and the gains of the IFTSM surfaces.
This significantly reduces the computational burden. In addition, fast terminal reach-
ing laws are employed to solve the chattering problems, unlike in [23,31]. Moreover,
the gains of the chattering laws are updated online in order to properly adjust the
convergence speed.

3. The superiority of the new ANNBC-ANNBIFTSMC is illustrated by comparing its
performance with the results reported in [23,31].
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This paper is arranged as follows. The under-actuated dynamic model of the quadrotor
is presented in Section 2. The proposed ANNBC-ANNBIFTSMC is presented in Section 3.
In addition, simulation results are presented in Section 4. The summary of the paper is
provided in Section 5.

2. Mathematical Modelling

The nonlinear dynamic model of the quadrotor in state space is obtained as [35,39]:

ẋ1 = x2

ẋ2 = a2x4x6 + a2x4 + a3x2
2 + g1T2 + δx1

ẋ3 = x4

ẋ4 = a5x2x6 + a5x2 + a6x2
4 + g2T3 + δx3

ẋ5 = x6

ẋ6 = a7x2x4 + a8x2
6 + g3T4 + δx5

ẋ7 = x8

ẋ8 = a9x8 + (Cx2 Cx5 Sx3 + Sx2 Sx5)
T1
m + δx7

ẋ9 = x10

ẋ9 = a10x10 + (Cx2 Sx3 Sx5 + Cx5 Sx2)
T1
m + δx9

ẋ11 = x12

ẋ12 = a11x12 − g + (Cx2 Cx3)
T1
m + δx11

(1)

where x1, x3, x5 stand for the roll, pitch, and yaw angles of the quadrotor, respectively,
x2 = ẋ1, x4 = ẋ3, and x6 = ẋ5 denote the angular velocities of the quadrotor, x7, x9, and
x11 represent the positions of the quadrotor in the inertia frame, x8 = ẋ7, x10 = ẋ9, and
x12 = ẋ11 denote the linear velocities of the quadrotor, C(.) and S(.) stand for cos(.) and

sin(.), respectively, a1 =
Iyy−Izz

Ix
, a2 = Ωr Jr

Ix
, a3 = −Kax

Ixx
, a4 = Izz−Ixx

Iyy
, a5 = Ωr Jr

Iyy
, a6 =

−Kay
Iyy

,

a7 =
Ixx−Iyy

Izz
, a8 = −Kaz

Izz
, a9 = −Kdx

m , a10 =
−Kdy

m , a11 = −Kdz
m , g1 = L

Ix
, g2 = L

Iy
, g3 = L

Iz
,

g is the acceleration due to gravity, Ix, Iy, Iz denote the inertias, m indicates the total
mass of the quadrotor, Kax, Kay, Kaz, Kaφ, Kaθ , and Kaψ stand for the the drag coefficients,
Ωr = (Ω1 −Ω2 + Ω3 −Ω4) is the relative speed of the quadrotor, Ωi, (i = 1, 2, 3, 4) are the
rotor speeds related by

T1
T2
T3
T4

 =


A f A f A f A f
−A f 0 −A f 0

0 −A f 0 −A f
Mc Mc Mc Mc




Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (2)

where T1, T2, T3, and T4 are the altitude, roll, pitch, and yaw control torques respectively,
and A f and Mc are the aerodynamic force and moment coefficients, respectively.

Lemma 1 ([35]). If there exists a continuous positive definite function, V, satisfying V̇ ≤ −āVm +
b̄, such that ā > 0, b̄ > 0, 0 < m ≤ 1 are real numbers, then the equilibrium point is semi-globally
finite time stable.

Lemma 2 ([59]). RBFNN are widely used as function approximators in control system design due
to their approximating capabilities. Consider the smooth function N(Z) : Rn −→ R, its RBFNN
approximation can be expressed as

N(Z) = WTξ(Z) + ϑ
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where Z ∈ RN is the RBFNN input vector, N is the dimension of Z, W = [w1, w2, . . . wm]T is
the RBFNN weight vector, m > 1 is the number of RBFNN nodes, ξ = [ξ1, ξ2, . . . , ξm]T is the
Gaussian function given as

ξi(Z) = exp

[
−(Z− ςi)

T(Z− ςi)

2c2
i

]

where ςi = [ςi1, ςi2, . . . , ςim] is the center of the receptive field, and ci is the center of the Gaussian
function. If there exists ϑ∗ > 0, then ‖ϑ‖ ≤ ϑ∗ must be satisfied.

3. Quadrotor Control Design

This section presents a new control method for solving the trajectory tracking problem
of a quadrotor. The quadrotor control system is divided into attitude and position control
systems. The underactuation problem is solved by modifying the position subsystem. The
objective is to design a compound controller, ANNBC-ANNBIFTSMC, to track the desired
states, x1d x3d x5d, x7d x9d x11d. The block diagram of the proposed strategy is demonstrated
in Figure 1.

Figure 1. Control scheme of the quadrotor.

3.1. Position Control

In this section, the ANNBC is developed for the position subsystem of the quadrotor.
The position subsystem can be written as

ẋ7 = x8

ẋ8 = a9x8 + Tx + δx7

ẋ9 = x10

ẋ10 = a10x10 + Ty + δx9

ẋ11 = x12

ẋ12 = a11x12 + Tz + δx11

(3)

where δx7 , ∆Tx, δx9 , and δx11 are disturbances due to the environmental conditions and
dynamic uncertainties. 

Tx = (Cx2 Cx5 Sx3 + Sx2 Sx5)
T1
m

Ty = (Cx2 Sx3 Sx5 + Cx5 Sx2)
T1
m

Tz = −g + (Cx2 Cx3)
T1
m

(4)

To address the altitude tracking, the error variable is defined as z11 = x11 − x11d. The
derivative of z11 is

ż11 = ẋ11 − ẋ11d = x12 − ẋ11d. (5)

Inserting x12 = z12 + x12d into (5) yields

ż11 = z12 + x12d − ẋ11d. (6)
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Consider a Lyapunov function as follows:

V11 =
1
2

z2
11 (7)

The derivative of V11 yields

V̇11 = z11ż11 = z11z12 + z11(x12d − ẋ11d). (8)

Let the virtual control input be

x12d = −M11z11 + ẋ11d (9)

where M11 > 0 is a constant. Using (9), (8) becomes

V̇11 = −M11z2
11 + z11z12. (10)

The error between x12 and x12d is

z12 = x12 − x12d. (11)

The time derivative of (11) gives

ż12 = a11x12 + Tz + δx11 − ẋ12d. (12)

Note that ẋ12d is the derivative of the virtual input (9). Let f11 = a11x12 − ẋ12d, which
can be approximated by RBFNN as

f11 = WT
11ξ11(Z) + ϑ11. (13)

Then, the adaptive altitude stabilizing controller can be designed as

Tz = −z11 − M̂12z12 − ŴT
11ξ11(Z)− δ̂x11 tanh

(
z11

η11

)
. (14)

The controller (14) is updated by
˙̂M12 = γ12[z2

12 − µM̂12]
˙̂W11 = γ11[z12ξ12(Z)− µŴ11]
˙̂δx11 = π11

(
z12tanh

(
z12
η11

)
− µδ̂x11

) (15)

where π11 > 0, γ11 > 0, γ12 > 0 are constants, and µ > 0 is a small constant.

Theorem 1. For the closed-loop system comprising the position subsystem (3), control law (14),
and update law (15), the error signals are semi-globally finite time stable.

Proof. Consider a candidate Lyapunov function as

V12 =
1
2

z2
11 +

1
2

z2
12 +

1
2γ12

M̃2
12 +

1
2γ11

W̃2
11 +

1
2π11

δ̃2
x11. (16)

Differentiating V12 with respect to time gives

V̇12 = −M11z2
11 + z12[z11 + WT

11ξ11(Z) + ϑ + δx11 + Tz
]

+
1

γ12
M̃12

˙̃M12 +
1

γ11
W̃11

˙̃W11 +
1

π11
δ̃x11

˙̃δx11 (17)
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V̇12 = −M11z2
11 + z12

[
WT

11ξ11(Z) + ϑ− ŴT
11ξ11(Z)− M̂12z12

+ δx11 − δ̂x11 tanh
(

z11

η11

)]

− 1
γ12

M̃12
˙̂M12 −

1
γ11

W̃11
˙̂W11 −

1
π12

δ̃x11
˙̂δx11 . (18)

Considering that M̂12 = M12− M̃12, and adding δx11 tanh
(

z11
η11

)
− δx11 tanh

(
z11
η11

)
to (18)

we get:

V̇12 = −M11z2
11 −M12z2

12 + W̃T
11
[
z12ξ11(Z)−

˙̂W11

γ11

]
+ M̃12

[
z2

12 −
˙̂M12

γ12

]
+ δ̃x11[z12tanh

(
z12

η11

)
−

˙̂δx11

π11
]

+ δx11

[
z12 − z12tanh

(
z12

η11

)]
+ z12ϑ11. (19)

Substituting the adaptive laws (15) into (19) yields:

V̇12 ≤ −M11z2
11 −M12z2

12 + µW̃T
11Ŵ11 + µM̃12M̂12 + µδ̃x11δ̂x11

+ δx11

[
|z12| − z12tanh

(
z12

η11

)]
+ z12ϑ11. (20)

Using Young’s inequalities
M̃11M̂11 = (M11 − M̃11)M̃11 ≤

M2
11

2 −
M̃2

11
2 ;

W̃12Ŵ12 = (W12 − W̃12)W̃12 ≤
W2

12
2 −

W̃2
12

2 ;

δ̃x11δ̂x11 ≤
δ2

x1
2 −

δ̃2
x11
2 ;

z12ϑ11 ≤
z2

12
2 +

ϑ2
11
2

and the the identity z12tanh
(

z12
η12

)
− |z12| ≤ 0.2785η12, we have:

V̇12 ≤ −M11z2
11 −

(
M12 −

1
2

)
z2

12 − µ
M̃2

12
2
− µ

W̃2
11

2
− µ

δ̃2
x11
2

+ µ
M2

12
2

+ µ
W2

11
2

+
ϑ2

11
2

+
δ2

x1
2

+ δx11 . 0.2785η12. (21)

Letting ā12 = min{2M11, 2
(

M12 − 1
2

)
, µγ12, µγ11, µπ11}, b̄12 = µ

M2
12

2 + µ
W2

11
2 +

ϑ2
11
2 +

δ2
x1
2 + δx11 . 0.2785η12, one can get:

V̇12 ≤− ā12V12 + b̄12. (22)

Therefore, considering Lemma 1, the closed loop signals are semi-globally finite time
stable. In the same way as the altitude (x11) control design, the control inputs for the
positions x7 and x9 are derived as follows:
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Tx = −z7 − M̂9z8 − Ŵ7ξ7(Z)− δ̂x7 tanh
(

z8
η7

)
Ty = −z9 − M̂10z10 − Ŵ9ξ9(Z)− δ̂x9 tanh

(
z10
η9

)
.

(23)

The adaptation rules are given by{ ˙̂M8 = γ8[z2
8 − µM̂8]

˙̂W7 = γ7[z8ξ7(Z)− µŴ7]
(24)

{ ˙̂M10 = γ10[z2
10 − µM̂10]

˙̂W9 = γ9[z10ξ9(Z)− µŴ9]
(25)


˙̂δx7 = π7

(
z8tanh

(
z8
η7

)
− µδ̂x7

)
˙̂δx9 = π9

(
z10tanh

(
z10
η9

)
− µδ̂x9

) (26)

where γi > 0, (i = 7, 8, 9, 10), πi > 0, (i = 7, 9), ηi > 0, (i = 7, 9) are constants, and µ > 0
is a small constant. The total thrust force is thus

T1 = m
√

T2
x + T2

y + (Tz + g)2. (27)

The desired roll and pitch angles are computed asx1d = arctan
(

Cx3d

( Sx5d Tx−Cx5d TY
Tz+g

))
x3d = arctan

(Cx5d Tx+Cx5d TY
Tz+g

)
.

(28)

3.2. Attitude Control

In this section, the ANNBIFTSMC is developed for the attitude subsystem. The
attitude subsystem can be written as

ẋ1 = x2

ẋ2 = πT
1 θ1 + g1T2 + d1

ẋ3 = x4

ẋ4 = πT
2 θ2 + g2T3 + d2

ẋ5 = x6

ẋ6 = πT
3 θ3 + g3T4 + d3

(29)

where di = ∆i(π
T
i θi + giTi+1) + δi (i = 1, 2, 3) denote the lumped external disturbances

and uncertainties,

π1 =
[
a2 a2 a3

]T , π2 =
[
a4 a5 a6

]T ,

π3 =
[
a7 a8

]T , θ1 =
[
x4x6 x4 x2

2
]T ,

θ2 =
[
x2x6 x2 x2

4
]T , θ3 =

[
x2x4 x2

6
]T

Assumption 1. The disturbances satisfy di ≤ ri (i = 1, 2, 3), with ri being the upper bound of the
disturbances.

The trajectory tracking error of the roll angle, x1, along x1d is

z1 = x1 − x1d (30)

ż1 = ẋ1 − ẋ1d = x2 − ẋ1d. (31)
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Construct a positive Lyapunov function of the form

V1 =
1
2

z2
1 (32)

V̇1 = z1ż1 = z1(x2 − ẋ1d). (33)

The fictitious input that stabilizes x1 is designed as

x2 = S1 −M1z1 + ẋ1d (34)

where S1 is the IFTSM surface. Inserting (34) into (33) gives

V̇1 = −M1z2
1 + z1S1. (35)

The IFSMC surface is given by

S1 = ż1 + Λ1z1 + β1

∫ t

0
(z1 + τ1zp/q

1 )dt (36)

where Λ1 > 0, β1 > 0, τ1 > 0 and 0 < p < q are design parameters. The derivative of S1
with respect to time gives

Ṡ1 = z̈1 + Λ1ż1 + β1(z1 + τ1zp/q
1 ) = f1 + g1T2 (37)

where f1 = πT
1 θ1 + d1 − ẍ1d + Λ1ż1 + β1(z1 + τ1zp/q

1 ). Using RBFNN, f1 can be approxi-
mated as

f1 = WT
1 ξ1(Z) + ϑ1. (38)

The overall roll angle controller is calculated as
T2 = T2eq + T2r

T2eq = g−1
1 [−z1 − Ŵ1ξ1(Z)]

T2r = g−1
1 [−r̂1|S1|p/qsign(S1)− K̂1S1]

(39)

where T2eq and T2r stand for the equivalent and the terminal reaching laws, respectively,
and r̂1, K̂1, and Ŵ1 are the estimates of r1, K1, and W1, respectively. The updating rules are
designed as 

˙̂W1 = σ1[S1ξ1(Z)− µŴ1]
˙̂r1 = ρ1[|S1|(1+p/q) − µr̂1]
˙̂K1 = γ1[S2

1 − µK̂1]

(40)

where γ1 > 0 and ρ1 > 0 are design parameters, and µ > 0 is a small constant.

Theorem 2. For the attitude subsystem (29) and the IFTSMC surface (36), if the adaptive robust
control inputs are established as (39) and updated by (40), then all the error variables in the closed
loop system are ultimately bounded.

Proof. The Lyapunov function for estimating the parameters is constructed as

V2 =
z2

1
2
+

S2
1

2
+

r̃2
1

2ρ1
+

K̃2
2

2γ1
+

W̃2
1

2σ1
(41)
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where r̃1 = r1 − r̂1 and K̃1 = K1 − K̂1 are estimation errors. The time derivative of the
Lyapunov function (41) is

V̇2 = z1ż1 + S1Ṡ1 +
r̃1

ρ1
˙̃r1 +

K̃1

γ1

˙̃K1 +
W̃1

σ1

˙̃W1

= −M1z2
1 + S1

[
z1 + W1ξ1(Z) + ϑ1 + g1T2

]
− r̃1

ρ1
˙̂r1 −

K̃1

γ1

˙̂K1 −
W̃1

σ1

˙̂W1. (42)

Combining (39) and (42), we get

V̇2 = −M1z2
1 + S1[W̃1ξ1(Z) + ϑ1

− r̂1|S1|p/qsign(S1)− K̂1S1]

−
˙̂r1

ρ1
r̃1 −

˙̂K1

γ1
K̃1 −

˙̂W1

σ1
W̃1. (43)

Equation (43) can be rewritten as

V̇2 ≤ −M1z2
1 − K1S2

1 + (ϑ1 − r1|S1|p/q)|S1|

+ r̃1

[
|S1|(1+p/q) −

˙̂r1

ρ1

]
+ K̃1

[
S2

1 −
˙̂K1

γ1

]
+ W̃1

[
S1ξ1(Z)−

˙̂W1

σ1

]
. (44)

By substituting (40) into (44), one has

V̇2 = −M1z2
1 − K1S2

1 − r̄1|S1|+ µr̃1r̂1 + µK̃1K̂1 + µW̃1Ŵ1 (45)

where r̄1 = (r1|S1|p/q − ϑ1) Using the following Young’s inequalities,
W̃1Ŵ1 ≤

W2
1

2 −
W̃2

1
2

K̃1K̂1 ≤
K2

1
2 −

K̃2
1

2

r̃1r̂1 ≤
r2

1
2 −

r̃2
1
2 ; r̄1|S1| ≤

r̄2
1
2 + |S1|2

2

we have

V̇2 ≤ −M1z2
1 − K1S2

1 −
|S1|2

2
− µ

r̃2
1
2
− µ

K̃2
1

2
+ µ

K2
1

2

+ µ
r2

1
2
−

r̄2
1
2

≤ ā1V2 + b̄1 (46)

where ā1 = min(2M1, 2(K1 +
1
2 ), µ, µ), b̄1 = µ

K2
1

2 + µ
r2

1
2 −

r̄2
1
2 . Therefore, based on Lemma 1,

the closed loop error signals are bounded.

Following the same approach as the roll angle control design, the pitch angle (x3) and
the yaw angle (x5) controllers are calculated as

T3 = g−1
2
[
− z2 − ŴT

2 ξ2(Z)− r̂2|S2|p/qsign(S2)− K̂2S2
]

(47)

T4 = g−1
3
[
− z3 − ŴT

3 ξ3(Z)− r̂3|S3|p/qsign(S3)− K̂3S3
]
. (48)



Mathematics 2023, 11, 991 11 of 19

The updating rules are specified as
˙̂W2 = σ2[S2ξ2(Z)− µŴ2]

˙̂r2 = ρ2[|S2|(1+p/q) − µr̂2]
˙̂K2 = γ2[S2

2 − µK̂2]

(49)


˙̂W3 = σ3[S3ξ3(Z)− µŴ3]

˙̂r3 = ρ3[|S3|(1+p/q) − µr̂3]
˙̂K3 = γ3[S2

3 − µK̂3]

(50)

where γi > 0, ρi > 0, and σi > 0 (i = 2, 3) are constants, and µ > 0 is a small constant.

4. Simulation Results and Discussion

In this section, numerical simulations have been carried out on a quadrotor to demon-
strate the satisfactory performance of the proposed hybrid control technique. The param-
eters of the quadrotor are the same as in [31]. The initial values of the quadrotor states
for the simulations are [0.01 0.01 0.01]m and [0.01 0.01 0.01]rad, and the initial values of
the adaptive rules are set as 0.01 each. The reference signals for the quadrotor states are
chosen as

xd =


0.8 0 ≤ t ≤ 10
0.6 10 < t ≤ 15
0.3 15 < t ≤ 20
0.8 20 < t ≤ 35

; yd =


0.8 0 ≤ t ≤ 5
1.2 5 < t ≤ 15
0.6 15 < t ≤ 35

zd =


0.7 0 ≤ t ≤ 10
0.4 10 < t ≤ 20

20 < t ≤ 35

; ψd =

{
0 ≤ t ≤ 15

0.2 15 < t ≤ 35

We assumed a parametric variation of 40%, and the time-varying external disturbances
are given by δx1

δx3

δx5

 =

 0.2cos(2t)
0.2sin(0.7t)

0.2sin(t)

;

 δx7

δx9

δx11

 =

 0.2sin(2t)
2cos(0.2t)

0.2sin(0.8t)


The gains of the controllers are given in Table 1.
In order to validate the superior performance of the proposed hybrid ANNBC-

ANNBIFTSMC, comparisons with existing hierarchical controllers developed in [23,31] are
provided. In [23], integral sliding mode control (ISMC) and backstepping sliding mode
control (BSMC) were developed for the position and attitude subsystems of the quadrotor,
respectively. In [31], neuro-adaptive sliding mode controller (NNSMC) and robust integral
of the signum error (RISE) were designed for the position and attitude subsystems of the
quadrotor, respectively. The trajectory tracking results of the quadrotor position depicted
in Figure 2, along with the tracking errors in Figure 3 show that the three control strategies
can accomplish a stable flight in general. However, the ISMC provides the lowest tracking
performances compared to both ANNBC and NNSMC. Due to the approximation property
of the RBFNN to estimate the time-varying disturbances, the NNSMC shows an improved
performance compared to the ISMC. The proposed ANNBC gives the most promising
performance because of its ability to adjust its gains with abrupt change in the reference
trajectories and to approximate and compensate the time-varying disturbances using the
RBFNN. The gains of the ANNBC are presented in Figure 4.
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Table 1. Control system parameters.

Controllers Parameters Values
ANNBC M7, M9, M11 10, 10, 10

γ8, γ10, γ12 12, 12, 12
γ7, γ9, γ11 0.2, 0.2, 0.2

ςi

[
0 0.2 0.4 0.6 0.8
0 0.2 0.4 0.6 0.8

]
ci, µ 0.4, 0.01

ANNBIFTSMC Λ1, Λ2, Λ3 5, 5, 1.5
β1, β2, β3 8, 8, 20
τ1, τ2, τ3 0.05, 0.05, 0.05
γ1, γ2, γ3 0.4, 0.4, 0.15
ρ1, ρ2, ρ3 0.3, 0.3, 0.3
σ1, σ2, σ3 0.2, 0.2, 0.2

ςi

[
0 0.2 0.4 0.6 0.8
0 0.2 0.4 0.6 0.8

]
ci, µ 0.4, 0.01

Figure 2. Position tracking results.
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Figure 3. Position tracking error results.

Figure 4. Estimates of M8, M10, and M12.

The attitude responses are shown in Figure 5. It can be observed that the proposed
ANNBIFTSMC provides more accurate tracking under the parametric uncertainties, time-
varying disturbances, and sudden change in reference trajectories. Although both BSMC
and RISE are robust to disturbances, the ANNBIFTSMC outperformed them because it
combined the advantages of an integral error term to remove the steady state errors,
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a nonlinear error term for fast convergence, a backstepping approach for guaranteed
stability, and RBFNN for estimating disturbances. In addition, the tracking error responses
of the yaw angle presented in Figure 6 further illustrate the convergence speed of the
ANNBIFTSMC compared with the other controllers. The evolution of the gains of the fast
terminal reaching laws are depicted in Figures 7 and 8. As shown in Figure 9, the control
signals are free from chattering phenomena.

Figure 5. Attitude tracking results.
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Figure 6. Attitude tracking error results.

Figure 7. Estimates of r1, r2, and r3.

Figure 8. Estimates of K1, K2, and K3.
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Figure 9. Quadrotor control inputs.

5. Conclusions

In this paper, the trajectory tracking control of a quadrotor with dynamic uncertainties
and external disturbances was presented. The proposed hybrid control method consists of
two components: attitude control and position control. The attitude control was designed
to meet the requirements of fast response and robustness, and the position control was
designed to achieve high tracking accuracy. First, the position subsystem was controlled
using ANNBC. Then, an ANNBIFTSMC was designed to control the attitude subsystem. In
essence, the RBFNN approximates and compensates for complex disturbances and model
uncertainties. To avoid selecting improper gains, the proposed ANNBC-ANNBIFTSMC
gains are updated online by adaptation rules. We eliminated the chattering phenomenon
by using fast terminal reaching laws. Furthermore, the overall ANNBC-ANNBIFTSMC
system was implemented to achieve an optimal balance between robustness and perfor-
mance. Numerical simulation results indicate that the ANNBC-ANNBIFTSMC has the
edge over some control schemes in terms of trajectory tracking accuracy and robustness to
external disturbances.
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