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Abstract: In this paper, a Bayesian variable selection method for spatial autoregressive (SAR) quantile
models is proposed on the basis of spike and slab prior for regression parameters. The SAR quantile
models, which are more generalized than SAR models and quantile regression models, are specified
by adopting the asymmetric Laplace distribution for the error term in the classical SAR models.
The proposed approach could perform simultaneously robust parametric estimation and variable
selection in the context of SAR quantile models. Bayesian statistical inferences are implemented
by a detailed Markov chain Monte Carlo (MCMC) procedure that combines Gibbs samplers with
a probability integral transformation (PIT) algorithm. In the end, empirical numerical examples
including several simulation studies and a Boston housing price data analysis are employed to
demonstrate the newly developed methodologies.
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1. Introduction

Spatial regression models play a critical part in analyzing and tackling spatial data
that is broadly available in spatial statistics, regional science, and spatial econometrics.In
particularly, the spatial autoregressive (SAR) models proposed by Cliff and Ord [1] have
received a lot of attention in recent years. For instance, LeSage and Pace [2] listed several
Bayesian estimation and maximum likelihood estimation methods for SAR models in their
monograph; based on a generalized method of moments estimator, Du et al. [3] made
some statistical inferences for partially linear additive SAR models; under the condition of
independent and identical distributed random errors terms in SAR models, Liu et al. [4]
proposed a penalized quasi-maximum likelihood method which could perform parameter
estimation and model selection simultaneously; Xie et al. [5] considered performing
variable selection in SAR models with a diverging number of parameters; Jin and Lee [6]
obtained a GEL estimation and investigated several typical test statistics of high-order SAR
models; and recently, Ju et al. [7] developed Bayesian statistical diagnostics procedures in
the framework of skew-normal SAR models. However, it is unfortunate that the methods
proposed by all the cited works are based on the mean regression.

Quantile regression [8–10] studies the relationship among the quantile of the response
with the explanatory variables, which provides a more robust and systematic path to inves-
tigate the dependence of the response on explanatory variables than mean regression. As a
matter of fact, quantile regression considers how explanatory variables have impacts on the
conditional quantiles of response variables instead of the conditional mean of the response
variable, and presents a more comprehensive and complete picture of the relationship of
the response variable with the explanatory variables. We refer the reader to Koenker [8] for
an overview on quantile regression. It is noted that there has been a number of research
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papers on quantile regression issues in the Bayesian statistical framework. For example,
Dunson and Taylor [11] presented a Bayesian method for quantile regression analysis
based on the substitution likelihood idea [12]; Lancaster and Jun [13] conducted quantile
regression analysis by utilizing Bayesian exponentially tilted empirical likelihood; Kottas
and Krnjajic [14] developed a generalized Bayesian framework for quantile regression on
the basis of Dirichlet processes; Yang and He [15] proposed a Bayesian quantile regression
method which is equipped with empirical likelihood; and Rodrigues et al. [16] presented a
Bayesian pyramid quantile regression approach that could make simultaneously statistical
inferences at several different quantile levels. In particularly, it is a very natural, simple,
and effective way to model Bayesian quantile regression by using asymmetric Laplace
distribution, which has been studied by several authors, including Yu and Moyeed [17],
Kozumi and Kobayashi [18], Hu et al. [19], and Wang and Tang [20], among others. Never-
theless, to the best of our knowledge, little work has been carried out on Bayesian quantile
analysis for SAR models due to their complex spatially dependent structure.Therefore,
based on references [17,18] and spike and slab prior [21–23], which is often regarded as the
gold standard in Bayesian variable selection setting, a Bayesian procedure is proposed to
perform simultaneously parameter estimation and variable selection in SAR models. The
novel contributions of this paper are listed as follows: (i) we consider a more generalized
model than the SAR model and the quantile model, whose Bayesian analysis has not been
done, and investigate the sensitivity of the Bayesian estimates to different prior inputs;
(ii) we adopt asymmetric Laplace distribution for the error term [17,18] in the SAR models
to build the hierarchical SAR quantile models and a full MCMC algorithm combining the
Gibbs sampler and the probability integral transformation (PIT) algorithm is developed
simultaneously to perform robust parametric estimation, to identify significant explanatory
variables, and to build accurate predictive models in the considered models based on
spike and slab prior [21–23]; (iii) the required conditional posterior distributions, which
are more tedious than those in analysis of the SAR model and the quantile model, are
derived, and the implementation of the PIT algorithm for generating observations from the
tedious conditional posterior distribution is presented. (iv) Results obtained from empirical
numerical examples show that the estimate performance, predictive performance, and
variable selection performance of our proposed approach are indeed quite satisfactory.

This rest of the paper is arranged as follows. Hierarchical SAR quantile models using
the asymmetric Laplace distribution for the error term [17,18] in the SAR models are
proposed in Section 2. In Section 3, we explicitly describe a Bayesian variable selection
procedure based on the spike and slab prior [21–23] in the SAR quantile model setting,
which combines Gibbs sampling [24] with the probability integral transformation (PIT)
algorithm [25] to perform parameter estimation and variable selection simultaneously.
Several simulation studies are conducted and a real Boston housing price data anaysis is
used to demonstrate our proposed methodologies in Section 4. A discussion is presented
in the final section. Some sampling technique details are described within the appendix.

2. Hierarchical Bayesian Quantile Modeling for SAR Models

A Bayesian quantile regression approach for SAR models is proposed in this paper. At
a given quantile level τ ∈ (0, 1), a SAR quantile model has the following form,

yi = ρτ

n

∑
j=1

ωijyj + xT
i βτ + εi (1)

for i = 1, · · · , n, where yi is the observation on the response variables and denotes
y = {y1, . . . , yn}; ρτ is spatial parameter; ωij is the ith row and jth column element of
an n× n spatial weight matrix ω, whose diagonal elements are zeros and other elements
are known constants; xi is a p× 1 observation for explanatory variables of linear regressors
x = (x1, x2, · · · , xn)T ; the vector βτ = (β1, . . . , βp)T is the unknown regression coefficients;
εi is a random error term with τth quantile equaling 0, i.e.,

∫ 0
−∞ pτ(εi)dεi = τ. Quantile
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regression is often implemented by dealing with a minimization problem based on the
check function. Under Equation (1), the specification problem evolves to estimate ρτ and
βτ by minimizing the following equation

L(y, x) =
n

∑
i=1

ϕτ(yi − ρτ

n

∑
j=1

ωijyj − xT
i βτ), (2)

in which ϕτ(.) is the check function defined by ϕτ(u) = u{τ− I(u < 0)} and I(.) represents
the common indicator function. In the Bayesian statistical framework, it is assumed that
εi, · · · , εn are independently and identically distributed random variables and εi follows
an asymmetric Laplace distribution with probability density function

pτ(εi) =
τ(1− τ)

σ
exp{− 1

σ
ϕτ(εi)}),

in which σ is the scale parameter. Then the conditional distribution of y is specified by

p(y|x) = [
τ(1− τ)

σ
]nexp{− 1

σ

n

∑
i=1
−ϕτ(yi − ρτ

n

∑
j=1

ωijyj − xT
i βτ)}. (3)

Therefore, minimizing the Equation (2) is equivalent to maximizing the Equation (3).
Followed by the location–scale mixture expression of asymmetric Laplace distribution [14],
Equation (1) could be rewritten as

yi = ρτ

n
∑

j=1
ωijyj + xT

i βτ + k1ei +
√

k2σeizi,

ei ∼ exp{ 1
σ},

zi ∼ N(0, 1),
i = 1, · · · , n,

(4)

in which ei ∼ exp{ 1
σ} denotes that ei follows an exponential distribution with parameter σ,

whose probability density function is p(ei|σ) = 1
σ exp{− 1

σ ei}I(ei ≥ 0); zi is the standard
normal random variable, ei and zi are mutually independent; k1 = 1−2τ

τ(1−τ)
and k2 = 2

τ(1−τ)
,

respectively. The models defined in Equation (4) are referred to as the SAR quantile models
in the paper. For ease of notation, we will delete τ in the representation in the following.

3. A Bayesian Variable Selection Procedure for SAR Quantile Models
3.1. Prior Specifications

To perform Bayesian statistical inferences, it is necessary to specify the prior distribu-
tions. The spike and slab prior for β following references [21–23] is chosen to implement
parameter estimation and variable selection in the framework of SAR quantile models in
this paper. Specifically,

π(β|γ, δ) ∼ N(0p, Hβ), (5)

in which γ = (γ1, . . . , γp)T is the indicator variable vector, δ = (δ2
1 , . . . , δ2

p)
T , 0p denotes

a p× 1 vector whose each element is 0, Hβ = diag(γ1δ2
1 , . . . , γpδ2

p). Or equivalently, for
k = 1, · · · , p,

π(βk|γk, δ2
k ) ∼ N(0, γkδ2

k ), (6)

i.e.,

π(βk|γk = 1, δ2
k ) ∝ (δ2

k )
− 1

2 exp

{
−

β2
k

2δ2
k

}
, π(βk = 0|γk = 0, δ2

k ) = 1.

Similar to Kozumi and Kobayashi (2011), the inverse Gamma prior is specified for σ, that is

π(σ) ∼ InvGamma(aσ, bσ), (7)
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where InvGamma(aσ, bσ) denotes an inverse Gamma distribution with shape parameter aσ

and scale parameter bσ, i.e.,

π(σ) ∝ σ−(aσ+1)exp
{
− bσ

σ

}
.

Suppose that the prior distribution for ρ is as follows:

π(ρ) ∼ U(ρmin, ρmax); (8)

in which U(ρmin, ρmax) represents the uniform distribution on the interval (ρmin, ρmax).
The following prior distribution for γ is considered in this paper:

π(γ) =
p

∏
k=1

π(γk) =
p

∏
k=1

qγk (1− q)1−γk .

In other words, for k = 1, · · · , p, the prior distribution of γk involved in γ is assumed to be
a Bernoulli distribution, that is

π(γk) = qγk (1− q)1−γk . (9)

We set q = 1
2 that represents uniform prior in all numerical examples. Some other prior

specifications for γ could be found by Cripps et al. [26].
For k = 1, · · · , p, the prior distribution of δ2

k involved in δ is taken to be a inverse
Gamma distribution, which is given by

π(δ2
k ) ∼ InvGamma(aδ, bδ). (10)

In the end, aσ, bσ, ρmin, ρmax, aδ, bδ in the above prior specifications are hyperpa-
rameters whose values are already given. If not specified,we choose aσ = bσ = 0.001
ρmin = −1, ρmax = 1, aδ = bδ = 0.001 within all numerical examples, which may stand for
a case with noninformative prior.

3.2. Gibbs Sampling and Probability Integral Transformation (PIT) Algorithm

Denoting e = (e1, . . . , en)T , a sequence of random samples is generated from the
joint posterior distribution p(β, σ, ρ, δ, e, γ|y, x) via the Gibbs sampler algorithm [24], and
then parameter estimation and variable selection are simultaneously implemented by the
obtained sequence of random draws. In our proposed algorithm, samplers{β, σ, ρ, δ, e, γ}
are drawn iteratively from the following conditional posterior distributions:
p(β|σ, ρ, δ, e, γ, y, x), p(σ|β, ρ, δ, e, γ, y, x), p(ρ|β, σ, δ, e, γ, y, x), p(δ|β, σ, ρ, e, γ, y, x),
p(e|β, σ, ρ, δ, γ, y, x), p(γ|β, σ, ρ, δ, e, y, x). The corresponding conditional posterior distri-
butions in performing Gibbs sampler algorithm are listed in the following.

(1) Sample βk from conditional distribution p(βk|σ, ρ, δk, e, γk, y, x), k = 1, · · · , p, not-
ing that according to Equations (4) and (6), we have

p(βk = 0|σ, ρ, δk, e, γk = 0, y, x) = 1, p(βk|σ, ρ, δk, e, γk = 1, y, x) ∼ N(β∗k , ξ2
k), (11)

where β∗k = ξ2
k

{
1

k2σ

n
∑

i=1

yi−µ∗i −k1ei
ei

xik

}
, ξ2

k =

{
1
δ2

k
+ 1

k2σ

n
∑

i=1

x2
ik

ei

}−1
, and µ∗i = ρ

n
∑

j=1
ωijyj +

p
∑

j=1,j 6=k
xijβ j.

(2) Sample σ from conditional distribution p(σ|β, ρ, δ, e, γ, y, x), and it can be shown
to be

p(σ|β, ρ, δ, e, γ, y, x) ∼ InvGamma(a∗σ, b∗σ), (12)

in which a∗σ = aσ +
3n
2 and b∗σ = bσ +

n
∑

i=1
[ (yi−µi−k1ei)

2

2k2ei
+ ei], µi = ρ

n
∑

j=1
ωijyj + xT

i β.
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(3) Sample ρ from conditional distribution p(ρ|β, σ, δ, e, γ, y, x). Through a simple
algebra calculation, we have

p(ρ|β, σ, δ, e, γ, y, x) ∝ det(A)exp

{
− 1

2k2σ

n

∑
i=1

(yi − µi − k1ei)
2

ei

}
I{ρmin < ρ < ρmax}, (13)

in which A = In − ρω, In denotes a n× n identity matrix, det(A) denotes the determinant

of A, µi = ρ
n
∑

j=1
ωijyj + xT

i β.

(4) Sample δk from conditional distribution p(δ2
k |βk, γk), k = 1, · · · , p. Noting that

p(δ2
k |βk, γk = 0) ∼ InvGamma(aδ, bδ), p(δ2

k |βk, γk = 1) ∼ InvGamma(a∗δ , b∗δ ), (14)

where a∗δ = aδ +
1
2 , b∗δ = bδ +

β2
k

2 .
(5) Sample ei from conditional distribution p(ei|β, σ, ρ, y, xi), i = 1, · · · , n. It can be

shown that
p(ei|β, σ, ρ, y, xi) ∼ GIG(

1
2

, m2
i , n2

i ), (15)

where m2
i = (yi−µi)

2

k2σ , n2
i =

k2
1

k2σ + 2
σ , µi = ρ

n
∑

j=1
ωijyj + xT

i β, GIG(ν, m2, n2) denotes the gener-

alized inverse Gauss distribution with parameters ν, m2 and n2, and p(x) ∼ GIG(ν, m2, n2)
if and only if

p(x) ∝ xν−1exp
{
−1

2
(m2x−1 + n2x)

}
.

(6) Sample γk from conditional distriution p(γk|β, σ, ρ, e, y, x), k = 1, · · · , p. Noting
that p(γk|β, σ, ρ, e, y, x) is a Bernoulli distribution with

p(γk = 1|β, σ, ρ, e, y, x) =
1

1 + h
, p(γk = 0|β, σ, ρ, e, y, x) =

h
1 + h

, (16)

in which h = h1
π(γk=0)
π(γk=1) with h1 =

n
∏
i=1

p(yi |β,σ,ρ,ei ,γk=0,xi)

p(yi |β,σ,ρ,ei ,γk=1,xi)
× π(βk |γk=0,δ2

k )

π(βk |γk=1,δ2
k )

=
n
∏
i=1

exp{− 1
2

(yi−ρ
n
∑

j=1
Wijyj− ∑

j 6=k
xij β j−k1ei)

2−(yi−ρ
n
∑

j=1
Wijyj−

p
∑

j=1
xij β j−k1ei)

2

k2σei
} × 1

(2πδ2
k )
− 1

2 exp{−
β2

k
2δ2

k
}

.

It is easily found that the conditional distributions (11), (12), (14). and (16) involved
in the above Gibbs sampling method are lots of familiar distributions, such as the normal,
inverse Gamma, and Bernoulli distribution, for example, whose sampling is fast and
straightforward. In addition, there exist some efficient algorithms [27,28] to draw from the
generalized inverse Gauss distribution (15). However, since conditional distribution (13) is
nonstandard and unfamiliar distribution, it is rather difficult to draw directly observations
for ρ. Hence, the probability integral transformation (PIT) algorithm [25], which is a
sampling procedure that we recommend to use in applications (e.g., in our simulation
study and Boston data analysis of Section 4), is used to draw observations from it, and
the sampling detail is described within the Appendix A. Finally, the MCMC algorithm is
summarized in the following Algorithm 1.
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Algorithm 1: An MCMC-based sampling algorithm for the SAR quantile models

Input: setup initial values β(0), σ(0), ρ(0), e(0), δ(0), and γ(0), and the number of
iterations of the sampling algorithm T.
for t← 1 : T do

for k← 1 : p do
Sample β

(t)
k from Equation (11) ;

end
Sample σ(t) from Equation (12) ;
Sample ρ(t) from Equation (13) according to PIT algorithm ;
for k← 1 : p do

Sample δ
(t)
k from Equation (14) ;

end
for i← 1 : n do

Sample e(t)i from Equation (15) ;
end
for k← 1 : p do

Sample γ
(t)
k from Equation (16) ;

end
end
Output: a sequence of samples {(β(t), σ(t), ρ(t), δ(t), e(t), γ(t)) : t = 1, · · · , T}.

3.3. Bayesian Estimates and Standard Errors

Observations simulated from the above proposed MCMC algorihtm (Algorithm 1)
could be employed to calculate the joint Bayesian estimates, standard errors of unknown
parameters {β, σ, ρ, δ}, and latent variables {e, γ}. Let {β(t), σ(t), ρ(t), δ(t), e(t), γ(t) : t =
1, 2, · · · ,T} be observations simulated from the joint posterior distribution p(β, σ, ρ, δ, e, γ|y, x)
via the proposed method after the algorithm converges. The joints Bayesian estimates
(consistent estimates) of {β, σ, ρ, δ, e, γ} are caculated by their posterior sample mean [29],

β̂ =
1
T

T

∑
t=1

β(t), σ̂ =
1
T

T

∑
t=1

σ(t), ρ̂ =
1
T

T

∑
t=1

ρ(t), δ̂ =
1
T

T

∑
t=1

δ(t), ê =
1
T

T

∑
t=1

e(t), γ̂ =
1
T

T

∑
t=1

γ(t).

Similarly, the estimated standard errors of {β, σ, ρ, δ, e, γ} are obtained by their posterior
sample standard errors.

4. Numerical Examples

In this section, several simulation studies and Boston housing price data analysis are
employed to demonstrate the proposed Bayesian variable selection procedure.

4.1. Simulation Studies

The response yi is generated from the following model

yi = ρ
n

∑
j=1

ωijyj + xT
i β + εi, i = 1, · · · , n

with n = 100, where each p-dimensional xi is independently generated from the normal
distribution N(0, Σ), in which the (j, k)th element of Σ is 0.5|j−k| for j = 1, · · · , p and
k = 1, · · · , p. The same as Chen et al. [30], we set ω1,2 = 1, ωn,n−1 = 1, and ωi,i−1 =
ωi,i+1 = 0.5 for i = 2, · · · , n− 1, other elements of the spatial matrix ω are all zero. For
spatial parameter, ρ = −0.8, 0.0, 0.8, which stand for three spatial dependences of the
responses, are considered in each simulation setting, respectively. ρ = −0.8 represents neg-
ative and relatively strong spatial dependence, ρ = 0.0 represents independence, whereas
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ρ = 0.8 represents positive and relatively strong spatial dependence. Similar to
Alhamzawi et al. [31], the true values of β are taken into account in the following four
scenarios:

Scenario 1: βtrue = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 0.85)T , which corresponds to
the dense case;

Scenario 2: βtrue = (3, 1.5, 0, 0, 2, 0, 0, 0)T ,which could be regarded as the sparse case;
Scenario 3: βtrue = (5, 0, 0, 0, 0, 0, 0, 0)T , which could be viewed as the very sparse case;
Scenario 4: βtrue = (5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T with p = 18, which may

represent a moderate p case.
Within each scenario, we consider 4 different choices for the distribution of error term

εi, such that the τth(0 < τ < 1) quantile is 0:
(a): The normal distribution N(µ, 1) (denoted as normal), with µ such that τth quantile

of εi is 0;
(b): The Student’s t distribution t(3) + µ (denoted as t), with µ such that τth quantile

of εi is 0;
(c): The Laplace distribution Laplace(µ, 1) (denoted as Laplace),with µ such that τth

quantile of εi is 0;
(d): The mixture of normal distribution 0.9N(µ, 1) + 0.1N(µ, 9) (denoted as mixed-

normal), with µ such that τth quantile of εi is 0.
For each scenario of β and each choice of the error distribution, each spatial parameter

ρ and with three different quantile levels τ = {0.1, 0.3, 0.5}, we run 500 replications. In
each replication, 5000 samples are collected to calculate Bayesian estimates of unknown
parameters after 5000 burn-ins. Table 1 reports the mean and the root mean square error
(denoted as RMSE in parentheses) of the Bayesian estimates based on 500 replications
for scenario 1 setting. From Table 1, it is easy to see that (1) all the Bayesian estimates
perform reasonably well, and the performance under normal error distributions is better
than the performance under t, Laplace and mixed-normal error distributions in term of
RMSEs; (2) the means of Bayesian estimates are quite close to their true values, which
suggests that our proposed Bayesian quantile approach is very effective under different
error distributions, different quantile levels, and different spatial parameters ρ. Tables 2–4
summarize the numerical results for Bayesian parametric estimations and variable selection
simultaneously, based on 500 replications for scenarios 2–4, one for each scenario setting.
Denoting MSE= 1

p‖β̂ − βtrue‖2
2, MPE= 1

n‖X(β̂ − βtrue)‖2
2, and TP as the true positive

number, which means the number of correctly identified zero coefficients.FP denotes
the false positive number, which means the number of incorrectly identified non-zero
coefficients. In our Bayesian statistical framework, the coefficient is identified as zero if
the 95% credible interval of this parameter covers zero. Otherwise, it is identified as non-
zero. Furthermore, FPR (false positive rate), TPR (true positive rate), and MCC (Matthews
correlation coefficient) [32] are defined as follows: FPR= FP

FP + TN, TPR= TP
TP + FN,

MCC= TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, in which FN and TN are the number

of incorrectly identified zero coefficients and the number of correctly identified non-zero
coefficients, respectively. It is clear that MCC has a range from to −1 to 1 and models with
MCC closer to 1 have higher selection accuracy. The reported TP values (denoted as TP),
FP values (denoted as FP), FPR values (denoted as FPR), TPR values (denoted as FPR), and
MCC values (denoted as MCC) in Tables 2–4 are averaged values over 500 replications.
It is noted that the MSE is an estimation performance index, the MPE is a prediction
performance index, and TP, FP, FPR, TPR and MCC are variable selection performance
indexes. Examinations of Tables 2–4 indicate that (i) Most MSEs are not more than 0.02,
which illustrates that the Bayesian estimation is robust and accurate; (ii) The vast majority
of MPEs are not more than 0.25 and each MPE is smaller than 0.4, which demonstrates
the predictive effect of our proposed approach is very good; (iii) Each TP is close to the
number of true zero coefficients, each FP and FPR is close to 0, each TPR is close to 1. In
particular, each MCC is bigger than 0.93 and most of them are clearly close to 1. All TPs, FPs,
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FPRs, TPRs and MCCs suggest that our proposed Bayesian variable selection procedure
has extremely high selection accuracy. In short, the empirical performance (containing
estimation performance, the predictive performance, and variable selection performance)
of the Bayesian approach is quite satisfactory in our considered settings.

Table 1. Means and RMSEs (in parentheses) in the first simulation study under Scenario 1.

(ρ, τ)
Error

Distri-
bution

β1 β2 β3 β4 β5 β6 β7 β8 ρ

(−0.8,
0.1) normal 0.8369 0.8319 0.8480 0.8314 0.8499 0.8226 0.8221 0.8462 −0.8000

(0.2016) (0.2547) (0.2427) (0.2642) (0.2587) (0.2487) (0.2485) (0.1981) (0.0230)
t 0.7582 0.8125 0.8311 0.8008 0.8400 0.7929 0.8454 0.7670 −0.8071

(0.4365) (0.5072) (0.4791) (0.4964) (0.5178) (0.4912) (0.4828) (0.4297) (0.0294)
Laplace 0.7904 0.8352 0.8287 0.8069 0.8333 0.8045 0.7962 0.8230 −0.8051

(0.3827) (0.4591) (0.4604) (0.4557) (0.4597) (0.4547) (0.4665) (0.3834) (0.0307)
mixed-
normal 0.8201 0.8322 0.8116 0.8332 0.7974 0.8639 0.8432 0.8013 −0.8042

(0.3098) (0.3571) (0.3724) (0.3807) (0.3927) (0.3665) (0.3621) (0.3166) (0.0280)

(−0.8,
0.3) normal 0.8391 0.8369 0.8555 0.8398 0.8458 0.8372 0.8478 0.8359 −0.7983

(0.1601) (0.1967) (0.2070) (0.2012) (0.1861) (0.1916) (0.1756) (0.1662) (0.0183)
t 0.7751 0.8372 0.7963 0.8516 0.8113 0.8290 0.8070 0.7978 −0.7987

(0.3294) (0.3864) (0.3953) (0.3950) (0.3874) (0.3959) (0.4080) (0.3270) (0.0223)
Laplace 0.8111 0.8388 0.8363 0.8168 0.8194 0.8525 0.8250 0.8303 −0.7994

(0.2532) (0.3002) (0.3208) (0.3046) (0.3186) (0.3059) (0.3077) (0.2569) (0.0214)
mixed-
normal 0.8257 0.8191 0.8297 0.8477 0.8438 0.8346 0.8199 0.8504 −0.7996

(0.2108) (0.2821) (0.2728) (0.2707) (0.2657) (0.2695) (0.2572) (0.2080) (0.0196)

(−0.8,
0.5) normal 0.8411 0.8372 0.8457 0.8412 0.8526 0.8319 0.8535 0.8339 −0.7987

(0.1521) (0.1883) (0.1916) (0.1914) (0.1918) (0.1828) (0.1733) (0.1532) (0.0166)
t 0.7882 0.8526 0.8044 0.8218 0.8176 0.8091 0.8350 0.8034 −0.7983

(0.2980) (0.3565) (0.3654) (0.3601) (0.3619) (0.3609) (0.3566) (0.2923) (0.0209)
Laplace 0.8306 0.8165 0.8422 0.8199 0.8530 0.8197 0.8458 0.8100 −0.7976

(0.2471) (0.2945) (0.3039) (0.3017) (0.2992) (0.3015) (0.2924) (0.2559) (0.0199)
mixed-
normal 0.8302 0.8302 0.8558 0.8419 0.8248 0.8196 0.8561 0.8156 −0.7977

(0.2138) (0.2732) (0.2636) (0.2802) (0.2766) (0.2686) (0.2531) (0.2225) (0.0186)

(0.0, 0.1) normal 0.8412 0.8332 0.8415 0.8474 0.8255 0.8497 0.8438 0.8381 −0.0001
(0.2005) (0.2427) (0.2399) (0.2431) (0.2305) (0.2289) (0.2497) (0.2117) (0.0460)

t 0.7865 0.8152 0.8114 0.8114 0.7895 0.8298 0.8302 0.7691 −0.0451
(0.4391) (0.4947) (0.5027) (0.4993) (0.5087) (0.4930) (0.5137) (0.4457) (0.0881)

Laplace 0.7865 0.8339 0.8234 0.7975 0.8307 0.8015 0.8369 0.7908 −0.0281
(0.3918) (0.4583) (0.4490) (0.4734) (0.4680) (0.4726) (0.4675) (0.4105) (0.0796)

mixed-
normal 0.8045 0.8504 0.8356 0.8246 0.8588 0.8054 0.8426 0.7967 −0.0207

(0.3248) (0.3640) (0.3983) (0.3839) (0.3667) (0.3859) (0.3915) (0.3202) (0.0681)
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Table 1. Cont.

(ρ, τ)
Error

Distri-
bution

β1 β2 β3 β4 β5 β6 β7 β8 ρ

(0.0, 0.3) normal 0.8328 0.8357 0.8545 0.8346 0.8420 0.8493 0.8447 0.8362 −0.0044
(0.1590) (0.1831) (0.1939) (0.2020) (0.1921) (0.1922) (0.1867) (0.1636) (0.0418)

t 0.8013 0.8135 0.8215 0.8412 0.8047 0.8242 0.8170 0.8180 −0.0079
(0.3155) (0.3802) (0.3714) (0.3657) (0.3805) (0.3702) (0.3655) (0.2912) (0.0507)

Laplace 0.8177 0.8242 0.8243 0.8263 0.8300 0.8242 0.8466 0.8166 0.0065
(0.2483) (0.2955) (0.2960) (0.3086) (0.3059) (0.3073) (0.3115) (0.2566) (0.0475)

mixed-
normal 0.8145 0.8346 0.8380 0.8334 0.8460 0.8004 0.8492 0.8425 −0.0025

(0.2218) (0.2573) (0.2751) (0.2698) (0.2676) (0.2945) (0.2812) (0.2050) (0.0445)

(0.0, 0.5) normal 0.8494 0.8303 0.8361 0.8553 0.8271 0.8478 0.8422 0.8343 −0.0008
(0.1443) (0.1794) (0.1834) (0.1794) (0.1808) (0.1740) (0.1767) (0.1439) (0.0392)

t 0.7926 0.8107 0.8244 0.8465 0.8161 0.8245 0.8140 0.8035 0.0005
(0.3105) (0.3761) (0.3617) (0.3550) (0.3684) (0.3702) (0.3716) (0.3053) (0.0484)

Laplace 0.8204 0.8404 0.8156 0.8341 0.8302 0.8443 0.8192 0.8125 0.0023
(0.2315) (0.2807) (0.3050) (0.2964) (0.2959) (0.2831) (0.2835) (0.2473) (0.0431)

mixed-
normal 0.8163 0.8446 0.8002 0.8564 0.8187 0.8487 0.8237 0.8332 −0.0016

(0.2289) (0.2833) (0.2940) (0.2660) (0.2601) (0.2637) (0.2646) (0.2113) (0.0459)

(0.8, 0.1) normal 0.8383 0.8459 0.8479 0.8249 0.8435 0.8583 0.8352 0.8232 0.7948
(0.2102) (0.2520) (0.2507) (0.2570) (0.2413) (0.2541) (0.2852) (0.2145) (0.0193)

t 0.7648 0.8402 0.8513 0.8168 0.8302 0.8364 0.8152 0.7768 0.7709
(0.4449) (0.5331) (0.5462) (0.5576) (0.5227) (0.5219) (0.5349) (0.4874) (0.0454)

Laplace 0.7888 0.8551 0.8177 0.8296 0.8268 0.8154 0.8438 0.7945 0.7784
(0.4253) (0.5056) (0.4861) (0.5132) (0.4958) (0.4921) (0.4873) (0.4101) (0.0372)

mixed-
normal 0.8366 0.7999 0.8658 0.8185 0.8627 0.8195 0.8190 0.8373 0.7799

(0.3547) (0.4346) (0.4389) (0.4130) (0.4107) (0.4155) (0.4364) (0.3501) (0.0354)

(0.8, 0.3) normal 0.8430 0.8464 0.8409 0.8402 0.8681 0.8325 0.8422 0.8449 0.7965
(0.1668) (0.1982) (0.2092) (0.1924) (0.1869) (0.1854) (0.1997) (0.1582) (0.0177)

t 0.7955 0.8303 0.8407 0.8037 0.8409 0.8242 0.8230 0.7939 0.7913
(0.3270) (0.3802) (0.3792) (0.3971) (0.3943) (0.3892) (0.3948) (0.3164) (0.0256)

Laplace 0.8401 0.8158 0.8391 0.8429 0.8335 0.8347 0.8201 0.8199 0.7923
(0.2574) (0.3410) (0.3517) (0.3331) (0.3323) (0.3267) (0.3311) (0.2650) (0.0243)

mixed-
normal 0.8419 0.8274 0.8437 0.8304 0.8361 0.8340 0.8509 0.8132 0.7937

(0.2277) (0.2861) (0.2992) (0.2900) (0.2976) (0.2758) (0.2732) (0.2464) (0.0203)

(0.8, 0.5) normal 0.8412 0.8429 0.8500 0.8343 0.8501 0.8409 0.8505 0.8453 0.7976
(0.1452) (0.1804) (0.1808) (0.1924) (0.1822) (0.1771) (0.1828) (0.1544) (0.0173)

t 0.8072 0.8157 0.8202 0.8123 0.8473 0.8138 0.8550 0.7780 0.7969
(0.2930) (0.3710) (0.3803) (0.3685) (0.3664) (0.3736) (0.3623) (0.3187) (0.0212)

Laplace 0.8312 0.8152 0.8367 0.8316 0.8404 0.8206 0.8328 0.8206 0.7967
(0.2235) (0.2957) (0.2857) (0.2864) (0.3060) (0.2876) (0.2965) (0.2380) (0.0189)

mixed-
normal 0.8239 0.8228 0.8493 0.8192 0.8457 0.8327 0.8359 0.8340 0.7985

(0.2262) (0.2553) (0.2585) (0.2716) (0.2633) (0.2686) (0.2619) (0.2157) (0.0184)
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Table 2. Numerical results of the simulation study under Scenario 2.

(ρ, τ)
Error Dis-
tribution MSE MPE TP FP FPR TPR MCC

(−0.8, 0.1) normal 0.0154 0.0962 4.9340 0.0060 0.0020 0.9868 0.9810
t 0.0381 0.2326 4.9300 0.0080 0.0027 0.9860 0.9794

Laplace 0.0388 0.2339 4.9020 0.0060 0.0020 0.9804 0.9727
mixed-
normal 0.0215 0.1301 4.9600 0.0060 0.0020 0.9920 0.9878

(−0.8, 0.3) normal 0.0077 0.0482 4.9880 0.006 0.0020 0.9976 0.9952
t 0.0111 0.0721 5.000 0.008 0.0027 1.0000 0.9979

Laplace 0.0098 0.0619 4.9980 0.0040 0.0013 0.9996 0.9984
mixed-
normal 0.0095 0.0631 5.0000 0.0040 0.0013 1.0000 0.9989

(−0.8, 0.5) normal 0.0072 0.0467 4.9980 0.004 0.0013 0.9996 0.9984
t 0.0088 0.0560 5.0000 0.006 0.0020 1.0000 0.9984

Laplace 0.0073 0.0470 5.0000 0.0020 0.0007 1.0000 0.9995
mixed-
normal 0.0085 0.0528 5.0000 0.0020 0.0007 1.0000 0.9995

(0.0, 0.1) normal 0.0134 0.0806 4.9580 0.0000 0.0000 0.9916 0.9889
t 0.0330 0.1985 4.9560 0.0060 0.0020 0.9912 0.9868

Laplace 0.0359 0.2187 4.9140 0.0040 0.0013 0.9828 0.9764
mixed-
normal 0.0219 0.1306 4.9400 0.0020 0.0007 0.9880 0.9836

(0.0, 0.3) normal 0.0073 0.0457 4.9900 0.0000 0.0000 0.9980 0.9973
t 0.0099 0.0607 4.9980 0.0000 0.0000 0.9996 0.9995

Laplace 0.0097 0.0591 4.9980 0.0000 0.0000 0.9996 0.9995
mixed-
normal 0.0085 0.0531 4.9960 0.0000 0.0000 0.9992 0.9989

(0.0, 0.5) normal 0.0063 0.0399 4.9980 0.0000 0.0000 0.9996 0.9995
t 0.0081 0.0505 4.9980 0.0000 0.0000 0.9996 0.9995

Laplace 0.0070 0.0426 5.0000 0.0000 0.0000 1.0000 1.0000
mixed-
normal 0.0073 0.0452 4.9980 0.0000 0.0000 0.9996 0.9995

(0.8, 0.1) normal 0.0143 0.0890 4.940 0.0080 0.0027 0.9880 0.9820
t 0.0405 0.2325 4.9580 0.0100 0.0033 0.9916 0.9862

Laplace 0.0410 0.2413 4.9120 0.0080 0.0027 0.9824 0.9748
mixed-
normal 0.0259 0.1494 4.9340 0.0080 0.0027 0.9868 0.9805

(0.8, 0.3) normal 0.0084 0.0543 4.996 0.008 0.0027 0.9992 0.9968
t 0.0112 0.0702 5.0000 0.006 0.0020 1.0000 0.9984

Laplace 0.0097 0.0618 5.0000 0.0040 0.0013 1.0000 0.9989
mixed-
normal 0.0098 0.0602 4.9960 0.0080 0.0027 0.9992 0.9968

(0.8, 0.5) normal 0.0067 0.0426 4.994 0.0020 0.0007 0.9988 0.9979
t 0.0093 0.0585 1.0000 0.0060 0.0020 1.0000 0.9984

Laplace 0.0073 0.0476 5.0000 0.0060 0.0020 1.0000 0.9984
mixed-
normal 0.0088 0.0547 5.0000 0.0040 0.0013 1.0000 0.9989
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Table 3. Numerical results in the simulation study under Scenario 3.

(ρ, τ)
Error Dis-
tribution MSE MPE TP FP FPR TPR MCC

(−0.8, 0.1) normal 0.0078 0.0557 6.9060 0.0020 0.0020 0.9866 0.9484
t 0.0183 0.1309 6.9060 0.0040 0.0040 0.9866 0.9472

Laplace 0.0185 0.1342 6.8840 0.0020 0.0020 0.9834 0.9375
mixed-
normal 0.0111 0.0771 6.9040 0.0000 0.0000 0.9863 0.9486

(−0.8,0.3) normal 0.0029 0.0224 6.9940 0.0000 0.0000 0.9991 0.9966
t 0.0034 0.0265 7.0000 0.0020 0.0020 1.0000 0.9989

Laplace 0.0035 0.0272 6.9960 0.0020 0.0020 0.9994 0.9966
mixed-
normal 0.0043 0.0310 6.9980 0.0040 0.0040 0.9997 0.9966

(−0.8, 0.5) normal 0.0025 0.0189 6.9900 0.0002 0.0002 0.9986 0.9932
t 0.0028 0.0219 6.9980 0.0020 0.0020 0.9997 0.9977

Laplace 0.0026 0.0191 6.9980 0.0020 0.0020 0.9997 0.9977
mixed-
normal

l
0.0032 0.0241 6.9960 0.0020 0.0020 0.9994 0.9966

(0.0, 0.1) normal 0.0054 0.0405 6.9180 0.0000 0.0000 0.9883 0.9557
t 0.0165 0.1197 6.8820 0.0000 0.0000 0.9831 0.9378

Laplace 0.0176 0.1265 6.8700 0.0000 0.0000 0.9814 0.9319
mixed-
normal 0.0100 0.0717 6.9280 0.0000 0.0000 0.9897 0.9609

(0.0, 0.3) normal 0.0021 0.0163 6.9980 0.0000 0.0000 0.9997 0.9989
t 0.0031 0.0238 6.9980 0.0000 0.0000 0.9997 0.9989

Laplace 0.0024 0.0188 7.0000 0.0000 0.0000 1.0000 1.0000
mixed-
normal 0.0030 0.0231 6.9860 0.0000 0.0000 0.9980 0.9921

(0.0, 0.5) normal 0.0019 0.0150 6.9940 0.0000 0.0000 0.9991 0.9966
t 0.0020 0.0155 7.0000 0.0000 0.0000 1.0000 1.0000

Laplace 0.0020 0.0159 6.9960 0.0000 0.0000 0.9994 0.9977
mixed-
normal 0.0023 0.0179 6.9960 0.0000 0.0000 0.9994 0.9977

(0.8, 0.1) normal 0.0071 0.0520 6.9320 0.0040 0.0040 0.9903 0.9606
t 0.0186 0.1334 6.9240 0.0020 0.0020 0.9891 0.9576

Laplace 0.0204 0.1467 6.8760 0.0020 0.0020 0.9823 0.9336
nixed-

normal 0.0129 0.0912 6.9060 0.0040 0.0040 0.9866 0.9472

(0.8, 0.3) normal 0.0032 0.0246 7.0000 0.0020 0.0020 1.0000 0.9989
t 0.0043 0.0328 6.9980 0.0000 0.0000 0.9997 0.9989

Laplace 0.0035 0.0273 6.9960 0.0040 0.0040 0.9994 0.9954
mixed-
normal 0.0037 0.0286 6.9880 0.0040 0.0040 0.9983 0.9909

(0.8, 0.5) normal 0.0024 0.0189 6.9960 0.0000 0.0000 0.9994 0.9977
t 0.0028 0.0216 6.9980 0.0020 0.0020 0.9997 0.9977

Laplace 0.0028 0.0207 7.0000 0.0020 0.0020 1.0000 0.9989
mixed-
normal 0.0034 0.0253 6.9940 0.0020 0.0020 0.9991 0.9954
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Table 4. Numerical results in the simulation study under Scenario 4.

(ρ, τ)
Error Dis-
tribution MSE MPE TP FP FPR TPR MCC

(−0.8,0.1) normal 0.0203 0.3328 14.9280 0.0900 0.0300 0.9952 0.9675
t 0.0260 0.3732 14.8820 0.0600 0.0200 0.9921 0.9647

Laplace 0.0276 0.3905 14.8300 0.0540 0.0180 0.9887 0.9561
mixed-
normal 0.0218 0.3380 14.9300 0.0740 0.0247 0.9953 0.9712

(−0.8, 0.3) normal 0.0117 0.1825 14.9900 0.0580 0.01933 0.9993 0.9864
t 0.0132 0.2111 14.9840 0.0400 0.0133 0.9989 0.9888

Laplace 0.0133 0.2131 15.0000 0.0480 0.0160 1.0000 0.9904
mixed-
normal 0.0121 0.1924 14.9960 0.0560 0.0187 0.9997 0.9880

(−0.8, 0.5) normal 0.0103 0.1667 14.9980 0.0500 0.0167 0.9999 0.9896
t 0.0114 0.1733 14.9980 0.0460 0.0153 0.9999 0.9904

Laplace 0.0114 0.1797 14.9980 0.0460 0.0153 0.9999 0.9904
mixed-
normal 0.0114 0.1753 14.9980 0.0380 0.0127 0.9999 0.9920

(0.0, 0.1) normal 0.0078 0.1000 14.8640 0.0000 0.0000 0.9909 0.9736
t 0.0203 0.2629 14.8320 0.0040 0.0013 0.9888 0.9668

Laplace 0.0199 0.2609 14.8420 0.0000 0.0000 0.9895 0.9695
mixed-
normal 0.0134 0.1735 14.8540 0.0000 0.0000 0.9903 0.9718

(0.0, 0.3) normal 0.0043 0.0550 14.9640 0.0000 0.0000 0.9976 0.9929
t 0.0054 0.0662 14.9920 0.0000 0.0000 0.9995 0.9984

Laplace 0.0053 0.0638 14.9960 0.0000 0.0000 0.9997 0.9992
mixed-
normal 0.0053 0.0655 14.9820 0.0000 0.0000 0.9988 0.9964

(0.0, 0.5) normal 0.0034 0.0427 14.9900 0.0000 0.0000 0.9993 0.9980
t 0.0046 0.0551 15.0000 0.0000 0.0000 1.0000 1.0000

Laplace 0.0037 0.0435 14.9980 0.0000 0.0000 0.9999 0.9996
mixed-
normal 0.0043 0.0524 14.9880 0.0000 0.0000 0.9992 0.9976

(0.8, 0.1) normal 0.0183 0.2771 14.9040 0.0820 0.0273 0.9936 0.9645
t 0.0272 0.3877 14.8720 0.0560 0.0187 0.9915 0.9636

Laplace 0.0279 0.3719 14.8140 0.0500 0.0167 0.9876 0.9540
mixed-
normal 0.0223 0.3175 14.8980 0.0540 0.0180 0.9932 0.9690

(0.8, 0.3) normal 0.0118 0.1848 14.9900 0.0480 0.0160 0.9993 0.9884
t 0.0121 0.1948 14.9980 0.0480 0.0160 0.9999 0.9900

Laplace 0.0120 0.1965 14.9880 0.0460 0.0153 0.9992 0.9884
mixed-
normal 0.0125 0.1950 14.9980 0.0540 0.0180 0.9999 0.9888

(0.8, 0.5) normal 0.0106 0.1781 14.9860 0.0500 0.0167 0.9991 0.9872
t 0.0116 0.1853 14.9940 0.0580 0.0193 0.9996 0.9872

Laplace 0.0111 0.1622 14.9980 0.0420 0.0140 0.9999 0.9912
mixed-
normal 0.0120 0.1851 15.000 0.0560 0.0187 1.0000 0.9888

4.2. Boston Housing Price Data Analysis

In this subsection, a real example relating to Boston housing price data, which was
analyzed by Harrison and Rubinfeld [33], Du et al. [3], Liu et al. [4], Xie et al. [5] and
many other authors, is adopted to illustrate the proposed Bayesian methodologies. The
Boston housing price dataset contains 14 variables with 506 individuals, which cab be
downloaded from the link: http://lib.stat.cmu.edu/datasets/boston (accessed on 18 July

http://lib.stat.cmu.edu/datasets/boston
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2022); a detailed description of all the variables is summarized in Table 5. Our scientific
interest is to investigate the relationship between the house price and the other variables in
this study, while accounting for choosing several important variables to explain home price
under the SAR quantile models. Based on the work of Harrison and Rubinfeld [33] and
Liu et al. [4], log(MEDV) is treated as the response variable, and the other variables are
taken as explanatory variables, where DIS, RAD, LSTAT are processed with the logarithm,
and RM and NOX are processed with the square. For convenient analysis, all the variables
are standardized in the paper such that their sample means become zero. Finally, all 14
variables are taken into account by the following SAR quantile model

yi = ρ
n
∑

j=1
ωijyj +

p
∑

k=1
xikβk + k1ei +

√
k2σeizi,

p(ei|σ) = 1
σ exp{− 1

σ ei}I(ei ≥ 0),
zi ∼ N(0, 1),
i = 1, · · · , n,

where n = 506, p = 13, k1 = 1−2τ
τ(1−τ)

and k2 = 2
τ(1−τ)

, respectively. The response variable
yi denotes MEDV and the other 13 explanatory variables are xi1 (CRIM), xi2 (ZN), xi3
(INDUS), xi4 (CHAS), xi5 (NOX), Vxi6 (RM), xi7 (AGE), xi8 (DIS), xi9 (RAD), xi10 (TAX),
xi11 (PTRATIO), xi12 (B), and xi13 (LSTAT), respectively. Moreover, similar to Ertur and
KochGrowth [34], the initial spatial weight matrix ω∗ = (ω∗ij)n×n is considered by the
following

ω∗ij =

{
0, i=j,
e−2dij/1000, i 6= j,

dij denotes the great-circle distance between the latitude and longitude coordinates of any
two houses. Subsequently, for i = 1, · · · , n, we set ωii = 0 and the initial weights ω∗ij

are normalized such that
n
∑

j=1
ωij = 1. The prior distributions and hyperparameters are

specified as presented in Section 3.

Table 5. Description of the variables in Boston housing price data.

Variables Description

CRIM per capita crime rate by town
ZN proportion of residential land zones for lots over 25,000 sq.ft

INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable
NOX nitric oxides concentration
RM average number of rooms per dwelling

AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centers

RAD index of accessibility to radial highways
TAX full-value property-tax rate per USD 10,000

PTRATIO pupil–teacher ratio by town
B 1000(B-0.63)2 where B is the proportion of Black people by town

LSTAT percentage of lower status of the population
MEDV the median value of owner-occupied homes in USD 1000s

A total of 5000 posterior samplers after 5000 burn-ins are collected in the posterior
analysis, Bayesian estimates (ESTs), standard error estimates (SEs). and 95% credible
intervals (CIs) of the unknown parameters under Gibbs sampling with the PIT algorithm
and 3 different quantile levels (τ = 0.2, 0.5, 0.8) are reported in Table 6. From these empirical
results, it can be seen that the Bayesian variable selection method could simultaneously
obtain robust parameter estimations and identify important explanatory variables under
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different quantile levels (τ = 0.2, 0.5, 0.8). For example, under τ = 0.5, xi1, xi5, xi8, xi11,
and xi13 are identified to be important explanatory variables with a significantly negative
effect on MEDV, and xi6 and xi12 are detected to be important explanatory variables with
a significantly positive impact on MEDV, since their corresponding 95% CIs do not cover
zero; while xi2, xi3, xi4, xi7, xi9, and xi10 appear to be insignificant at significance level 0.05
because their 95% CIs cover zero.

Table 6. Bayesian estimation results based on SAR quantile models in the Boston housing price data
analysis.

τ Parameters EST SE 95% CI

0.2 β1 −0.3247 0.0385 (−0.4002, −0.2491)
β2 −0.0007 0.0074 (−0.0153, 0.0138)
β3 0.0019 0.0099 (−0.0174, 0.0213)
β4 0.0057 0.0004 (0.0050, 0.0064)
β5 −0.1108 0.0251 (−0.1600, −0.0616)
β6 0.2518 0.0313 (0.1905, 0.3131)
β7 −0.0101 0.0230 (−0.0552, 0.0350)
β8 −0.1833 0.0333 (−0.2487, −0.1180)
β9 0.1001 0.0367 (0.0281, 0.1721)
β10 −0.0913 0.0533 (−0.1958, 0.0131)
β11 −0.0948 0.0175 (−0.1291, −0.0606)
β12 0.1072 0.0203 (0.0674, 0.1471)
β13 −0.3307 0.0387 (−0.4067, −0.2548)
ρ 0.3510 0.0372 (0.2781, 0.4238)

0.5 β1 −0.1570 0.0217 (−0.1996, −0.1144)
β2 −0.0002 0.0032 (−0.0065, 0.0060)
β3 −0.0004 0.0051 (−0.0104, 0.0097)
β4 −0.0000 0.0001 (−0.0001, 0.0001)
β5 −0.0954 0.0312 (−0.1567, −0.0342)
β6 0.2816 0.0223 (0.2378, 0.3254)
β7 −0.0061 0.0170 (−0.0394, 0.0273)
β8 −0.1764 0.0306 (−0.2364, −0.1164)
β9 0.0466 0.0512 (−0.0537, 0.1468)
β10 −0.0405 0.0510 (−0.1405, 0.0594)
β11 −0.0986 0.0184 (−0.1347, −0.0626)
β12 0.0998 0.0184 (0.0636, 0.1359)
β13 −0.3132 0.0284 (−0.3688, −0.2575)
ρ 0.3901 0.0406 (0.3105, 0.4696)

0.8 β1 −0.1267 0.0368 (−0.1989, −0.0546)
β2 0.0042 0.0132 (−0.0217, 0.0301)
β3 −0.0008 0.0095 (−0.0195, 0.0179)
β4 −0.0063 0.0004 (−0.0071, −0.0055)
β5 −0.1563 0.0306 (−0.2162, −0.0964)
β6 0.2351 0.0287 (0.1788, 0.2912)
β7 −0.0085 0.0233 (−0.0542, 0.0372)
β8 −0.2680 0.0323 (−0.3313, −0.2047)
β9 0.0651 0.0374 (−0.0082, 0.1384)
β10 −0.0016 0.0098 (−0.0209, 0.0176)
β11 −0.1245 0.0223 (−0.1682, −0.0807)
β12 0.1179 0.0234 (0.0720, 0.1638)
β13 −0.3722 0.0366 (−0.4439, −0.3006)
ρ 0.3602 0.0480 (0.2662, 0.4542)

Furthermore, we obtain parameter estimates based on a Bayesian estimation procedure
for SAR models proposed by LeSage and Pace [2], and calculate the predictive root mean

square error (PRMSE), which is defined as PRMSE =

√
1
n

n
∑

i=1
(yi − ŷi)

2,where ŷi is the
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mean of {y(j)
i , j = 1, . . . , 5000}, and y(j)

i is the predicted value of yi in the jth iteration
after 5000 burn-in iterations. The related computing results are reported in Table 7, and
the PRMSE values corresponding to our proposed Bayesian method (τ = 0.5, which
is the case with median regression) and the method proposed by LeSage and Pace are
given by 0.4204 and 0.5136, respectively. Comparing these results with Table 3, we may
find that: (1) the regression parameter β and spatial parameter ρ vary with different
quantile levels (e.g., τ = 0.2, 0.5 and 0.8 ) in SAR quantile models, which implies the way
that the covariates affect the MEDV (response variable) is different at different levels
of the distribution of the MEDV, the same as to the spatial relationship (the latitude
and longitude coordinates) of any two houses. In a word, compared with the Bayesian
estimation procedure for SAR models proposed by LeSage and Pace (in general, ordinal
mean regression methods), our proposed SAR quantile models and methodologies could
provide a more comprehensive and complete description of the Boston housing price data
structure; (2) in terms of estimation and prediction performance based on the SAR model of
LeSage and Pace and our proposed SAR quantile mothod (τ = 0.5), our median regression
performs better than LeSage and Pace’s mean regression, since our proposed method has
smaller standard errors and smaller PRMSE than those obtained by the method proposed
by LeSage and Pace.

Table 7. Bayesian estimation results based on SAR models [2] in the Boston housing price data
analysis.

Parameters EST SE 95% CI

β1 −0.2046 0.0244 (−0.2531, −0.1573)
β2 0.0329 0.0262 (−0.0177, 0.0848)
β3 0.0050 0.0361 (−0.0663, 0.0764)
β4 −0.0001 0.0004 (−0.0014, 0.0002)
β5 −0.1677 0.0353 (−0.2360, −0.0995)
β6 0.1415 0.0257 (0.0897, 0.1914)
β7 0.0171 0.0332 (−0.0477, 0.0826)
β8 −0.2824 0.0398 (−0.3601, −0.2054)
β9 0.1723 0.0376 (0.0987, 0.2456)
β10 −0.1023 0.0467 (−0.1937, −0.0087)
β11 −0.0991 0.0250 (−0.1487, −0.0513)
β12 0.0710 0.0210 (0.0301, 0.1124)
β13 −0.4473 0.0347 (−0.5147, −0.3797)
ρ 0.4532 0.0436 (0.3676, 0.5367)

σ2 0.2530 0.0102 (0.2339, 0.2737)

5. Discussion

A Bayesian quantile regression method for spatial autoregressive (SAR) models is
presented in this paper. Furthermore, an efficient MCMC algorithm is elaborately designed
for posterior inferences. Note that our proposed approach could perform simultaneously
to obtain robust parameter estimations, to identify significant explanatory variables, and
to build accurate predictive models in the context of SAR quantile models, as shown by
our empirical numerical studies. Therefore, we strongly recommend using our proposed
Bayesian procedure in spatial data analysis.

In spite of the excellent performances of our proposed approach, it also suffers from
some limitations in application: (1) the linear relationship of the response variable and
explanatory variables in SAR quantile models might not hold; (2) the quantile curves related
to different quantile levels are fitted separately in the current version, and they might cross
(violating the definition of quantiles); (3) the stability of our proposed approach is not
good enough when quantile levels are very close to 0 and 1 (e.g., τ < 10−6, τ > 1− 10−6);
(4) in high dimensional or ultrahigh dimensional spatial data analysis, the performances
of parametric estimation and variable selection for our proposed method are rather poor.
The main contribution of this paper is to adopt the spike and slab prior method and the
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Bayesian quantile technique [17,18] to SAR models, then similar ideas could be further
extended to other spatial regression models in future works. Furthermore, it is a potential
future project to consider more robust Bayesian quantile methods (e.g., Bayesian composite
quantile regression), and more advanced Bayesian variable selection techniques for SAR
models in high dimensional or ultrahigh dimensional settings.
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Appendix A. Sampling for the Parameter ρ

The MH algorithm, which is a popular sampling method, is adopted to draw observa-
tions from the conditional distribution (13). At the tth iteration with a current value ρ(t), a
new candidate ρ∗ is generated from the following equation:

ρ∗ = ρ(t) + c · u(t),

where u(t) is a random sample from the standard normal distribution, ρ(t) and u(t) are
mutually independent; and c is a tuning parameter. ρ∗ is accepted with probability

min
{

1,
p(ρ∗|β, σ, δ, e, γ, y, x)

p(ρ(t)|β, σ, δ, e, γ, y, x)

}
.

Similar to LeSage and Pace [2], c could be chosen such that the average acceptance rate is
about [0.4, 0.6].

The probability integral transformation (PIT) algorithm [25], another alternative sam-
pling approach, could be used to draw observations from the the conditional distribution
(13) by the following:

Step (i): denote ρ1 = ρmin, ρd = ρmax, divide the interval [ρmin, ρmax] into d− 1 equally
spaced points such that,

ρj = ρ1 + (j− 1)h f or j = 2, · · · , d− 1,

where h = 2
d−1 . Obtain F(ρ1), F(ρ2), · · · , F(ρd) by quadrature numerical integration, where

F(ρ) is the posterior cumulative distribution function for ρ.
Step (ii): generate u ∼ U(0, 1), for j = 1, · · · , d, if u = F(ρj), then ρj is a random

observation of the conditional distribution (13); Denoted f (ρ) as the posterior probability

density function for ρ, i.e., f (ρ) = p(ρ|β,σ,δ,e,γ,y,x)∫
p(ρ|β,σ,δ,e,γ,y,x)dρ

. If F(ρj) < u < F(ρj+1), let ρ∗ be

u = F(ρ∗), then using the Taylor expansion

u = F(ρ∗) ≈ F(ρj) + f (ρj)(ρ
∗ − ρj),

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
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thus, we obtain

ρ∗ = ρj +
u− F(ρj)

f (ρj)
.

In the end, if ρ∗ ∈ [ρj, ρj+1], then ρ∗ is a random observation of f (ρ); otherwise, we set

ρ∗ =
ρj+ρj+1

2 , which is regarded as a random observation of f (ρ).
It is noted that d can be selected empirically, or be chosen as a large value in simulation

studies and data analysis (e.g., d = 500 in the paper).In addition, a simulation study (refer
to Appendix B) is conducted to compute the Bayesian estimates of parameters based on
the above proposed MH algorithm and PIT algorithm in our SAR quantile models and
compare their performances.

Appendix B

To compare the empirical performance of our proposed sampling approach (denoted
as Gibbs sampling with PIT algorithm) with the typical sampling approach (such as Gibbs
sampling with MH algorithm), the following simulation study is considered. The dataset
is generated from the model and parameter settings given in scenario 1 of the simulation
study in Section 4.1. In each replication, 5000 samples are collected to calculate Bayesian
estimates of unknown parameters after 5000 burn-ins by using Gibbs sampling with the
MH algorithm. The related computing results based on 500 data sets are reported in
Table A1; Table A1 only gives partial results to save space. From Tables A1 and 1, we have
the following findings: these two MCMC procedures (Gibbs sampling with PIT algorithm
and Gibbs sampling with MH algorithm) are quite effective.In general, they obtain similar
and accurate estimate results about unknown parameters and their differences are very
minor. Comparing the computing time of these two MCMC approaches, it roughly takes
6.1 s in a Thinkpad X240 server to run a data set for Gibbs sampling with the PIT algorithm,
and it takes about 29.2 s to run a replication for Gibbs sampling with the MH algorithm.
Note that Gibbs sampling with the MH algorithm depends heavily on the accept probability
and the proposal distribution. Therefore, we recommend to use Gibbs sampling with the
PIT algorithm (i.e., our proposed sampling approach) in applications.

Table A1. Means and RMSEs (in parentheses) in the simulation study of Appendix B.

(ρ, τ)
Error Distri-

bution β1 β2 β3 β4 β5 β6 β7 β8 ρ

(−0.8, 0.5) normal 0.8461 0.8414 0.8329 0.8493 0.8334 0.8478 0.8441 0.8418 −0.7983
(0.1643) (0.1867) (0.1942) (0.1754) (0.1909) (0.1802) (0.1910) (0.1522) (0.0173)

t 0.7983 0.8286 0.8231 0.8084 0.8384 0.8201 0.8062 0.8201 −0.7969
(0.3020) (0.3432) (0.3525) (0.3701) (0.3606) (0.3670) (0.3653) (0.2924) (0.0215)

Laplace 0.8259 0.8284 0.8438 0.8406 0.8305 0.8189 0.8433 0.7973 −0.7978
(0.2225) (0.2890) (0.2908) (0.2665) (0.2783) (0.2830) (0.2929) (0.2421) (0.0194)

mixed-
normal 0.8164 0.8340 0.8358 0.8457 0.8273 0.8205 0.8508 0.8194 −0.7988

(0.2161) (0.2635) (0.2605) (0.2803) (0.2793) (0.2821) (0.2812) (0.2326) (0.0189)

(0.8, 0.5) normal 0.8473 0.8410 0.8428 0.8528 0.8438 0.8345 0.8480 0.8422 0.7985
(0.1594) (0.1864) (0.1857) (0.1907) (0.1912) (0.1840) (0.1852) (0.1571) (0.0183)

t 0.8308 0.8287 0.8052 0.8410 0.8205 0.8158 0.8530 0.7742 0.7983
(0.2829) (0.3697) (0.3524) (0.3447) (0.3771) (0.3835) (0.3882) (0.3151) (0.0197)

Laplace 0.8058 0.8294 0.8394 0.8217 0.8238 0.8603 0.8088 0.8327 0.7978
(0.2467) (0.3066) (0.2945) (0.3027) (0.3032) (0.2893) (0.2944) (0.2380) (0.0192)

mixed-
normal 0.8375 0.8436 0.8334 0.8396 0.8366 0.8266 0.8529 0.8147 0.7964

(0.2164) (0.2409) (0.2514) (0.2568) (0.2649) (0.2553) (0.2451) (0.2193) (0.0191)
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Appendix C

In order to survey the sensitivity of the Bayesian estimates to different prior inputs,
we conduct the following simulation study. The dataset is generated from the model and
parameter settings given in Scenario 1 of the simulation study in Section 4.1; the following
two different prior inputs are considered:

Type (i): aσ = bσ = 0.01, aδ = bδ = 0.01, other prior inputs are set to be the same as
those given in Section 4.1, which is regarded as another noninformative prior case, different
from Section 4.1;

Type (ii): aσ = 0.5, bσ = 0.0164, aδ = 0.5, bδ = 0.0164, other prior inputs are taken to be
the same as those given in Section 4.1, which is based on the suggestion of Fong et al. [35].

The corresponding results on the basis of 500 datasets are reported in Table A2,
Table A2 only gives partial results to save space. Tables A2 and 1 imply that: (1) estimates
with type (i) and type (ii) prior inputs are better than those obtained from prior inputs
in Section 4.1, but their differences are minor; (2) all the “means” values based on the 3
different prior inputs are very close to the true values of unknown parameters, which
illustrates that Bayesian estimates are very accurate and are not sensitive to the prior inputs
in our considered cases.

Table A2. Means and RMSs (in parentheses) in the simulation study in Appendix C.

Type (i) Prior Inputs

(ρ, τ)
Error

distribution β1 β2 β3 β4 β5 β6 β7 β8 ρ

(0.8, 0.5) normal 0.8359 0.8587 0.8395 0.8519 0.8385 0.8506 0.8432 0.8360 0.7975
(0.1478) (0.1581) (0.1592) (0.1686) (0.1743) (0.1654) (0.1732) (0.1514) (0.0182)

t 0.8451 0.8299 0.8312 0.8288 0.8464 0.8390 0.8531 0.8240 0.7969
(0.1987) (0.2489) (0.2349) (0.2327) (0.2233) (0.2353) (0.2344) (0.2165) (0.0212)

Laplace 0.8521 0.8405 0.8281 0.8395 0.8535 0.8388 0.8277 0.8397 0.7967
(0.1663) (0.2012) (0.2200) (0.2000) (0.1976) (0.1966) (0.2037) (0.1724) (0.0175)

mixed-
normal 0.8383 0.8361 0.8466 0.8474 0.8480 0.8326 0.8465 0.8217 0.7971

(0.1649) (0.1920) (0.1856) (0.2069) (0.2046) (0.1964) (0.1860) (0.1657) (0.0198)

Type (ii) Prior Inputs

(ρ, τ)
Error

distribution β1 β2 β3 β4 β5 β6 β7 β8 ρ

(0.8, 0.5) normal 0.8273 0.8367 0.8505 0.8374 0.8375 0.8427 0.8355 0.8312 0.8001
(0.1419) (0.1654) (0.1671) (0.1659) (0.1606) (0.1619) (0.1600) (0.1408) (0.0165)

t 0.8133 0.8311 0.8253 0.8490 0.8332 0.8284 0.8373 0.8245 0.7990
(0.1915) (0.2125) (0.2035) (0.2081) (0.1958) (0.1865) (0.1956) (0.1791) (0.0186)

Laplace 0.8140 0.8415 0.8212 0.8329 0.8466 0.8236 0.8335 0.8209 0.7996
(0.1647) (0.1757) (0.1877) (0.1862) (0.1914) (0.1949) (0.1943) (0.1526) (0.0176)

mixed-
normal 0.8199 0.8407 0.8257 0.8506 0.8254 0.8426 0.8342 0.8195 0.7999

(0.1656) (0.1772) (0.1961) (0.1858) (0.1952) (0.1864) (0.1872) (0.1702) (0.0183)
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