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1. Introduction
1.1. History and Motivation

The unfailing worldwide interest to quasilinear differential operators with the so-
called KPZ-type nonlinearities (i.e., operators containing the second power of the first
derivative) is mainly caused by the following two circumstances. The first one is purely
theoretical: it is known (see, e.g., [1–3]) that the second power is the greatest one such that
Bernstein-type conditions for the corresponding boundary-value problem guarantee the
validity of a priori L∞-estimates of first-order derivatives of the solution via the L∞-estimate
of the solution itself. On the other hand, such operators arise in applications to various areas
not covered by classical linear differential equations: multidimensional interface dynamics
(see [4–6]), directed polymer growth (see [5,7–9]), fractional diffusion models (see [10,11]),
game-addiction models with unsustainable control (see [12]), models of finite-temperature
free fermions (see [13]), stochastic heat propagation under subcritical regimes (see [14]),
etc. For the first time, this phenomenon is seemingly noted in the famous paper [4] (and
the used abbreviation goes from the names of its authors). Nowadays, the number of
publications of those applications cannot be estimated; it suffices to provide several most
recent remarkable examples: [6,9–29].

It is worth to note that an efficient tool to investigate such nonlinearities is proposed
in [30]: one has to construct monotonous maps taking solutions of quasilinear equations
(this Bitsadze approach is easily extended to inequalities as well) to solutions of linear ones.
A clear example of the constructing of such a map is provided in the next section. The re-
maining part of the present paper is devoted to various results on qualitative properties of
nonlinear problems, obtained by means of this tool.

Results of Section 5 deserve a special attention: up to the knowledge of the author,
KPZ-nonlinearities in the functional-differential case were not considered earlier. Taking
into account that the variety of functional-differential operators is much broader than
differential-convolutional operators considered in the specified section (e.g., differential-
difference operators, operators with contractions and extensions of independent variables,
and general-kind integrodifferential operators are quite important for the theory and
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applications), one can reasonably treat functional-differential inequalities (equations) with
KPZ-nonlinearities as a very significant and promising area of further investigations.

1.2. Illustrative Example: Gidas–Spruck Theorem and Its Generalizations

The main idea of the Bitsadze approach can be clearly explained on the following
simple example.

It is known from [31] that the semilinear equation −∆u = uq has no global positive

solutions provided that 1 < q <
n + 2
n− 2

.

Applying advanced nonlinear capacity methods, one can extend this pioneering result
to the case of the following quasilinear inequality:

−
n

∑
i,j=1

∂2

∂xi∂xj
ai,j(x, u) ≥ b(x)|u|q, (1)

where ai,j are Caratheodory functions of n + 1 variables such that

|ai,j(x, s)| ≤ a(x)|s|p, x ∈ Rn, s ∈ (−∞,+∞), i, j = 1, 2, . . . , n, (2)

with a positive p and nonnegative a(x) (see [32]).
Note that this is a very substantial generalization: apart from the passage from the

semilinear case to the quasilinear one, we pass from equations to nonstrict inequalities.
Such results are always stronger: if an inequality has no solutions, then the corresponding
equation has no solutions a fortiori.

However, the question whether Condition (2) is essential or it is just a technical
restriction remains open. Let us show how to resolve it, using the Bitsadze approach.

In Rn, consider the inequality

∆u + α|∇u|2 + eγu ≤ 0, (3)

where
γ

α
> 0. To prove that no global solutions of that inequality exist, assume, to the

contrary, that a function u(x) satisfies inequality (3) in Rn. Then introduce the following
function in Rn:

v(x) def
=

1
α

eαu(x)−1. (4)

Then, for each j,

∂v
∂xj

= eαu−1 ∂u
∂xj

,
∂2v
∂x2

j
=

∂2u
∂x2

j
eαu−1 +

∂u
∂xj

α
∂u
∂xj

eαu−1 = eαu−1

∂2u
∂x2

j
+ α

(
∂u
∂xj

)2
,

and, therefore,
∆v = eαu−1

[
∆u + α|∇u|2

]
.

Hence,
−e1−αu∆v ≥ eγu ⇒ −∆v ≥ e(α+γ)u−1.

From (4), it follows that αv(x) is always positive, i.e., v(x) is a constant-sign function,
sgn[v(x)] = sgn(α), and αev = eαu > 0. Then

eγu = (eαu)
γ
α = (αev)

γ
α

and, therefore,

e(α+γ)u−1 = (αev)
γ
α +1e−1 = (αv)

γ
α +1e

γ
α = (|α||v|)

γ
α +1e

γ
α
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because α and v always have a same sign. The last expression is equal to |α|
γ
α +1e

γ
α |v|

γ
α +1,

which means that the introduced function v(x) satisfies the inequality

−∆v ≥ |α|
γ
α +1e

γ
α |v|

γ
α +1, (5)

which is inequality (1) with q =
γ

α
+ 1 and ai,j(x, s) = δ

j
i s. Thus, Condition (2) is satisfied.

Then, due to the above Mitidieri–Pohozaev generalization, inequality (5) has no global
solutions, which yields a contradiction.

Now, represent inequality (3) in the form

−
n

∑
i,j=1

∂2u
∂xi∂xj

(
δ

j
i
1
α

eαu
)
≥ e(α+γ)u.

The left-hand part of the last inequality is a special case of the left-hand part of
inequality (1), but Condition (2) is satisfied for no p. This confirms that the above Mitidieri–
Pohozaev generalization (as well as the corresponding general theory) are actually restricted
neither by the growth speed of coefficients nor by the power-like shape of nonlinearities.

2. Parabolic Stabilization

Full proofs of the results of this section are provided in [33].

2.1. Regular Case

Let a bounded function u(x, t) satisfy the equation

∂u
∂t

= ∆u + g(u)|∇u|2, x ∈ Rn, t > 0, (6)

where g is continuous.
Define the function f (s) as follows:

f (s) =
s∫

0

e

x∫
0

g(τ)dτ

dx. (7)

Then f ′(s) = e

s∫
0

g(τ)dτ

> 0 and f ′′(s) = g(s)e

s∫
0

g(τ)dτ

so g(s) =
f ′′(s)
f ′(s)

, where f is

strictly monotone.
Denoting f (u) by v(x, t), we see that

∂v
∂t

= f ′(u)
∂u
∂t

,
∂v
∂xj

= f ′(u)
∂u
∂xj

and
∂2v
∂x2

j
= f ′′(u)

(
∂u
∂xj

)2

+ f ′(u)
∂2u
∂x2

j
.

Then
∂v
∂t

= ∆v. On the other hand, from the continuity of f and boundedness of u,

it follows that the function v(x, t) is bounded as well (as a continuous function f on the
segment [inf u, sup u]). Thus, v(x, t) is a bounded solution of the heat equation. Hence,
the following stabilization criterion is valid (see [34]):

for any x ∈ Rn, lim
t→∞

v(x, t) exists if and only if lim
t→∞

nΓ
( n

2
)

2π
n
2 tn

∫
|x|<t

v(x, 0)dx exists; if those limits

exist, then they are equal to each other.

Taking into account that f is invertible due its strong monotonicity and f−1 is continu-
ous due the smoothness of f , we obtain the following assertion:
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Theorem 1. Let g be continuous and u(x, t) be a bounded solution of the Cauchy problem for
Equation (6) with a continuous and bounded initial-value function u0(x). Then for any x ∈ Rn,

lim
t→∞

u(x, t) exists if and only if lim
t→∞

nΓ( n
2 )

2π
n
2 tn

∫
|x|<t

f [u0(x)]dx exists, where f is defined by (7); if

those limits exist, then the latter limit is equal to f
[

lim
t→∞

u(x, t)
]

.

Remark 1. It is not necessary to assume that g is continuous on the whole real axis; it suffices to
assume that it is continuous (and even defined) only in the closure of the range of u0(x). However,
any function continuous in [inf u0, sup u0] can be extended, preserving the continuity, to the whole
axis. Thus, the initial approach does not restrict the generality.

2.2. Singular Case

In Equation (6), assume that g(s) = αsβ, where β ∈ (−1, 0). Then ansatz (7) is still
applicable, but, to guarantee the monotonicity, we have to add the restriction of the
positivity of the solution. This yields the following result for the Cauchy problem

∂u
∂t

= ∆u + αuβ|∇u|2, x ∈ Rn, t > 0, (8)

u∣∣∣
t=0

= u0(x), x ∈ Rn. (9)

Theorem 2. Let α ∈ R1, β ∈ (−1, 0), and u0 be continuous, bounded, nonnegative, and nontrivial
in Rn. Then there exists a unique positive bounded solution of problem (8) and (9) and the assertion
of Theorem 1 holds for it.

If β = −1, i.e., the equation takes the form

∂u
∂t

= ∆u +
α

u
|∇u|2, (10)

then we cannot use ansatz (7), but we can define f (s) as sα+1.
This yields the following result.

Theorem 3. Let α > −1 and u0(x) be bounded and nonnegative. Then there exists a unique
positive bounded solution of problem (10), (9) and the following criterion is valid: for any x ∈ Rn,

lim
t→∞

u(x, t) exists if and only if lim
t→∞

1
tn

∫
|x|<t

uα+1
0 (x)dx exists. If those limits exist, then

lim
t→∞

u(x, t) =

nΓ( n
2 )

2π
n
2

lim
t→∞

1
tn

∫
|x|<t

uα+1
0 (x)dx


1

α+1

.

Remark 2. If we change the condition of the nonnegativity of the initial-value function by the
stronger condition of its positive definiteness, i.e., assume that there exists a positive a such that
u0(x) ≥ a for each x, then the assertion of Theorem 3 is valid for α < −1 as well. However, it is
not valid for α = −1.

3. Elliptic Stabilization

The nonclassical nature of the half-space Dirichlet problem for elliptic equations
is known for a long time (see, e.g., [35,36]): the independent variable varying within a
half-line possesses the so-called timelike properties, which means, e.g., that the resolving
operator possesses the semigroup property with respect to that special variable (though all
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independent variables remain to be spatial). Thus, the question about the stabilization of the
solution with respect to the timelike variable becomes reasonable. The said phenomenon is
explained in this section; full proofs are provided in [37,38].

Denoting x = (x1, . . . , xn, xn+1) by (x′, xn+1), consider the problem

∆u + g(u)|∇u|2= 0, x′ ∈ Rn, xn+1 > 0, (11)

u∣∣∣
xn+1=0

= ϕ(x), x′ ∈ Rn, (12)

where ϕ is continuous and bounded in Rn.
The following assertions are valid.

Theorem 4. Let g be continuous in (−∞,+∞). Then there exists a unique bounded solution
u(x, t) of problem (11) and (12) and the following equivalence takes place for each x′ ∈ Rn and
each l ∈ (−∞,+∞) :

lim
xn+1→+∞

u(x) = l if and only if lim
R→+∞

nΓ( n
2 )

2π
n
2 Rn

∫
|y|<R

f [ϕ(y)]dy = f (l).

Theorem 5. Let g = αuβ, where −1 < β < 0, and 0 ≤ ϕ 6≡ 0. Then there exists a unique
bounded positive solution u(x, t) of problem (11) and (12) and the following equivalence takes place
for each x′ ∈ Rn and each nonnegative l :

lim
xn+1→+∞

u(x) = l if and only if lim
R→+∞

nΓ( n
2 )

2π
n
2 Rn

∫
|y|<R

f̃ [ϕ(y)]dy = f̃ (l),

where

f̃ (s) =
s∫

0

e
α

1−β τ1−β

dτ.

Theorem 6. Let g =
α

u
, where α > −1, and 0 ≤ ϕ 6≡ 0. Then there exists a unique bounded

positive solution u(x, t) of problem (11) and (12) and the following equivalence takes place for each
x′ ∈ Rn and any nonnegative l :

lim
xn+1→+∞

u(x) = l if and only if lim
R→+∞

nΓ( n
2 )

2π
n
2 Rn

∫
|y|<R

ϕα+1(y)dy = lα+1.

Remark 3. The stabilization phenomenon takes place for parabolic and elliptic equations with the
singular Bessel operator

Bk,y :=
∂2

∂y2 +
k
y

∂

∂y
=

1
yk

d
dy

(
yk d

dy

)
, k > 0,

acting with respect to spatial variables, as well. Pertinent results can be found in [39–42].

4. Blow-Up for Partial Differential Inequalities

This section is devoted to the blow-up phenomenon both for stationary and nonsta-
tionary problems with KPZ-type nonlinearities. In this section (as well as in the next one),
we follow the Pokhozhaev paradigm (see, e.g., [32]): blow-up phenomena are equivalent to the
absence of global solutions. Note that all presented results refer to differential inequalities
instead of differential equations, i.e., the maximal generality is guaranteed. Full proofs



Mathematics 2023, 11, 990 6 of 16

of the results of this section as well as local (instantaneous) results for inequalities with
KPZ-type nonlinearities are provided in [43–46].

4.1. Elliptic Case

Theorem 7. Let g be continuous on (−∞,+∞) and β be measurable and a. e. positive in Rn. Let

there exist q > 1 such that β
1

1−q (x) is locally summable in Rn, excluding, perhaps, a bounded set,

and ω(s) ≥

∣∣∣∣∣∣
s∫

0

e

τ∫
0

g(t)dt
dτ

∣∣∣∣∣∣
q

e
−

s∫
0

g(τ)dτ

on (−∞,+∞). Then the inequality

∆u +
n

∑
j=1

gj(u)

(
∂u
∂xj

)2

+ β(x)ω(u) ≤ 0 (13)

has no classical global solutions provided that gj(x) ≥ g(x), j = 1, 2, . . . , n.

Example 1. Suppose that β > 0 and 0 <
γ

α
≤ 2

n− 2
. Then the inequality ∆u + α|∇u|2 + βeγu ≤ 0

has no global solutions. The critical value
2

n− 2
is exact.

Note that inequality (13) is a particular case of inequality (3) considered in Section 1.2.
Consider the inequality

∆u−
n

∑
j=1

αj(x, u)

(
∂u
∂xj

)2

≥ ω(x, u), x ∈ Rn, (14)

under the assumption that αj(x, s) ≥ 1
s

, j = 1, 2, . . . , n.
The following assertions are valid.

Theorem 8. Let there exist a nonnegative function k(x), a positive constant R0, and a positive

function θ defined on [R0,+∞) such that lim
t→∞

θ(t) = ∞,
θ(t)
t2 is a nonincreasing function, and

k(x) ≥ θ(|x|)
|x|2 provided that |x| ≥ R0. Suppose that there exists a constant p from the interval

(1,+∞) such that ω(x, s) ≥ k(x)sp. Then inequality (14) has no positive solutions.

Theorem 9. Let there exist a nonnegative function k(x) and constants R0 from [1,+∞), C1 from

(0,+∞), and C0, b, and d from R such that k(x) ≥ 0 provided that |x| ≤ R0 and
C1

|x|b
≤ k(x) ≤

C0|x|d provided that |x| > R0. Suppose that there exists a constant p from the interval (−∞, 1)

such that ω(x, s) ≥ k(x)sp. Then, for any real C2 and any a from the interval
(
−∞,

2− b
1− p

)
,

inequality (14) has no positive solutions satisfying the inequality u(x) ≤ C2|x|a outside the ball
|x| < R0.

4.2. Parabolic Case

Consider the inequality

∂u
∂t
≥ ∆u +

n

∑
j=1

gj(u)

(
∂u
∂xj

)2

+ β(x, t)ω(u), x ∈ Rn, t > 0, (15)

where g1, . . . , gn are continuous on R1, β(x, t) is a measurable and a. e. positive function,

there exists q > 1 such that β
1

1−q (x, t) is locally summable in Rn×(0, ∞), excluding, perhaps,
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a bounded set, and ω(s) ≥
∣∣∣∣∣

s∫
0

e

τ∫
0

g0(θ)dθ

dτ

∣∣∣∣∣
q

e
−

s∫
0

g0(τ)dτ

on R1, where g0(s) = min
j=1,2,...,n

gj(s).

Assume that u0 is continuous and nonnegative on R1 and define on (0, ∞) the following
function depending on parameters κ and µ:

Cκ,µ(R) def
= Rn+ µ

κ
[

R
2q

1−q + R
µq

κ(1−q)
] ∫

1<τκ+|ξ|µ<2

β
1

1−q
(

Rξ, R
µ
κ τ
)

dξdτ. (16)

The following assertion is valid:

Theorem 10. If there exist κ ≥ 1 and µ ≥ 2 such that lim inf
R→∞

Cκ,µ(R) is finite, then problem

(15), (9) has no classical nontrivial solutions.

Remark 4. The last assertion remains to be valid if the nonnegativity assumption for u0(x) is
replaced by the following weaker assumption:

lim inf
R→∞

∫
|x|<R

u0(x)∫
0

e

τ∫
0

g0(θ)dθ

dτdx ≥ 0.

Consider the inequality

∂u
∂t
≥ ∆u +

α

uγ
|∇u|2 + β(x, t)ω(u), x ∈ Rn, t > 0, (17)

where β is as above, α 6= 0, 0 < γ 6= 1, ω satisfies the inequality ω(s)

≥
(

s∫
0

e
α

1−γ τ1−γ

dτ

)q

e
α

γ−1 s1−γ

in (0,+∞), and 0 6≡ u0 ∈ C(Rn). Then problem (17), (9)

has no classical positive solutions under the assumptions of Theorem 10.
For the inequality

∂u
∂t
≥ ∆u +

α

u
|∇u|2 + β(x, t)ω(u), x ∈ Rn, t > 0, (18)

the following assumptions are imposed: α > −1 and there exists ρ > 1 such that

ω(s) ≥ sρ on (0,+∞) and β
1+α
1−ρ (x, t) is locally summable in Rn×(0, ∞), excluding, perhaps,

a bounded set. Then, for continuous and different from the identical zero initial-value func-
tions, the nonexistence of classical positive solutions for the Cauchy problem is guaranteed
by the following condition: there exist κ ≥ 1 and µ ≥ 2 such that

lim inf
R→∞

Rn+ µ
κ
[

R
2(α+ρ)

1−ρ + R
(α+ρ)µ
(1−ρ)κ

] ∫
1<τκ+|ξ|µ<2

β
1+α
1−ρ

(
Rξ, R

µ
κ τ
)

dξdτ < ∞.

The inequality

∂u
∂t
≥ ∆u− |∇u|2

u
+ ω(x, t, u), x ∈ Rn, t > 0, (19)

can be considered under the following assumptions: there exist q > 1, σ > 0, and a

measurable and a. e. positive function β(x, t) such that β
1

1−q (x, t) is locally summable

in Rn×(0, ∞), excluding, perhaps, a bounded set, ω(x, t, s) ≥ β(x, t)s
∣∣∣ ln

s
σ

∣∣∣q on Rn ×
(0,+∞) × (0,+∞), and there exist κ ≥ 1 and µ ≥ 2 such that lim inf

R→∞
Cκ,µ(R) is finite,

where Cκ,µ(R) is defined by (16).
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Then, for continuous initial-value functions, problem (19), (9) has no solutions such
that σ ≤ u(x, t) 6≡ σ.

Remark 5. If we additionally restrict the behavior of the initial-value function by the inequal-

ity lim inf
R→∞

∫
|x|<R

ln u0(x)dx ≥ 0 and assume that ω(x, t, s) ≥ β(x, t)s| ln s|q in Rn × (0,+∞)×

(0,+∞), then problem (19), (9) has no positive solutions at all.

Example 2. For α > −1, ρ > 1, and nontrivial initial-value functions, the Cauchy problem for
the inequality

∂u
∂t
≥ ∆u +

α

u
|∇u|2 + uρ

has no positive solutions if
α + 1
ρ− 1

≥ n
2

, and this critical value is exact.

5. Integrodifferential Blow-Up

In this section, the investigation gets out the framework of differential inequalities: we
deal with functional-differential ones, i.e., with inequalities containing other operators (apart
from differential ones) acting on the desired functions. In our case, the operators different
from differential ones, are convolution ones.

Full proofs of the results of this section are provided in [47].

5.1. Stationary Case

The following assertions are valid.

Proposition 1. Let there exist from (−1, ∞) such that aj(x, s) ≥
s

, j = 1, 2, . . . , n, and b(x, s) ≥
1

( + 1)s
. Assume that K(x) is bounded from below by the function |x|β−n, β ∈ (0, n), and γ > + 1.

For β < n− 2, assume (additionally) that γ ≤ ( + 1)n
n− 2− β

. Then the inequality

∆u +
n

∑
j=1

aj(x, u)

(
∂u
∂xj

)2

+ b(x, u)K∗uγ ≤ 0

has no global positive solutions.

Proposition 2. Assume that K(x) is bounded from above by the function |x|β−n, β ∈ (0, n),

and γ < + 1. For β < n− 2, assume (additionally) that γ ≥ ( + 1)n
n− 2− β

. Let there exist from

(−∞,−1) such that aj(x, s) ≤
s

, j = 1, 2, . . . , n, and b(x, s) ≤ 1
( + 1)s

. Then the inequality

∆u +
n

∑
j=1

aj(x, u)

(
∂u
∂xj

)2

+ b(x, u)K∗uγ ≥ 0

has no global positive solutions.

Proposition 3. Let real numbers q and β and a positive integer n satisfy the inequalities

0 < β < n, q > 1, and q(n− 2− β) ≤ n
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and there exist a function g continuous on the real line and such that the inequalities

aj(x, s) ≥ g(s), b(x, s) ≥ e
−

s∫
0

g(τ)dτ

, and K(s) ≥

∣∣∣∣∣∣
s∫

0

e

t∫
0

g(τ) dτ

dt

∣∣∣∣∣∣
q

are satisfied for j = 1, 2, . . . , n, s ∈ R1, and x ∈ Rn. Then the inequality

∆u +
n

∑
j=1

aj(x, u)

(
∂u
∂xj

)2

+ b(x, u)K[u(x)]∗|x|β−n ≤ 0

has no classical solutions in Rn.

5.2. Nonstationary Case

The following assertions are valid.

Proposition 4. Let κ > −1, 0 < β < n, uκ+1
0 ∈ L1,loc(Rn), and there exist positive constants C

and R0 and a nonnegative constant γ such that inequality∫
|x|<R

uκ+1
0 (x)dx ≥ CRγ

holds for each R from (R0,+∞). Let aj(x, t, s) ≥ κ
s

, j = 1, 2, . . . , n, b(x, t, s) ≥ 1
(κ + 1)sκ

, and

the function K(x) be bounded from below by the Riesz kernel |x|β−n. Then, for γ ≥ n, the Cauchy
problem for the inequality

∂u
∂t
≥ ∆u +

n

∑
j=1

aj(x, t, u)

(
∂u
∂xj

)2

+ b(x, t, u)K∗uω

has no classical positive solutions provided that ω satisfies the inequality ω > κ + 1, while,
for γ < n, it has no classical positive solutions provided that ω satisfies the inequality 1 <

ω

κ + 1
<

1 +
β + 2

n−max{γ, β} .

Proposition 5. Let real numbers q and β and a positive integer n satisfy the inequalities

0 < β < n, q > 1, and 1 < q ≤ n + 2
n− β

.

Let there exist a function g continuous on the real line and such that the inequalities

aj(x, t, s) ≥ g(s), b(x, t, s) ≥ e
−

s∫
0

g(τ)dτ

, and K(s) ≥

∣∣∣∣∣∣
s∫

0

e

t∫
0

g(τ) dτ

dt

∣∣∣∣∣∣
q

are satisfied for j = 1, 2, . . . , n, s ∈ R1, x ∈ Rn, and t > 0, while the function u0(x) satisfies
the conditions

u0(x)∫
0

e

s∫
0

g(τ) dτ

ds ∈ L1,loc(Rn) and lim
R→∞

1
Rβ

∫
|x|<R

u0(x)∫
0

e

s∫
0

g(τ) dτ

dsdx ≥ 0.
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Then the Cauchy problem for the inequality

∂u
∂t
≥ ∆u +

n

∑
j=1

aj(x, t, u)

(
∂u
∂xj

)2

+ b(x, t, u)K(u)∗|x|β−n

has no nontrivial classical solutions.

6. Qualitative Properties of Solutions
6.1. Parabolic Equations Admitting Degenerations at Infinity

Full proofs of the results of this section are provided in [48].
Consider the equation

ρ(x)
∂u
∂t

= ∆u + g(u)|∇u|2, x ∈ Rn, t ∈ (0,+∞), (20)

under the assumption that the equation ∆w + ρ(x) = 0 has a solution bounded in Rn.
The following assertions are valid.

Theorem 11. Let u(x, t) be a bounded solution of the Cauchy problem for Equation (20), where g is
continuous and there exists a constant , 0 < < 1, such that ρ ∈ C+1

loc

(
Rn) and f (u0) ∈ Cloc

(
Rn),

where f is defined by relation (7). Then there exists a Lipschitz on [0,+∞) function A such that
the relation

lim
R→∞

1
Rn−1

∫
|x|=R

t∫
0

f [u(x, τ)]dτdσx =
2π

n
2

Γ
( n

2
)A(t)

is satisfied for any positive t and the relation

lim
R→∞

1
Rn−1

∫
|x|=R

 t∫
0

f [u(x, τ)]dτ − A(t)

dσx = 0

is satisfied uniformly with respect to t from [0, T] for any positive T.

Theorem 12. Let u(x, t) be a bounded positive solution of the Cauchy problem for Equation (20),
where g(s) = αsβ, β ∈ (−1, 0), α ∈ R1, and the coefficient ρ(x) and the initial-value function
u0(x) satisfy the assumptions of Theorem 11. Then the assertion of Theorem 11 holds.

Theorem 13. Let u(x, t) be a bounded positive solution of the Cauchy problem for the equation

ρ(x)
∂u
∂t

= ∆u +
α

u
|∇u|2, x ∈ Rn, t ∈ (0,+∞), (21)

where α > −1, the coefficient ρ(x) satisfies the assumptions of Theorem 11, and the initial-value
function u0(x) is such that uα+1

0 ∈ Cloc
(
Rn). Then there exists a Lipschitz on [0,+∞) function A

such that the relation

lim
R→∞

1
Rn−1

∫
|x|=R

Uα+1(x, t)dx =
nπ

n
2

Γ
( n

2 + 1
)A(t)

is satisfied for any positive t and the relation

lim
R→∞

1
Rn−1

∫
|x|=R

[Uα+1(x, t)− A(t)]dx = 0
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is satisfied uniformly with respect to t from [0, T] for any positive T, where

Us(x, t) =
t∫

0

us(x, τ)dτ, s > 0.

Proposition 6. Let u(x, t) be a bounded solution of the Cauchy problem for Equation (21), where
α 6= −1, inf u ≥ B > 0, the coefficient ρ(x) satisfies the assumptions of Theorem 11, and the
initial-value function u0(x) is such that uα+1

0 ∈ Cloc
(
Rn). Then the assertion of Theorem 13 holds.

Proposition 7. Let u(x, t) be a bounded solution of the Cauchy problem for the equation

ρ(x)
∂u
∂t

= ∆u− 1
u
|∇u|2,

where inf u ≥ B > 0, the coefficient ρ(x) satisfies the assumptions of Theorem 11, and the initial-
value function u0(x) is such that ln u0 ∈ Cloc

(
Rn). Then there exists a Lipschitz on [0,+∞)

function A such that the relation

lim
R→∞

1
Rn−1

∫
|x|=R

t∫
0

ln u(x, τ)dτdσx =
2π

n
2

Γ
( n

2
)A(t)

is satisfied for any positive t and the relation

lim
R→∞

1
Rn−1

∫
|x|=R

 t∫
0

ln u(x, τ)dτ − A(t)

dσx = 0

is satisfied uniformly with respect to t from [0, T] for any positive T.

6.2. Extinction Phenomena
6.2.1. Parabolic Inequalities

Full proofs of the results of this section are provided in [49].
The Cauchy problem for the inequality

∆u +
n

∑
j=1

aj(x, u)

(
∂u
∂xj

)2

− ∂u
∂t
≥ f (u), (22)

where u0(x) is continuous, bounded, and nonnegative in Rn and lim
|x|→∞

u0(x) = 0, is

considered. The following functions are introduced:

F(s) def
=

s∫
0

e

x∫
0

g(τ)dτ

dx and β(s) def
= e

F−1(s)∫
0

g(τ)dτ

f
[

F−1(s)
]
.

Under the above assumptions, the following assertions are valid.

Theorem 14. Let there exist a continuous function g(s) such that aj(x, s) ≤ g(s), j = 1, 2, . . . , n,
in [0,+∞). Let f (0) = 0, f (s) > 0 in (0,+∞), β is a nonincreasing function on (0,+∞), and

1∫
0

ds√
sβ(s)

< ∞. Then any nonnegative solution of the above Cauchy problem for Equation (22)

possesses the following properties:

(i) supp u(x, t) is bounded for any positive t;
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(ii) lim
|x|→∞

u(x, t) = 0 uniformly with respect to t from [0,+∞);

(iii) there exists a positive T such that u(x, t) ≡ 0 in the half-space Rn × [T,+∞).

Theorem 15. Let there exist a from (−1,+∞) such that aj(x, s) ≤ a
s

in Rn × (0,+∞), j =

1, 2, . . . , n, b from (0,+∞), and p from (−a, 1) such that f (s) ≥ bsp in (0,+∞). Then the above
Cauchy problem for Equation (22) has no positive solutions.

6.2.2. Parabolic Equations with Potentials

Full proofs of the results of this section are provided in [50].
The Cauchy problem for the equation

∂u
∂t

= ∆u +
β

u
|∇u|2 + C(x, t)u, (23)

where n ≥ 3 and u0(x) is continuous and bounded in Rn, is considered.
Under the above assumptions, the following assertions are valid.

Theorem 16. If β < −1 and

C(x, t) ≥ α min
(

1,
1
|x|2

)
,

then the above Cauchy problem for Equation (23) has no positively definite solutions.

Theorem 17. If β > −1, then

(i) there exists at most one classical bounded nonnegative solution of the Cauchy problem for
Equation (23);

(ii) if

C(x, t) ≤ −α min
(

1,
1
|x|2

)
, (24)

then u t→∞−→ 0 uniformly with respect to x in each compactum of the space Rn provided that
u(x, t) exists;

(iii) if C(x, t) ≤ −α (this inequality is stronger), then there exists a positive constant a such that
the inequality

u(x, t) ≤ sup
x∈Rn

u0(x) e−at

holds in Rn × (0, ∞) provided that u(x, t) exists.

Theorem 18. If β > −1, u(x, t) is a classical bounded nonnegative solution of the Cauchy problem
for Equation (23), and there exists α such that

α

β + 1
> n− 1 and C(x, t) satisfies Condition (24).

Then for each compactum K of the space Rn there exist constants M and T such that

u(x, t) ≤ M
t

, =
2− n +

√
(2− n)2 + 4α

6(β + 1)
,

for each (x, t) from K× (T,+∞).

6.3. Singular Equations with Nonclassical Neumann Conditions

Full proofs of the results of this section are provided in [51].
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6.3.1. Stationary Case

The problem

∆u +
α

u
|∇u|2 − a(x′)up = 0, x′ := (x1, . . . , xn) ∈ Ω, xn+1 ≥ 0,

uα ∂u
∂n

= 0, x′ ∈ ∂Ω, xn+1 ≥ 0,
(25)

where Ω is a bounded domain with a Lipschitz boundary in Rn and a is a bounded
measurable function, is considered.

Under the above assumptions, the following assertion is valid.

Theorem 19. Let a positive function u(x) satisfy problem (25) and the condition

lim
xn+1→∞

1
xn+1

∫
Ω

uα+1(x′)dx′ = 0.

Let one of the systems of inequalities

α > −1,
p > 1,∫
Ω

a(y)dy > 0,

a(y) ≥ 0 in Ω

or



α < −1,
p < 1,∫
Ω

a(y)dy < 0,

a(y) ≤ 0 in Ω

be satisfied. Then lim
xn+1→∞

x
2(α+1)

p−1
n+1 uα+1(x) exists for each x′ from Ω, this limit is uniform with

respect to x′ from Ω, and it is equal either to zero or to

 2(2α + p + 1)mesΩ

(α + 1)2
∫
Ω

a(y)dy
[
(α + 1)a(x′)− 1

]2


α+1
p−1

.

6.3.2. Nonstationary Case: Blow-Up

The problem

∂u
∂t

= ∆u +
α

u
|∇u|2 − a(x)up, x ∈ Ω, 0 < t < T,

uα ∂u
∂n

= 0, x ∈ ∂Ω, 0 < t < T,
(26)

where T is a positive constant, Ω is a bounded domain with a Lipschitz boundary in
Rn, the function a is bounded and measurable, and the constant α is different from −1,
is considered.

Under the above assumptions, the following assertions are valid.

Theorem 20. For each (arbitrarily small) positive T, problem (26) has no positive solutions if one
of the following two collections of conditions is satisfied:

(i)
∫
Ω

a(x)dx < 0, α > −1, and p > 1;

(ii)
∫
Ω

a(x)dx > 0, α < −1, and p < 1.
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Theorem 21. Problem (26) in the cylinder Ω × (0, ∞) has no positive bounded solutions if∫
Ω

a(x)dx = 0, the function a(x) is different from the identical zero, α > −1, and p > 1.

Theorem 22. Problem (26) in the cylinder Ω× (0, ∞) has no positively definite bounded solutions

provided that
∫
Ω

a(x)dx = 0, the function a(x) is different from the identical zero, α < −1,

and p < 1.

6.3.3. Nonstationary Case: Large-Time Behavior

Under the above assumptions of Section 6.3.2, the following assertion is valid.

Theorem 23. If a positive function u(x, t) satisfies problem (17) in the cylinder Ω× (0, ∞) and
one of the systems of inequalities

a(x) ≥ 0 in Ω,∫
Ω

a(x)dx > 0,

p > 1

or


a(x) ≤ 0 in Ω,∫
Ω

a(x)dx < 0,

p < 1

is satisfied, then lim
t→∞

t
α+1
p−1 uα+1(x, t) exists, this limit is uniform in Ω, and it is equal either to zero

or to the constant

 p− 1
mes Ω

∫
Ω

a(y)dy

 1+α
1−p

.

7. Conclusions

In this paper, we provide various results on qualitative properties of solutions of
inequalities with KPZ-nonlinearities. Since they are nonstrict, the corresponding equations
can be treated as particular cases of inequalities and, therefore, the provided results are
valid for those equations as well. The provided results (obtained by methods based on
properties of monotonic maps) refer to the global nonexistence, stabilization and extinction
phenomena, compactification of solution supports, and other significant properties. The
considered inequalities and equations contain not only partial differential operators; a num-
ber of results is obtained for integrodifferential (more exactly, convolutional-differential)
inequalities and equations as well.
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