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Abstract: Polynomials are common algebraic structures, which are often used to approximate func-
tions, such as probability distributions. This paper proposes to directly define polynomial distri-
butions in order to describe stochastic properties of systems rather than to assume polynomials for
only approximating known or empirically estimated distributions. Polynomial distributions offer
great modeling flexibility and mathematical tractability. However, unlike canonical distributions,
polynomial functions may have non-negative values in the intervals of support for some parameter
values; their parameter numbers are usually much larger than for canonical distributions, and the
interval of support must be finite. Hence, polynomial distributions are defined here assuming three
forms of a polynomial function. Transformations and approximations of distributions and histograms
by polynomial distributions are also considered. The key properties of the polynomial distributions
are derived in closed form. A piecewise polynomial distribution construction is devised to ensure
that it is non-negative over the support interval. A goodness-of-fit measure is proposed to determine
the best order of the approximating polynomial. Numerical examples include the estimation of
parameters of the polynomial distributions and generating polynomially distributed samples.

Keywords: approximation; distribution; histogram; least-squares; polynomial; probability density
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1. Introduction

Approximating functions is motivated by reducing the computational complexity
and achieving the analytical tractability of mathematical models. This also includes the
problems of finding low-complexity and low-dimensional mathematical models for contin-
uous or discrete-time observations, such as time-series data, and empirically determined
features, such as histograms. This paper is concerned with the latter problem, i.e., how
to effectively model the probability distributions of observation data. In particular, it is
proposed to define polynomial probability distributions rather than to assume polynomial
approximations of probability distributions. This is a major departure from the reasoning
found in the existing literature.

Polynomial distributions provide superior flexibility over other canonical distributions,
albeit at a cost of a larger number of parameters, and the support interval is constrained to
a finite range of values. The main advantages of polynomial distributions are that they can
yield parameterized closed-form expressions and enable the modeling of complex multi-
modal and time-evolving probability distributions. These distributions are encountered,
for example, when describing causal interactions and state transitions in dynamic systems.
This may lead to the development of novel probabilistic mathematical frameworks. The
disadvantage is that, in the case of a general polynomial function, it may be difficult to
ensure that the polynomial is non-negative over the whole intended interval of support.
The non-negativity can be guaranteed, for example, by assuming squared polynomials.

The Weierstrass theorem [1] is the fundamental result in the approximation theory of
functions. It states that every continuous function can be uniformly approximated with
an arbitrary precision over any finite interval by a polynomial of a sufficient order. The
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uniform approximation can be expressed as a sequence of algebraic polynomials uniformly
converging over a given interval to the function of interest. The approximation accuracy
can be evaluated by different metrics including lp-norms, minimax norm, and others.
The best approximating function from a set or a sequence of functions and its properties
can be determined by the Jackson theorem. The Stone–Weierstrass theorem generalizes
the function approximation to cases of multivariate functions and functions in multiple
dimensions [2].

Runge’s phenomenon arises when the approximating polynomials contain a set of
predefined points, which can prevent uniform convergence from being possible [3]. The
equidistant approximating points can be optimized using the Lebesgue constant as a
measure of the approximation accuracy [4,5].

Polynomials can be used to approximate known probability distributions as well
as distributions estimated as histograms [6,7]. Reference [8] is one of the earlier works
that assume the approximation of probability distributions by a polynomial. The fitting
of multivariate polynomials to multivariate cumulative distributions and their partial
derivatives is studied in [9], whereas multivariate polynomial interpolation is studied in [10].
The conditions for the coefficients of a polynomial to be a sum of two squared polynomials
are determined in [11].

The problem of fitting a polynomial into a finite number of data samples has been
investigated in the classic reference [12]. The polynomial curve fitting methods are often
available in various software packages [13]. Modeling times series data by piecewise
polynomials is considered in [14,15]. The least-squares polynomial approximation of
random data samples with standard and induced densities is compared in [16]. A new
method for polynomial interpolation of data points within a plane is proposed in [17].
Interestingly, the recent survey [18] on approximating probability distributions does not
mention polynomial approximation as one of the available methods.

The polynomial expansion of chaos for the reliability analysis of systems is proposed
in [19]. A polynomial kernel for feature learning from data is considered in [20]. The Stone–
Weierstrass theorem is assumed in [21] to design a neural network that can approximate an
arbitrary measurable function. The method for function approximation by a polynomial
using a neural network is investigated in [22].

Polynomials can be sparse, i.e., only some of their coefficients—including the coeffi-
cient determining the order—are non-zero. The polynomials with special properties are
named; for example, there are Lagrange, Legendre, Diskson, Chebyshev, and Bernstein
polynomials [23,24]. Special polynomials, such as Hermite and Lagrangian polynomials,
can form the basis for function decomposition. There is a close link between approximating
periodic continuous functions and trigonometric polynomials in the Fourier analysis [25].
A procedure for orthogonal polynomial decomposition of multivariate distributions was
devised in [26] in order to compute the output of a multidimensional system with the
stochastic input.

Reference [23] is a comprehensive textbook on the theory of polynomials covering
fundamental theorems, special polynomials, polynomial algebra, finding and approxi-
mating polynomial roots, finding polynomial factors, solving polynomial equations, and
defining polynomial inequalities and properties of polynomial approximations. The other
textbook [24] includes additional topics, such as critical points of polynomials, the compo-
sitions of polynomial functions, theorems and conjectures about polynomials, and defining
extremal properties of polynomials. Although the textbook [27] focuses on solving differen-
tial equations by polynomial approximations, it also provides a necessary background on
polynomials including their definitions and properties. Differential equations are solved by
Jacobi polynomial approximation in [28].

The properties of minima and maxima of polynomials were studied in [29]. An
algorithm for finding the global minimum of a general multivariate polynomial was
developed in [30]. The number of local minima of a multivariate polynomial is bounded
in [31]. Sturm series are assumed in [32] to find the maxima of a polynomial.
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In this paper, polynomial distributions are introduced in Section 2 including transfor-
mations of the polynomial distributions, fitting a histogram with a polynomial distribution,
constructing a piecewise polynomial distribution, and defining the basic properties of a
random polynomial function. In Section 3, selected properties of the polynomial distri-
butions are derived. The estimation problems involving polynomial distributions and
determining the polynomial order are considered in Section 4. Numerical examples are
presented in Section 5 including constructing a piecewise polynomial, generating polyno-
mially distributed random samples, estimating parameters of polynomial distributions by
the method of moments and by fitting the observations, and approximating distributions
by Lagrange interpolation. Section 5 ends with a summary of key findings. The paper is
concluded in Section 6. In addition, the key expressions for polynomial functions in Form I,
II, and III are summarized in Appendices A–C, respectively.

The following notations are used in the paper: X denotes a random variable whereas
x denotes a specific value of this random variable; (·)T is matrix transpose; (·)−1 is matrix
inverse; the operators, E[·] and var[·], denote expectation and variance, respectively; (·)!
denotes factorial, !

= is used to find a value satisfying the indicated equality, and 〈·, ·〉
denotes the dot-product of two vectors.

2. Defining Polynomial Distributions

Given a continuous and finite interval, (l, u), −∞ < l < u < +∞, the probability
density function (PDF), p(x), of a random variable, X, with the support, (l, u), must satisfy
the following two conditions,

p(x) ≥ 0, ∀x ∈ (l, u)∫ u

l
p(x)dx = 1.

(1)

Assume that the PDF, p(x), can be linearly expanded as

p(x) = a0 +
n

∑
i=1

aibi(x) (2)

into the n-dimensional basis of generally non-linear functions, bi(x). These functions
can also be parameterized as bi(x) ≡ b(x; θi). Provided that the functions, bi(x), are
themselves PDFs, i.e., they satisfy the conditions (1), then the PDF (2) is referred to as
mixture distribution, and ∑n

i=0 ai = 1.
In this paper, the functions, bi(x) = xi, are assumed, so that, the expression (2) repre-

sents an ordinary univariate polynomial of degree, n. The coefficients, ai, can be a function
of another common variable, e.g., ai(y), i = 0, 1, . . . , n; this multivariate polynomial is
referred to as algebraic function. The multivariate polynomial having the same degree of a
non-zero term is referred to as being homogeneous (formerly a quantic polynomial).

The following three representations of real-valued polynomial functions are considered
in this paper.

Definition 1.

Form I : pn(x) =
n
∑

i=0
ai xi, ai ∈ R, an 6= 0 (3a)

Form II : pn(x) = an
n
∏
i=1

(x− ri), ri ∈, an 6= 0 (3b)

Form III : pn(x) =
n
∑

i=1

ai
x−ri

, ai 6= 0, ri 6= rj ∀i 6= j (3c)

Form I is a canonical polynomial function. Form II indicates that every n-degree
polynomial has exactly n, generally complex-valued, roots ri [33]. The number of real-
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valued roots can be determined by Sturm’s theorem. Form III is a rational polynomial
function. The basic properties of the polynomial Forms I, II, and III are summarized in
Appendices A–C, respectively, including roots, indefinite and definite integrals, derivatives,
general statistical moments, and characteristic or moment-generating functions. Note that
every polynomial function, pn(x), of any order, n, diverges when its argument, x, becomes
unbounded. In addition, Forms I and II are equivalent as shown in Appendix B, and, for
complex-conjugate roots, (x− ri)(x− r∗i ) = (x− Re(ri))

2 + Im(ri)
2 > 0. Form I defined by

(3a) can also be computed recursively as

pn(x) = (. . . (((anx + an−1)x + an−2)x + an−3) . . . )x + a0

= xpn−1(x) + a.
(4)

A Form I or II polynomial, pn(x), of degree n and all of its derivatives, p(k)n (x) =
dk

dxk pn(x), k ≤ n, is continuous and strictly bounded over a finite interval, x ∈ (l, u).
However, the polynomial forms in Definition 1 represent a PDF, if and only if, they satisfy
both conditions (1). This can be achieved by using linear and non-linear transformations,
which are defined in the following lemma.

Lemma 1. A polynomial, pn(x), can become a PDF by using either of the following transformations.

(a) There exist finite real constants, A and B, such that the linearly transformed polynomial,
Apn(x) + B, satisfies PDF conditions (1).

(b) There exists a real positive constant, A > 0, such that the polynomial, A|pn(x)|, or,
A(pn(x))+, satisfies PDF conditions (1) where | · | denotes absolute value, and (·)+ changes
the negative values of its argument to zero.

(c) There exists a low-degree polynomial, qk(x), such that the polynomial, qk(pn(x)), satisfies
PDF conditions (1); for instance, q1(x) = Ax + B [cf. (a)], or, q2(x) = Ax2, A > 0.

Proof.

(a) Let, b = minx∈(l,u) pn(x), so that, pn(x)− b ≥ 0. Then, A−1 =
∫ u

l pn(x)− b dx, and,
B = −Ab.

(b) For any, x, the functions, |pn(x)| ≥ 0, and, (pn(x))+ ≥ 0. Then, A−1 =
∫ u

l |pn(x)|dx,
or, A−1 =

∫ u
l (pn(x))+ dx, respectively.

(c) The linear transformation, q1(x), was considered in (a). The transformation, p2
n(x) ≥ 0,

and, A−1 =
∫ u

l p2
n(x)dx.

The polynomial PDFs defined in Lemma 1 can be further constrained by the required
number of local minima, maxima, and roots within the interval of support, (l, u). There can
also be additional constraints on smoothness expressed in terms of the minimum required
polynomial order.

By Bolzano’s theorem, a continuous function having opposite sign values in an interval
also has a root between these values. Consequently, a polynomial, pn(x), of order n have
at least one maximum or minimum between every two adjacent roots, and there can be
a maximum or minimum located at the roots themselves [29]. Moreover, provided that
the polynomial is considered over a finite interval, the boundary points of the support
interval should be treated as additional roots, i.e., the boundary points can create local
maximum or minimum as well as allow additional extrema to exist before the first nearest
root. In the case of Form II polynomials, the condition of the first derivative to be zero can
be equivalently expressed as

d
dx

pn(x) !
= 0 ⇔ d

dx
log pn(x) =

ṗn(x)
pn(x)

=
n

∑
i=1

1
x− ri

!
= 0. (5)
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However, this approach still requires finding the roots of (5) for every sub-interval,
(ri, ri+1), i = 0, 1, . . . , n, where r0 ≡ l and rn+1 ≡ u. It may be much easier to find the local
extrema by considering the recursion,

pn(x) =
∫

pn−1(x)dx =
n−1

∑
i=0

ai
i + 1

xi+1 + c (6)

provided that the roots of the polynomial, pn−1(x) = an−1 ∏n−1
i=1 (x− ri), are known, and,

c = a0, denotes the constant of integration. These roots can be known by design, i.e., the
locations of minima and maxima are selected a priori in a given interval of support. More
importantly, in the case of a polynomial PDF, the local maxima represent the modes of such
a distribution.

The Form I polynomial PDF can be generalized as

pn(x) =
n

∑
i=0

aigi(x), x ∈ (l, u) (7)

where g(x) is a mathematical expression (i.e., not a transformation). For instance, it is pos-
sible to assume polynomials with fractional rather than integer powers of the independent
variable [34].

For g(x) = ejω0x, j =
√
−1, ω0 = 2π/(u− l) > 0, the PDF (7) becomes the truncated

exponential Fourier series, i.e.,

pn(x) =
n

∑
i=0

ai ejω0ix, ai =
1

u− l

∫ u

l
pn(x) e−jω0ix dx. (8)

The corresponding k-th general moments are then computed as

∫ u

l
xk pn(x)dx =

n

∑
i=0

ai

∫ u

l
xk ejω0ix dx =

n

∑
i=0

ai(−1)kW(k)(jω0i) (9)

where W(jω) =
∫ u

l ejωx dx is the Fourier transform of a rectangular window located over
the interval, (l, u).

For g(x) = ex, PDF (7) becomes,

pn(x) =
n

∑
i=0

ai eix, x ∈ (l, u) (10)

which can be readily integrated, although general statistical moments can only be expressed
as special functions.

Consider now the general case of PDF (7), for n = 2. Thus, given p2(x) and g(x),
and positive integers i1 and i2, the task is to find the coefficients a0, a1 and a2 of the PDF
decomposition,

p2(x) = a2gi2(x) + a1gi1(x) + a0, x ∈ (l, u). (11)

Multiplying both sides of (11) by g−i(x)ġ(x) and integrating, we obtain,

∫ u

l
p2(x)g−i(x)ġ(x)dx = a2

∫ u

l
gi2(x)g−i(x)ġ(x)dx + a1

∫ u

l
gi1(x)g−i(x)ġ(x)dx + a0

∫ g(u)

l
g−i(x)ġ(x)dx. (12)

Assuming a substitution, y = g(x), Equation (12) can be rewritten as

∫ g(u)

g(l)
p2(g−1(y))y−i dy = a2

∫ g(u)

g(l)
yi2−i dy + a1

∫ g(u)

g(l)
yi1−i dy + a0

∫ g(u)

g(l)
y−i dy. (13)
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Provided that, g(u) = −g(l) = v, and i1 > 0 is an odd-integer, and i2 > 0 is an
even-integer, then, for i = i1 and i = i2, respectively,∫ v

−v
p2(g−1(y))y−i1 dy = a2

∫ v

−v
yi2−i1 dy︸ ︷︷ ︸
=0

+2a1v + a0

∫ v

−v
y−i1 dy︸ ︷︷ ︸
=0∫ v

−v
p2(g−1(y))y−i2 dy = 2a2v + a1

∫ v

−v
yi1−i2 dy︸ ︷︷ ︸
=0

+a0

∫ v

−v
y−i2 dy

(14)

and, therefore,

a1 =
1

2v

v∫
−v

p2(g−1(y))y−i1 dy

a2 =
1

2v

v∫
−v

(
p2(g−1(y))− a0

)
y−i2 dy.

(15)

The offset, a0, must be computed from some other constraint, for example, as the
minimum value to guarantee a non-negativity of p2(x). Note that the function, g(x), in (11)
must be chosen, so the integrals (15) converge.

2.1. Probability Density Transformations

In general, if g(x) is an invertible transformation of a random variable, X, having the
PDF, p(x), the PDF, q(x), of random output variable, g(x), is, [35]

q(x) =
p(g−1(x))
|ġ(g−1(x))

= p(g−1(x))
∣∣∣ġ−1(x)

∣∣∣ (16)

where ġ(x) = d
dx g(x). Assuming p(x) is a Form I polynomial PDF, pn(x), the transformed

PDF is also a Form I polynomial, i.e.,

qn(x) = |ġ−1(x)|
n

∑
i=1

aig−i(x) =
n

∑
i=1

ai

(
i
√
|ġ−1(x)|
g(x)

)i

(17)

in the variable, i
√
|ġ−1(x)|g−1(x).

Assuming a linear transformation, g1(x) = b1x + b0, the PDF (17) is also a polynomial
PDF of the same order, i.e.,

qn(x) =
n

∑
i=1

ai

|b1|bi
1
(x− b0)

i. (18)

However, the linear transformation changes the support, (l, u) of pn(x), to (b1l + b0, b1u+ b0),
if b1 > 0, and (b1u + b0, b1l + b0), if b1 < 0.

Another example of a non-linear transformation with memory that preserves poly-
nomial form of the resulting distribution is an integrator. In particular, let, g−1(x) =∫ x
−∞ f (u)du ≡ F(x), i.e., g(x) = F−1(x), such that, f (u) ≥ 0, for ∀u. Then, substituting

into (16), the transformed PDF can be written as

qm(x) = b1 f (x)pn(b1F(x) + b0) (19)

where b1 6= 0 and b0 are arbitrary real constants. Provided that f (x) is a polynomial of
order, k, F(x) is a polynomial of order, (k + 1) (cf. Appendix A) and, thus, m = n(k + 1)k.
The family of PDFs with a form similar to (19) are considered in [36], which could be
investigated also for our case of the polynomial distributions.
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Consider now a general case of a polynomial nonlinear transformation, gk(x), and
denote as xi, i = 1, 2, . . . , N(y), all the roots of, gk(x) = y. Then, the PDF (16) is rewritten as

qm(y) =
N(y)

∑
j=1

pn(xj(y))
|ġk(xj(y))|

(20)

i.e., it is a sum of ratios of polynomials, i.e., qm(y) is a polynomial of a certain order, m.
Linear and non-linear transformations of a random variable can be used to change

the interval of support of its probability distribution. The following Lemma 2 assumes
linear transformations to convert the interval of support, (l, u), into (−1,+1) and vice
versa. Lemma 3 proposes two transformations on how to convert the interval of support,
(−1,+1), to semi-finite or infinite intervals of support, respectively.

Lemma 2. The interval of support, (l, u), of a PDF, p(x), is changed to the interval, (−1,+1), by a
linear transformation, 2

u−l x− u+l
u−l , which transforms the PDF, p(x), to the PDF, u−l

2 p
(
(u−l)x−(u+l)

2

)
.

Furthermore, the linear transformation, (u−l)
2 x + u+l

2 , transforms the PDF, p(x), with support,

(−1,+1), into the PDF, 2
u−l p

(
2x−(u+l)

u−l

)
, with the interval of support, (l, u).

Proof. The linear transformation, Ax + B, transforms any PDF, p(x), into the PDF,
|A|−1 p

(
x−B

A

)
, [35].

Lemma 3. The PDF, p(x), defined over the finite interval of support, (−1,+1), can be trans-
formed into the PDF, (x2 + x + 1/4)−1 p

(
2x−1
2x+1

)
, with semi-infinite support, (0,+∞), using the

non-linear transformation, 1
2

(
1+x
1−x

)
. Similarly, the non-linear transformation, atanh(x), can be

assumed to extend the support to all real numbers, for a PDF, p(x), defined over the support interval,
(−1,+1). The transformed PDF becomes cosh−2(x)p(tanh(x)).

Proof. The functions, g(x) = 1
2

(
1+x
1−x

)
, and, g(x) = atanh(x), are increasing, i.e., invertible

in the interval, (−1,+1). Then, in (20), N(y) = 1, the inverse transforms, 2x−1
2x+1 , and,

tanh(x), and their derivatives, (x2 + x + 1/4)−1, and, cosh−2(x), respectively.

Furthermore, there are scenarios when deterministic values, x ∈ (l, u), are transformed
by a polynomial function, pn(x), having the random coefficients, ai. The output value of
such a transformation,

y = pn(x) =
n

∑
i=0

aixi (21)

is a random variable. Provided that ai are independent and distributed as fai (ai), and
conditioned on x, the random variable Y is a sum of independent random variables, so its
PDF is given by a multi-fold convolution,

fy|x(y|x) =
(

n

∏
i=0
|x−i|

)
fa0(y)~ fa1(y/x)~ · · ·~ fan(y/xn) (22)

since, aixi, are distributed as |x−i| fai (y/xi). Furthermore, the conditional mean and vari-
ance of Y, respectively, are,

E[Y|X] =
n

∑
i=0

E[ai]xi, and, var[Y|X] =
n

∑
i=0

var[ai]x2i. (23)
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Provided that ai have equal means, then for any n and x ∈ (−1,+1), E[Y|X] > 0, if
E[ai] > 0, and E[Y|X] < 0, if E[ai] < 0. Note also that, if ai have equal variances, then the
variance of Y is minimized for x = 0, and, it is equal to, var[Y|X = 0] = var[a0].

The bounds for the number of real roots of random but sparse polynomials were
provided in [37]. A numerical method for efficiently finding the zeros of complex-valued
polynomials of very large orders was developed in [38]. Another method for a rapid root
finding of polynomials is presented in [39].

2.2. Polynomial PDF Fit of a Histogram

Approximating a continuous function by a polynomial over a finite interval is formal-
ized by the well-known Weierstrass theorem [1]. Runge’s phenomenon occurs when the
approximating function must contain predefined points [3]. The polynomial approximation
represents the problems of existence as well as the uniqueness of such a polynomial, and
also the problem of how to find it. These problems are crucially dependent on the choice of
metric for the goodness of approximation.

Hence, consider the problem of approximating a PDF having the finite support by
a polynomial PDF. For instance, the empirical histogram can be fitted by a polynomial
function, or a known PDF can be approximated by a polynomial in order to achieve
mathematical tractability. However, in neither of these cases, the resulting polynomial is
guaranteed to satisfy conditions (1), since the polynomial coefficients are normally chosen
to obtain the best fit.

The polynomial PDF can be obtained by assuming a polynomial function, which is
non-negative over a given interval for any values of its coefficients. One example of such a
polynomial is, p2

n(x), which has degree, 2n. The true PDF, q(x), can be then approximated as

q(x) ≈ p2
n(x), or,

√
q(x) ≈ pn(x). (24)

The latter strategy by first transforming q(x) with a square root is numerically more
stable. Other invertible transformations of q(x) can also be assumed, provided that they
yield the non-negative polynomial, pn(x), since scaling pn(x) to have a unit area usually
does not affect the approximation error significantly.

For instance, the data points, (xi,
√

yi), l ≤ xi ≤ u, i = 1, 2, . . . , M, can be interpolated
by Lagrange polynomials [5],

Li(x) =
M

∏
j=1
i 6=j

x− xi
xi − xj

. (25)

Then, the true PDF, p(x), is approximated as

p(x) ≈
(

M

∑
i=1

√
yi Li(x)

)2

≡ q2(M−1)(x) (26)

which is a polynomial of order, 2(M− 1). In order to normalize the approximation (26), let,

cij =
M

∏
j1=1
j1 6=i

M

∏
j2=1
j2 6=j

(xi − xj1)(xj − xj2) (27)

and,

sij =
∫ u

l
Li(x)Lj(x)dx = c−1

ij

∫ u

l

M

∏
j1=1
j1 6=i

M

∏
j2=1
j2 6=j

(x− xj1)(x− xj2)dx

= c−1
ij

2(M−1)

∑
k=0

ak

∫ u

l
xk dx = c−1

ij

2(M−1)

∑
k=0

ak
k + 1

(uk+1 − lk+1).

(28)
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Then, the area is calculated as

∫ u

l
q2(M−1)(x)dx =

M

∑
i=1

M

∑
j=1

√
yiyj sij. (29)

The Lagrange polynomials satisfy, q2(M−1)(xi) = yi, so they are subject to Runge’s
phenomenon [3]. In particular, the approximation error can be estimated as [3],

p(x)− q2(M−1)(x) =
p(M+1)(x̃)
(M + 1)!

M

∏
i=1

(x− xi) (30)

where l ≤ x̃ ≤ u. Provided that |p(M+1)(x)| < ∞, for ∀M, and, ∀x ∈ (l, u), q2(M−1)(x)
converges uniformly to p(x), i.e., supx |p(x)− q2(M−1)(x)| = 0, as M→ ∞. The PDF, p(x),
is often only known as a sequence of sample points, (xi, yi), so the derivatives, p(M+1)(x),
cannot be determined. However, the approximation can be improved by using Chebyshev
or extended Chebyshev points instead of equally spaced points [4].

The most common method for fitting a polynomial to a histogram is a linear regres-
sion [40]. Denote the vectors, y = [yi], i = 1, 2, . . . , M, and, a = [aj], j = 0, 1, . . . , n, and the

matrix, X = [xj
i ]. The constrained least squares (LS) problem is then formulated as

min
a
‖y− Xa‖2, s.t. wTa = 1 (31)

where the weights, wi = 1
i+1 (u

i+1 − li+1), assuming the support interval, (l, u). The
first derivative of the corresponding Lagrangian is set equal to zero, and the estimated
coefficients, â, of the fitting polynomial, pn(x), are computed as [41],

d
da
L(λ) = 2XTXa− 2XTy + λwT !

= 0

⇒ â = (XTX)−1
(

XTy +
λ

2
wT
)

.
(32)

In order to approximate a known continuous distribution, f (x), over a finite interval,
(l, u), representing the full or truncated support of that distribution, the constrained least-
squares (32) can be again used assuming the distribution samples, f (l + ∆xi), i = 0, 1, . . ..

If pn(x) is the best polynomial fit of a histogram, or of a sampled known PDF, then
it must be evaluated whether it is non-negative over the whole support of interest, (l, u),
for example, due to Runge’s phenomenon as discussed in Section 2.2. This can be readily
and reliably tested by numerically computing the integral, I1 = Im

(∫ u
l

√
pn(x)dx

)
, or,

I2 =
∫ u

l pn(x)− |pn(x)|dx. If pn(x) contains negative values within the interval, (l, u),
then I1 6= 0, and I2 < 0, respectively. It is also possible to assume a logarithm instead of the
square root in the definition of the integral, I1.

In this case, the polynomial fitted to a histogram contains negative values, a constant,
d > 0, can be added to the observed data points, i.e., yi 7→ yi+d/∆x

1+Md , where ∆x = xi+1 − xi,
and the scaling ensures that, ∆x ∑M

i=1 yi = 1. Correspondingly, the fitted polynomial is also
shifted and scaled as pn(x) 7→ pn(x)+d/∆x

1+dM , so
∫ u

l pn(x)dx = 1.
Furthermore, the roots of a polynomial, pn(x), can be constrained in order to guarantee

that it is non-negative over a finite interval, (l, u). This is formulated in the following theorem.

Theorem 1. A Form II real-valued polynomial, pn(x), of order n with an > 0 and the roots,
r1 ≤ r2 ≤ . . . ≤ rn, is non-negative over the interval, (l, u), provided that all its roots satisfy at
least one of the following conditions:

(a) a root has even multiplicity;
(b) a root has a complex conjugate pair;
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(c) a (real-valued) root is smaller than l;
(d) a real-valued root has odd multiplicity and is larger than u; the number of such roots must be even.

Proof. Form II polynomial is a product of linear functions, (x− ri). Cases (a), (b), and (c)
are trivial. Case (d) is a combinatorial problem. The roots with odd multiplicity cannot be
smaller than u. Even if these roots are all larger than u, then their number must be even in
order for their negative parts to cancel out for all values smaller than u.

Corollary 1. A Form II real-valued polynomial, pn(x), of order n with an > 0 and the roots,
r1 ≤ r2 ≤ . . . ≤ rn, has negative values in the interval, (l, u), provided that there is an odd-number
of real-valued roots with odd multiplicities that are greater than l, or, there is an even number of
real-valued roots with odd multiplicities, and at least one root is located between l and u.

Theorem 1 can also be used for Form I polynomials, provided that they are converted
to Form II as indicated in Appendix B. Even though the roots cannot be obtained analytically
for polynomials of order n > 4 (Abel-–Ruffini’s theorem), it may be sometimes possible to
consider a product, ∏j pnj(x), of polynomials of orders, nj ≤ 4, for ∀j.

2.3. Piecewise Polynomial PDF

In some applications, a piecewise polynomial curve fitting can be assumed. In
particular, the following construction is proposed to fit a set of (M + 1) points, (xi, yi),
i = 1, . . . , (M + 1), xi < xi+1, and yi ≥ 0, representing local extrema of a histogram, or
of a known PDF. The construction yields a piecewise polynomial PDF, pn(x), of the same
order n, over the interval, (l, u), with l = x1 and u = xM+1, such that, exactly, pn(xi) = yi.
The data points, (xi, yi), are referred to as control points of the piecewise polynomial pn. It
should be noted that univariate piecewise polynomial functions are generally referred to as
splines, and their control points as knots.

The following construction defines a piecewise polynomial PDF by sample points
representing an alternating sequence of local maxima and minima. The points between
the subsequent extrema are then interpolated by increasing or decreasing polynomial
segments with a defined continuity order between these segments. As long as the minima
are non-negative, all segments are non-negative. However, the resulting curve must be
normalized, so that it has a unit area, i.e., it is a PDF.

Definition 2. Let pn(x) be piecewise continuous, and composed of M non-overlapping polynomial
segments, q(i)n(x), i.e.,

pn(x) = A
M

∑
i=1

wi q(i)n(x). (33)

The segments, q(i)n(x), are increasing, i.e., q′(i)n(x) > 0, over their support intervals,
(xi, xi+1). The points, xi, define the local minima and maxima, such that, if yi is a local min-
imum, then yi+1 is a local maximum and vice versa. The weights, wi = +1, if yi is a local
minimum, and wi = −1, if yi is a local maximum. The constant, A > 0, is chosen, so that, pn(x),
integrates to unity over its interval of support, (x1, xM+1). In addition, a continuity (smoothness)
of order C requires that the first C derivatives,

lim
ε→0+

p(k)n (x + ε) = lim
ε→0+

p(k)n (x− ε), ∀x ∈ (x1, xM+1), and, ∀k = 0, 1, . . . , C (34)

which needs to be true at all points of the local minima and maxima, i.e.,

lim
ε→0+

q(k)
(i)n(xi+1 − ε) = lim

ε→0+
q(k)
(i+1)n(xi+1 + ε), i = 1, . . . , M− 1. (35)
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In order to construct the desired segment polynomials, q(i)n(x), consider two in-
creasing polynomials, un(x) = ∑n

i=0 aixi, and, vn(x) = ∑m
i=0 bixi, such that, for some x0,

the derivatives,

u(k)
n (x0) = −v(k)n (x0), k = 0, 1, . . . , C

n

∑
i=k

aixi−k
0 = −

m

∑
i=k

bixi−k
0

(36)

or, in matrix notation,
xn

0 xn−1
0 · · · x0 1

xn−1
0 xn−2

0 · · · 1 0
. . . . . .

xn−C
0 · · · 1 0 0


︸ ︷︷ ︸

XC(x0)

·


an

an−1
...

a0


︸ ︷︷ ︸

a

= −


xm

0 xm−1
0 · · · x0 1

xm−1
0 xm−2

0 · · · 1 0
. . . . . .

xm−C
0 · · · 1 0 0

 ·


bm
bm−1

...
b0


︸ ︷︷ ︸

b

. (37)

For m = n, Equation (37) can be rewritten as

XC(x0)(a + b) = 0 (38)

so the coefficients a and b are in the null space of XC(x0).
Provided that a(i) denotes the coefficients of q(i)n(x) = ∑n

i=0 aixi, it is required that,

XC(x2) (a(1) + a(2)) = 0

XC(x3) (a(2) + a(3)) = 0

...

XC(xM) (a(M−1) + a(M)) = 0.

(39)

Note that the matrices, XC(xi), are computed assuming the control points, xi.
Given the first vector of coefficients, a(1), the other coefficient vectors, a(i), i =

2, 3, . . . , M− 1, can be computed iteratively using the underdetermined sets of Equation (39).
The numerical feasibility of this problem requires that the order, n� C.

The vector, a(1), must be selected, so that q(1)n(x1) = y1, and, q(1)n(xM+1) = yM+1, and
q(1)n(x) > 0 is C-continuous for x ∈ (x1, x2). Let sample q(1)n(x) at K equidistant points
between x1 and x2. The coefficients a(1) are then the solution of the quadratic program,

min
〈

a(1), a(1)

〉
s.t.

〈
X0(x1), a(1)

〉
= y1,

〈
X0(x2), a(1)

〉
= y2〈

w1X0∆1, a(1)

〉
> 0

(40)

where X0(x) = [xn, xn−1, . . . , x, 1], and ∆1 = (x2 − x1)/(K− 1) is the equidistant sampling
step. The last condition in (40) enforces q(1)n(x) to be approximately increasing between the
points x1 and x2. The other coefficients, a(i), i > 1, are computed similarly to the program
(40), but with an additional constraint due to (39). The extended quadratic program to
compute these coefficients is defined as

min
〈

a(i), a(i)

〉
s.t.

〈
X0(xi), a(i)

〉
= yi,

〈
X0(xi+1), a(i)

〉
= yi+1〈

wiX0∆i, a(i)

〉
> 0

XC(xi)(a(i−1) + a(i)) = 0

(41)
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where ∆i = (xi+1 − xi)/(K− 1), and i = 2, 3, . . . , M.
More importantly, quadratic programs (40) and (41) require that the constraints are

sufficiently underdetermined, i.e., n� C, otherwise, the solution may be difficult to find,
or even may not exist. Moreover, the solution is less numerically stable for a linear program
than for a quadratic program and, therefore, the quadratic programs should be considered.

3. Derived Characteristics of a Polynomial Distribution

The cumulative distribution function (CDF) can be readily obtained for Form I poly-
nomial PDF as shown in Appendix A, i.e.,

Pn(x) =
∫ x

l
pn(v)dv =

n

∑
i=0

ai
i + 1

(xi+1 − li+1), x ∈ (l, u)

= x
n

∑
i=0

ai
i + 1

xi − l
n

∑
i=0

ai
i + 1

li = xp̃n(x)− l p̃n(l).
(42)

Note also that, for symmetric support interval, when u = −l, Pn(u) = ∑n
i=0

ai
i+1 (u

i+1−
(−u)i+1), so the normalization of PDF to unity is only affected by even-index coefficients, ai.

In the case of a Form II polynomial PDF, it is best to convert it to Form I first as shown
in Appendix B.

The median (q = 1/2), and more generally, the quantile, Xq, of a polynomial distribu-
tion is defined as

Pn(Xq) = Xq p̃n(Xq)− l p̃n(l)
!
= q, 0 < q < 1. (43)

Denoting, P0(q) = l p̃n(l) + q, the quantile is the unique root of the polynomial,
xp̃n(x)− P0(q) = a(q)(x− Xq).

The expressions for general moments and characteristic or moment-generating func-
tions are derived in Appendices A–C, respectively.

The Kullback–Leibler (KL) divergence or relative entropy between two polynomial
distributions, pn(x) = ∑n

i=0 aixi = an ∏n
i=1(x − ri), and, qm(x) = bm ∏m

j=1(x − sj), is
defined as

KL(pn‖qm) =
∫ u

l
pn(x) log

pn(x)
qm(x)

dx =
∫ u

l

n

∑
i=0

aixi log
an ∏n

l=1(x− rl)

bm ∏m
j=1(x− sj)

dx

=
n

∑
i=0

ai

∫ u

l
xi

(
log

an

bm
+

n

∑
l=1

log(x− rl)−
m

∑
j=1

log(x− sj)

)
dx

=
n

∑
i=0

ai

(
ui+1 − li+1

i + 1
log

an

bm
+

n

∑
l=1

∫ u

l
xi log(x− rl)dx−

m

∑
j=1

∫ u

l
xi log(x− sj)dx

)
.

(44)

The inner integral,
∫ u

l xi log(x− rl)dx, can be expressed in terms of the hypergeomet-
ric, 2F1, functions with the help of, for example, Mathematica software.

Differential entropy of a polynomial distribution, pn(x), is defined as

H(pn) = −
∫ u

l
pn(x) log pn(x)dx = −

∫ u

l

n

∑
i=0

aixi log an

n

∏
i=1

(x− ri)dx

=
n

∑
i=0

ai

(
log an

i + 1
(ui+1 − li+1) +

n

∑
l=1

∫ u

l
xi log(x− rl)dx

)
.

(45)
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Finally, the sum, Z = X + Y, of two independent random variables, X, and, Y, having
the polynomial distributions, pn(x), and, qm(y), respectively, with the same interval of
support, (l, u), also has the polynomial distribution, fm(z), given by the convolution,

fm(z) =
∫ u

l
pn(x)qm(z− x)dx =

∫ u

l

n

∑
i=0

aixi
m

∑
j=0

bj(z− x)j dx

=
n

∑
i=0

m

∑
j=0

aibj

∫ u

l
xi(z− x)j dx =

n

∑
i=0

m

∑
j=0

aibj

j

∑
k=0

(
j
k

)
zj−k

∫ u

l
xi+k dx

=
n

∑
i=0

m

∑
j=0

aibj

j

∑
k=0

(
j
k

)
zj−k 1

i + k + 1

(
ui+k+1 − li+k+1

)

=
n

∑
i=0

m

∑
j=0

j

∑
k=0

(
j
k

) aibj

i + k + 1

(
ui+k+1 − li+k+1

)
zj−k.

(46)

4. Estimation Problems Involving Polynomial Distributions

The parameter estimation of the polynomial distributions is subject to the following
equality and inequality constraints, respectively,

aTX0 − 1 = 0

−aTXk ≤ 0, k = 1, 2, . . . , K
(47)

where the column vectors, X0 = [(ui+1− li+1)/(i+ 1)], and, Xk = [(l +(k− 1)(u− l)/(K−
1))i], i = 0, 1, . . . , n. The equality constraint guarantees that the estimated polynomial
integrates to unity. The second constraint requires that the estimated polynomial is non-
negative at K equidistant points within the interval of support, (l, u). The value of K must
be determined empirically.

Consider the problem of estimating the coefficients, a, of a polynomial PDF, pn(x; a).
For M independent measurements, xm, the likelihood function is,

L(x; a) =
M

∏
m=1

pn(xm; a) =
M

∏
m=1

n

∑
i=0

aixi
m =

M

∏
m=1

aTxm (48)

where the column vector, xm = [xi
m], i = 0, 1, . . . , n. The Karush—Kuhn-–Tucker (KKT)

function representing the constrained maximum (log-) likelihood (ML) estimation is [42],

K(a; x; {µk}) = log L(x; a) + µ0(aTX0 − 1) +
K

∑
k=1

µk aTXk (49)

where µk ≤ 0, and, µkaTXk = 0, for ∀k ≥ 1. The first vector-derivative of K by a [41] must
be equal to zero, i.e.,

∂

∂a
K(a; x; {µk}) !

= 0 ⇔ ∂

∂a

M

∑
m=1

log(aTxm) =
M

∑
m=1

xT
m

aTxm
= −

K

∑
k=0

µk XT
k . (50)

Expression (50) together with constraint (47) represent the set of (n + K + 2) non-linear
equations with the same number of unknowns, which must be solved numerically.

The cosine theorem can be assumed instead of logarithm in maximizing (49) and (50), since,

argmax
a

M

∏
m=1

aTxm = argmax
a

M

∏
m=1

aT

‖a‖
xm

‖xm‖
= argmax

a

M

∏
m=1

cos φm (51)



Mathematics 2023, 11, 985 14 of 28

where φm is the angle between the vectors a and xm. The unconstrained maximization of
(51) can be performed using the geometric-arithmetic mean inequality [43]. Specifically,
the likelihood (51) is maximized when the coefficient vector, a, is aligned with all the
observations, xm. It can be approximated by assuming that the distances between the
normalized vectors, aT/‖a‖, and, xm/‖xm‖, are constant, for ∀m. Then, the estimate is the
centroid of observations, i.e., â = 1

M ∑M
m=1 xm/‖xm‖.

The estimator complexity can be greatly reduced if constraint (47) is ignored. In this
case, the estimated coefficients, â, may not satisfy the PDF conditions (1). Assuming that
the estimate, â, is not too far from the true vector, a, the first estimate can be improved by
the subsequent estimator,

ˆ̂a = argmin
a
‖a− â‖ s.t. constraints (47). (52)

The estimator (52) minimizes the distance between the first estimate, â, and the
subsequent estimate, ˆ̂a, under constraint (47). More importantly, the corresponding set of
equations to solve (52) is now linear.

In the sequel, we drop the inequality constraints in (47) since closed-form expressions
can be obtained with the equality constraint. For M = 2, or, equivalently, only two out
of M measurements are considered at a time, the ML estimator can be constrained as in
(31), i.e.,

â12 = argmax
a

aTX12a, s.t. wTa = 1 (53)

where xi = [xj
i ], j = 0, 1, . . . , n, and X12 = x1xT

2 is a (n + 1)× (n + 1) square matrix. The
first derivative of the corresponding Lagrangian must be equal to zero, i.e., [41]

∂

∂a

(
aTX12a + λ(wTa− 1)

)
!
= 0

⇒ a = −λ

2
X−1

12 w, λ =
−2

wTX−1
12 w

.
(54)

Consequently, the ML estimate is,

â12 =
X−1

12 w

wTX−1
12 w

(55)

and its likelihood is equal to,
(

wTX−1
12 w

)−1
. Finally, the observation pairs, (x1, x2), (x3, x4),

. . ., are independent, so the final ML estimate is,

â =
2
M

M/2

∑
i=1

X−1
2i−1,2iw

wTX−1
2i−1,2iw

. (56)

The Cramer–Rao bound has been defined to lower-bound the covariance matrix of the
estimation error, â− a, of any unbiased estimator, i.e.,

cov[â− a]
E[â]=a
= var[â] ≥ J−1(a) (57)

where J(a) is the Fisher information matrix. In order to calculate the elements of this matrix,
it is better to assume Form II of the polynomial distribution, pn(x; r) = an ∏n

i=1(x − ri),
and the problem of estimating the parameters, r, i.e.,
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[J]ij = E

[(
∂

∂ri
log pn(x; r)

)(
∂

∂rj
log pn(x; r)

)]

= E

[(
∂

∂ri
log(x− ri)

)(
∂

∂rj
log(x− rj)

)]

= E

[
1

(x− ri)

1
(x− rj)

]
=
∫ u

l
an

n

∏
k=1
k 6=i,j

(x− rk)dx.

(58)

The last integral in (58) can be computed by converting the Form II polynomial into Form I.
The coefficients, a, can also be estimated by the method of moments [7,44]. In par-

ticular, the k-th general moment of a polynomial distribution, pn(x), is, (cf. Appendix A)

Mk =
∫ u

l
xk

n

∑
i=0

aixi dx =
n

∑
i=0

ai
i + k + 1

(
ui+k+1 − li+k+1

)
. (59)

Observing a vector of the first K general moments, M = [Mk], k = 1, 2, . . . , K, and pre-
computing the matrix, B = [(i + k + 1)−1(ui+k+1 − li+k+1)], i = 0, 1, . . . , n, and ignoring
non-negativity constraint in (47), the estimation can be again defined as the constrained or
unconstrained least-square regression, i.e.,

â = argmin
a
‖M − Ba‖, s.t. wTa = 1 (60)

which can be efficiently solved as in (32).

Other Estimation Problems

In addition to estimating the coefficients, ai, of the polynomial distribution, pn(x), an
important task is to also decide the polynomial order, n. The usual strategy is to estimate a
sequence of PDFs, pn(x), with increasing orders, n = nmin, nmin + 1, . . ., and then choose
the one minimizing the Akaike information criterion (AIC),

AIC(n) = 2(n + 1)− 2L(x; a) (61)

which penalizes the model complexity, ∝ (n + 1), while maximizing the likelihood L
defined in (48).

However, the AIC cannot be used with non-parametric and other likelihood-free
estimation methods. In the case of the polynomial distributions, the empirical moments
can be readily computed from the observed random samples as well as estimated using
the inferred distribution parameters. In particular, denote Memp(x), the vector of the
first K empirical moments. Let, Mest(â) be the vector of the first K moments computed
assuming the estimated coefficients of the polynomial distribution, pn(x). Similarly to the
AIC definition (61), we propose that the goodness of fit (GoF) of a polynomial distribution
to observed data can be estimated as

GoF(n) =
∥∥Memp(x)−Mest(â)

∥∥2
2 − n− 1. (62)

Thus, the squared Euclidean distance between the two-moment vectors is penalized
by the number of model coefficients, i.e., (n + 1). In our numerical examples, we observed
that n should be chosen as the smallest polynomial order causing a sudden significant drop
in the value of GoF.

Furthermore, Bayesian estimation methods for estimating the coefficients, a, require
adopting a prior, p(a). Since the coefficients are likely to be mutually correlated, defining
the prior distribution may be challenging, unless a Gaussian prior can be assumed. On the
other hand, consider a general probabilistic model with observations X and a parameter,
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θ, which is described by the likelihood, p(x|θ), and the prior, p(θ). If the likelihood and
the prior are both polynomially distributed, then the corresponding posterior, p(θ|x) ∝
p(x|θ)p(θ), is also polynomially distributed.

Finally, polynomial distributions can also be considered in variational Bayesian in-
ference to approximate the posterior, p(θ|x), and lower-bound the evidence, p(x). The
parameters of the polynomial distribution can also be inferred without computing the
likelihood by assuming the approximate Bayesian computations.

5. Numerical Examples

This section briefly explores the numerical properties of the polynomial distributions
by means of several examples, since the practical approximations of functions is a rather
extensive subject [45]. The examples are presented in Sections 5.1–5.4, including construct-
ing a piecewise polynomial PDF, generating samples of a polynomially distributed random
variable, estimating the parameters of a polynomial PDF from observed random samples,
and approximating a given PDF by a polynomial PDF.

5.1. Constructing Piecewise Polynomial PDF

The first example in Figure 1 demonstrates the construction of a piecewise polynomial
PDF as described in Section 2.3. Given the continuity order C = 2, the given set of 5 control
points can be connected by 4 increasing or decreasing polynomial functions of order n = 5
or n = 6. For polynomial orders smaller than 5 or larger than about 8, it was observed that
Runge’s phenomenon starts to appear, which indicates that the polynomial order cannot be
chosen completely arbitrarily.

  Points

  N=4

  N=5

  N=6

X

p n
(x

)

Figure 1. The piecewise polynomial distributions, pn(x), consisting of 4 segments with 5 control
points (red squares), when the continuity order C = 2. The segments were computed using 20 equally
spaced samples within each segment.

5.2. Generating Random Samples Using Polynomial PDF

Consider now the methods how to generate polynomially distributed random samples.
Similar to most other distributions, polynomial distributions cannot be easily inverted. It
is then challenging to use the inverse method for generating random variables. On the
other hand, the CDF of a polynomially distributed random variable is another polynomial
as shown in Appendix A. A CDF discretization can be used as a general strategy for
implementing the inverse method of generating random samples from the distribution
with a known CDF. In particular, consider approximating the CDF by a piecewise linear
function between the samples, (xi, F(xi)), i = 1, 2, . . .. The inverse value, X = F−1(U),
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where U ∈ (0, 1) is a uniformly distributed random variable, is then approximated by a
piecewise linear function as

x = xi +
(xi+1 − xi)(u− F(xi))

F(xi+1 − F(xi))
. (63)

Moreover, polynomial distributions can also be assumed to obtain a proposal distribu-
tion for the rejection and importance of sampling methods. Assuming the latter, denote
the expected value, θ = Eq[g(x)], assuming a random observation, X, from a complex dis-
tribution, q(x). The mean can be computed by assuming instead the distribution, p(x), as

θ =
∫ u

l
g(x)

q(x)
p(x)

p(x)dx = Ep

[
g(x)

q(x)
p(x)

]
. (64)

The corresponding difference in variances is,

varq[g(x)]− varp

[
g(x)

q(x)
p(x)

]
=
∫ u

l
g2(x)

(
1− q(x)

p(x)

)
q(x)dx. (65)

Consequently, the better p(x) approximates g(x)q(x), the larger the variance reduction
by sampling from p(x) instead of q(x). It is easy to show that, if p(x) = g(x)q(x)/θ, then
varp

[
g(x) q(x)

p(x)

]
= 0. Consequently and importantly, it is likely that the flexibility of the

polynomial PDF, pn(x), allows approximating g(x)q(x) with much better accuracy than
any other canonical distribution.

Figure 2 assumes the piecewise polynomial distribution, p5(x), designed in the ex-
ample in Figure 1 in order to generate samples from the target distribution, q(x). The
distribution, q(x), is chosen to be a mixture of two truncated skewed-Gaussian distribu-
tions [46,47]. In particular, the rejection sampling method requires that, q(x) ≤ Ap5(x), for
some A > 0 and ∀x. Note that the third and the fifth (counting from left) control points
were moved slightly above zero in Figure 2 (and already also in Figure 1) in order to satisfy
the required inequality.

q(x)
Ap5(x)

X

Figure 2. The rejection sampling from distribution p5(x) designed in Figure 1 to generate samples
from the target distribution, q(x) ≤ Ap5(x), where A = 1.6.

In the sequel, the examples assume the polynomial PDF,

p4(x) =
75

896

(
− x4

30
+

x3

5
+

x2

10
− 26x

15
+ 2
)

, x ∈ (−3, 5). (66)
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The random samples from this distribution were generated by discretizing the support
interval, (−3, 5), into 30 equally sized bins. The distribution and the empirical histogram
for 104 generated samples are shown in Figure 3.

X

p 4
(x

)

Figure 3. The PDF (66) and the empirical histogram for 104 generated random samples.

5.3. Estimating Parameters of Polynomial PDF

Estimating the coefficients of the polynomial PDF must be constrained in order to
satisfy the PDF conditions (1). The numerical experiments revealed that ML methods
described in Section 4 are generally less suitable for estimating longer vectors of parameters.
The ML methods require a relatively large number of observations, which quickly leads to
the accumulation of numerical errors. On the other hand, non-parametric methods, such as
the method of moments and the LS fitting appear to be much more robust, and they work
well, even if the number of observations is relatively small.

Figure 4 shows the absolute error between the PDF (66) and the PDF, p̂4(x), estimated
using the method of moments with 500 data samples. It can be observed that at least the
first K = 5 moments are required to achieve a good estimation accuracy.

K=3

K=4

K=5

X

p 4
(x

)−
p̂ 4

(x
)

Figure 4. The estimation error, p4(x)− p̂4(x), for the method of moments with 500 data samples.

Figure 5 shows the distributions of the estimated coefficients for the PDF (66) using a
constrained LS fit of the histogram with 10 bins and 50 data samples. The little triangles at
the sides of the boxes in Figure 5 indicate the true values of the coefficients. Interestingly,
the smallest accuracy in terms of the largest variance occurs for the lower-order coefficients,
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a1, and, a0. If the polynomial order, n, is not known a priori, it can be determined by
plotting the GoF measure (62) as shown in Figure 6. It can be observed that the value of
GoF drops sharply when n is increased to 4, and then it remains nearly constant even if n is
increased further.

Figure 5. The box plots of estimated coefficients of the polynomial PDF (66) from only 50 samples,
and repeated 1000 times. The triangles on the side of the boxes indicate the true coefficient values.

G
oF

(n
)

(n + 1)

Figure 6. The goodness-of-fit measure (62) as a function of the polynomial order, n.

5.4. Approximating PDF by Polynomial PDF

Even if the closed-form expression of a given PDF is available, the expression may
be too complex to use in mathematical derivations [46,47]. In this case, a polynomial
approximation of the PDF can be assumed. The approximation of a given PDF by a
polynomial PDF is studied in Figure 7. In particular, Figure 7 compares the ordinary
(unconstrained) LS fit (panel A), and the constrained LS fit (panel B) in order to satisfy
the PDF constraints (1). It can be observed that assuming the constraints suppresses
Runge’s phenomenon. However, in all cases considered, the polynomial PDF struggles to
approximate the peak value of the given PDF, even when the polynomial order is increased.



Mathematics 2023, 11, 985 20 of 28

A

given PDF

0 50 100

B

given PDF

n = 4n = 4
n = 6n = 6
n = 8n = 8

p n
(x

)

xx

Figure 7. The approximations of a given PDF by polynomial PDFs, pn(x), with n = 3, 5, and 7 using
the unconstrained (A), and constrained (B) LS approximation, respectively.

Finally, the approximation of a given PDF by Lagrange polynomials defined in Section 2.2
is investigated in Figure 8. Recall that Lagrange approximation is an interpolating polyno-
mial function having the order given by the number of sampling points. Specifically, the
left panel (A) in Figure 8 assumes equidistant sampling points, whereas the right panel
(B) in Figure 8 shows the approximations with Chebyshev sampling points [4]. It can be
observed that the latter case is clearly more accurate including the peak of the given PDF.
More importantly, for the PDF example in Figure 8, the polynomial PDF approximation
consisting of Lagrange polynomials is much easier to compute than performing the con-
strained LS curve fitting or using other statistical estimation methods, such as the method
of moments.

A

given PDF

0 50 100

B

given PDF

n = 6n = 6
n = 8n = 8
n = 10n = 10

p n
(x

)

xx

Figure 8. The approximations of a given PDF by Lagrange polynomials assuming N = 6, 8, and 10
equidistant samples (A), and the same number of Chebyshev samples (B).

5.5. Summary of Observations

In general, the ML estimation of a vector of parameters of a polynomial distribution
becomes numerically problematic when the polynomial orders are larger than only about
2 (and because numerical errors quickly accumulate with the number of observations).
On the other hand, non-parametric and likelihood-free methods appear to be much more
robust and numerically stable. For instance, the method of moments and the constrained LS
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fit can estimate the parameters of polynomial distributions efficiently, even if the number
of observations is relatively small.

It is always useful to inspect the estimated polynomial coefficient values since some
of those values can be near zero. The corresponding coefficients can then be rounded to
zero, i.e., removed. Provided that these coefficients are the ones with the largest indices,
the order of the estimated polynomial is reduced.

If the likelihood is not computed, the AIC cannot be used to determine the best
polynomial order. In this paper, we propose defining the goodness of the polynomial fit
as the squared Euclidean distance between the empirical and estimated general moments,
which are penalized by the number of parameters to be estimated.

The Lagrange interpolation yields a polynomial function of the same order as the
number of distribution samples. This method is usually less accurate when the samples
are equidistant. Better accuracy can be achieved with Chebyshev or extended Chebyshev
samples. Consequently, the bins of a histogram should be optimized rather than assumed
with equal sizes in order to improve the interpolation accuracy.

In some cases, Runge’s phenomenon can be avoided or mitigated by extending the
given finite support interval with zero samples since oscillations of the approximating
function tend to concentrate near the approximation interval boundaries.

6. Conclusions

Polynomials are often used for approximating univariate and multivariate functions,
including probability distributions in order to enable mathematical tractability and simu-
lation efficiency. This paper defined polynomial distributions, which can also be used to
approximate other canonical and empirically estimated distributions over a finite interval
of support. Polynomial distributions can be considered as more flexible alternatives to
commonly used canonical distributions. More importantly, in this paper, many key proper-
ties, as well as limitations of the polynomial distributions, were derived and presented as
closed-form expressions.

There is a need for defining a family of distributions, such as polynomial distributions
that can be used more universally for solving problems in probability, statistics, and
data analysis. The polynomial distributions considered in this paper are univariate and
continuous; the extension to multivariate and discrete polynomial distributions may be the
subject of future work. Polynomials could be generalized as weighted linear sums of non-
linear functions in the same variables. A number of research problems remain open. For
example, given a polynomial, it would be useful to algebraically identify all sub-intervals
where it is non-negative. Or, given a polynomial order and an interval of support, the task
is to find all polynomials that represent a PDF. This problem can be further constrained by
the desired number of modes, the smoothness and/or sparsity conditions, and assuming
other statistical and algebraic properties of the polynomial distributions. Moreover, the
problem of determining the minimum polynomial degree or sparsity to satisfy the given
constraints was not fully considered in this paper. It would be very useful to investigate
how to interpret polynomial distributions, especially as they may arise naturally when
observing some stochastic phenomena.
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Appendix A. Basic Properties of Form I Polynomials

Definition:

pn(x) =
n

∑
i=0

ai xi, ai ∈ R, an 6= 0 (A1)

Roots, n = 1:
p1(x) = 0 ⇔ x1 = − a0

a1
(A2)

Roots, n = 2:

p2(x) = 0 ⇔
x1,2 =

−a1±
√

a2
1−4a2a0

2a2
a2

1 > 4a2a0

x1 = x2 = − a1
2a2

a2
1 = 4a2a0

x1,2 /∈ R a2
1 < 4a2a0

(A3)

Roots, n = 3:

p3(x) = 0 ⇔

x1 =
3

√
− b

2 +
√

b2

4 + a3

27 +
3

√
− b

2 −
√

b2

4 + a3

27 , x2,3 /∈ R D < 0

x1 = x2 = x3 = − a2
3a3

D = 0, a2
2 = 3a3a1

x1 = x2 = 9a3a0−a2a1
2(a2

2−3a3a1)
, x3 =

4a3a2a0−9a2
3a0−a3

2
a3(a2

2−3a3a1)
D = 0, a2

2 6= 3a3a1

xk = − 1
3a (b + ξk−1C + ∆0

ξk−1C ), k = 1, 2, 3 D > 0

(A4)

where

a =
−a2

3a3
, b = a3 +

a2a1 − 3a3a0

6a2
3

, D =
4(a2

2 − 3a3a1)− (2a3
2 − 9a3a2a1 + 27a2

3a2
0)

27a2
3

∆0 = a2
2 − 3a3, ∆1 = 2a3

2 − 9a3a2a1 + 27a2
3a0, C =

3

√√√√∆1 ±
√

∆2
1 − 4∆3

0

2
, ξ =

−1 +
√
−3

2

Roots, general case:

• By Abel—Ruffini’s theorem, closed-form expressions for roots of a polynomial exist
for polynomials of degree at most n = 4, and there is no algebraic solution for the
polynomial roots for degree n > 4.

• The total number of real roots of a polynomial within a given interval or overall real
numbers can be determined by Sturm’s theorem.

• Other relationships between polynomial coefficients and roots can be obtained, such
as the Vieta’s formulas:

∑
i1 6=i2 6=···6=ik

ri1 ri2 · · · rik = (−1)i an−i
an

, k ≤ i = 1, 2, . . . , n (A5)

Indefinite integral:

p̃n(x) ≡
∫

pn(x)dx =
n

∑
i=0

ai
i + 1

xi+1 (A6)

Definite integral:

Pn(u) ≡
∫ u

−∞
pn(x)dx (A7)
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∫ u

l
pn(x)dx =

∫ u

−∞
pn(x)dx−

∫ l

−∞
pn(x)dx = Pn(u)− Pn(l), l < u

=
n

∑
i=0

ai
i + 1

(
ui+1 − li+1

)
≡ p̃(u)− p̃(l)

(A8)

Indefinite k-fold integral, k > 1:

∫
· · ·

∫
k

pn(x)dxk =
n

∑
i=0

ai
(i + 1)(i + 2) . . . (i + k)

xi+k =
n

∑
i=0

ai
i!

(i + k)!
xi+k (A9)

Derivative:

ṗn(x) =
d

dx
pn(x) =

n

∑
i=1

i ai xi−1 (A10)

k-th derivative, 1 < k ≤ n:

p(k)n (x) =
n

∑
i=k

i(i− 1) . . . (i− k + 1) ai xi−k

=
n

∑
i=k

ai
i!

(i− k)!
xi−k =

n

∑
i=k

ai k!
(

i
k

)
xi−k

(A11)

k-th moment, k ≥ 1: ∫
xk pn(x)dx =

n

∑
i=0

ai
i + k + 1

xi+k+1

∫ u

l
xk pn(x)dx =

n

∑
i=0

ai
i + k + 1

(
ui+k+1 − li+k+1

) (A12)

Characteristic function:

φX(t) = E
[

ejtX
]
=
∫ +1

−1
pn(x) ejtx dx =

n

∑
i=0

ai

∫ +1

−1
xi ejtx dx

=
n

∑
i=0

ai
j
t

∫ t/j

−t/j

(
xj
t

)i
e−x dx

=
n

∑
i=0

ai

(
j
t

)i+1(∫ ∞

−t/j
xi e−x dx−

∫ ∞

t/j
xi e−x dx

)
=

n

∑
i=0

ai

(−jt)i+1 (Γ(1 + i, jt)− Γ(1 + i,−jt))

(A13)

where Γ(a, z) is the incomplete Gamma function

Appendix B. Basic Properties of Form II Polynomials

Definition:

pn(x) = an

n

∏
i=1

(x− ri), an 6= 0, ri ∈ (A14)
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Recursive form:

pn(x) =
an

an−1
(x− rn) pn−1(x), n > 1

p1(x) = x− r1

(A15)

Converting Form I to Form II, general case:

n

∑
i=0

aixi = an

n

∏
i=1

(x− ri) (A16)

an ≡ an, an−1 = an(−1)1
N

∑
i=1

ri, an−2 = an(−1)2
N

∑
i=1,j=1,i 6=j

rirj

an−3 = an(−1)3
N

∑
i=1,j=1,k=1,i 6=j 6=k

rirjrk, · · · , a0 = an(−1)n
n

∏
i=1

ri

(A17)

Converting Form I to Form II, n = 2:

a2 ≡ a2, a1 = −a2(r1 + r2), a0 = a2r1r2 (A18)

Converting Form I to Form II, n = 3:

a3 ≡ a3, a2 = −a3(r1 + r2 + r3), a1 = a3(r1r2 + r1r3 + r2r3), a0 = −a3r1r2r3 (A19)

Converting Form I to Form II, n = 4:

a4 ≡ a4, a3 =− a4(r1 + r2 + r3 + r4), a2 = a4(r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4)

a1 =− a4(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4), a0 = a4r1r2r3r4
(A20)

Indefinite integral: (recursive form)

In(x) =
1
an

∫
pn(x)dx, n > 1

= (x− rn)In−1(x)−
∫

In−1(x)dx

I1(x) =
1
a1

∫
p1(x)dx =

∫
(x− r1)dx =

1
2

x2 − r1x

(A21)

Indefinite k-fold integral:

In(x) = (x− rn)In−1(x)−
∫

In−1(x)dx∫
In(x)dx =

∫
(x− rn)In−1(x)dx−

∫∫
In−1(x)dx2

= (x− rn)
∫

In−1(x)dx− 2
∫∫

In−1(x)dx2∫
· · ·

∫
k

In(x)dxk = (x− rn)
∫
· · ·

∫
k

In−1(x)dxk − (k + 1)
∫
· · ·

∫
k+1

In−1(x)dxk+1

(A22)
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Derivative:

ṗn(x) = an

n−1

∏
i=1

(x− ri) +
an

an−1
(x− rn) ṗn−1(x), n > 1

=
an

an−1
pn−1(x) +

an

an−1
(x− rn) ṗn−1(x)

ṗ1(x) = a1

(A23)

k-th derivative, 1 < k ≤ n:

ṗn(x) =
an

an−1
pn−1(x) +

an

an−1
(x− rn) ṗn−1(x)

p(k)n (x) = k
an

an−1
p(k−1)

n−1 (x) +
an

an−1
(x− rn) p(k)n−1(x)

(A24)

k-th moment, k ≥ 1:

p̃n(x) ≡
∫

pn(x)dx,
k
p̃n(x) ≡

∫
· · ·

∫
k

pn(x)dx

∫
xk pn(x)dx = xk p̃n(x)− k

∫
xk−1 p̃n(x)dx2

∫
xk−1 p̃n(x)dx = xk−1 2

p̃n(x)− (k− 1)
∫

xk−2 2
p̃n(x)dx

...∫
x

k−1
p̃ n(x)dx = x

k
p̃n(x)−

k+1
p̃ n(x)∫ u

l
xk pn(x)dx =

[
xk p̃n(x)

]u

l
− k

∫ u

l
xk−1 p̃n(x)dx

(A25)

Moment-generating function:

M(t) =
∫ u

l
etx pn(x)dx =

etx

t
pn(x)− 1

t

∫ u

l
etx 1

ṗn(x)dx∫ u

l
etx 1

ṗn(x)dx =
etx

t
p′n(x)− 1

t

∫ u

l
etx 2

ṗn(x)dx

...∫ u

l
etx n

ṗn(x)dx =
∫ u

l
etxann! dx =

ann!
t

etu−tl

(A26)

Appendix C. Basic Properties of Form III Polynomials

Definition:

pn(x) =
sm(x)
qn(x)

=
sm(x)

cn ∏n
i=1(x− ri)

=
n

∑
i=1

ai
x− ri

, m < n, cn 6= 0, ri 6= rj ∀i 6= j (A27)

where the residuals, ai =
sm(ri)
q̇n(ri)

6= 0
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Indefinite integral:

ri ∈ R :
∫ u

l

1
x− ri

dx =

{
ln u−ri

l−ri
, ri < l or ri > u

n.c. otherwise

ri ∈:
∫ u

l

1
x− ri

dx =

{
ln u−ri

l−ri
, Re(ri) < l or Re(ri) > u or Im(ri) 6= 0

n.c. otherwise∫ n

∑
i=1

ci
x− ri

dx =
n

∑
i=1

ci ln(x− ri)

(A28)

Definite integral: ∫ u

l

n

∑
i=1

ci
x− ri

dx =
n

∑
i=1

ci
ln(u− ri)

ln(l − ri)
(A29)

k-th derivative, 1 ≤ k ≤ n:

p(k)n (x) = (−1)k k!
n

∑
i=1

ci

(x− ri)k+1 (A30)

k-fold integral, k ≥ 1:
dk

dxk

(
xk−1 ln x
(k− 1)!

)
=

1
x

(A31)

∫
· · ·

∫
k

pn(x)dxk =
n

∑
i=1

ci
(x− ri)

k−1 ln(x− ri)

(k− 1)!
(A32)

k-th moment, k ≥ 1:∫ u

l
xk

n

∑
i=1

ci
x− ri

dx =
n

∑
i=1

ci rk
i
(

βl/ri
(1 + k, 0)− βu/ri

(1 + k, 0)
)
, 0 ≤ l < u ≤ 1

∫ u

l

xk

x− ri
dx = −rk−1

i

∫ u

l

(
x
ri

)k(
1− x

ri

)−1
dx = −rk

i

∫ u/ri

l/ri

xk(1− x)−1 dx

= rk
i
(

βl/ri
(1 + k, 0)− βu/ri

(1 + k, 0)
)
, ri 6= 0∫ u

l

xk

x
dx =

1
k
(uk − lk), ri = 0

(A33)

where βz(a, b) =
∫ z

0 ta−1(1− t)b−1 dt is incomplete β-function

Characteristic function:

φX(t) = E
[

ejtX
]
=

n

∑
i=1

ci

∫ u

l

ejtx

x− ri
dx =

n

∑
i=1

ci ejrit(Γ(0, jt(ri − l))− Γ(0, jt(ri − u))), r ∈ (l, u) (A34)
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