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Abstract: A topological index is a number that is connected to a chemical composition in order to
correlate a substance’s chemical makeup with different physical characteristics, chemical reactivity,
or biological activity. It is common to model drugs and other chemical substances as different forms,
trees, and graphs. Certain physico-chemical features of chemical substances correlate better with
degree-based topological invariants. Predictions concerning the dynamics of the continuing pandemic
may be made with the use of the graphic theoretical approaches given here. In Networks, the degree
entropy of the epidemic and related trees was computed. It highlights the essay’s originality while
also implying that this piece has improved upon prior literature-based realizations. In this paper,
we study an important degree-based invariant known as the inverse sum indeg invariant for a
variety of graphs of biological interest networks, including the corona product of some interesting
classes of graphs and the pandemic tree network, curtain tree network, and Cayley tree network. We
also examine the inverse sum indeg invariant features for the molecular graphs that represent the
molecules in the bicyclic chemical graphs.

Keywords: mathematical chemistry; chemical graph theory; topological invariants; networks

MSC: 05C30; 05C90

1. Introduction

Euler presented the graph theory, a subfield of discrete mathematics, for the first
time in 1736. It has been utilized in a variety of other fields, including physics, biology,
chemistry, etc. The chemical graph theory is the mathematical description of chemical
events in conjunction with graph theory. It focuses on invariants that have a strong
correlation to a molecule’s or chemical compound’s characteristics; see details in [1–4]. Ali
et al. also presented the euler graph theory in [5–8]. In the QSAR/QSPR modeling [9,10],
topological invariants are employed worldwide to forecast the physico-chemical and
bioactivity features of a molecule or molecular compound. The topological invariant [11,12]
is an original graph invariant of a chemical compound’s topological structure. The physical
characteristics of paraffin were determined using the Wiener invariant [13], which was
initially made public in 1947.

A molecular graph [14,15] is a straightforward connected graph with atoms and chem-
ical bonds acting as its vertices and edges, respectively; see more details in [16,17]. Many
topological invariants have been generated as a result of extensive work on computing the
invariants of various molecular graphs and networks. These indices are based on surface,
degree, and distance [18–24]. The degree-based invariants(DBI) are more appealing to
anticipate the characteristics of a molecule or a compound. Inverse sum indeg invariant
(IS) is a prominent degree-based invariant that is defined for a molecular network Ω as
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IS(Ω) = ∑
uv∈E(Ω)

1
1

λΩ(u)+
1

λΩ(v)
= ∑

uv∈E(Ω)

λΩ(u)λΩ(v)
λΩ(u)+λΩ(v) , where λΩ(u) is a degree of a vertex u

in Ω.
One of the discrete Adriatic TIs explored in [25] is the IS invariant, whose predic-

tion abilities were assessed against the benchmark datasets of [15] from the International
Academy of Mathematical Chemistry. In [26], extreme values of the IS were found for a
variety of graph types, including linked graphs, chemical graphs, trees, and chemical trees.
The boundaries of a descriptor are crucial data for a molecular graph since they define the
descriptor’s approximate range in terms of molecular structural characteristics. In [22],
some precise constraints for the linked graphs’ IS are provided. In [27], the IS of specific
kinds of nanotubes is calculated. In [28–30], the relationship between the IS invariant and
the vertex-edge corona product of graphs is found. For various graphs of biological interest
networks, including pandemic tree networks, curtain tree networks, Cayley tree networks,
and corona products of some interesting classes of graphs, we study one of the significant
DBI in this work, known as the IS invariant. We also examine the IS invariant features for
the molecular graphs that represent the molecules in the bicyclic chemical graphs.

2. Pandemic Tree Network

The reproduction number or S0, evaluates the pandemic’s intensity in epidemiology
and is defined as the number of people who can become infected from a vulnerable
population set. Figure 1 displays a pandemic tree for an epidemic with a S0 (value of
4) epidemic.

Figure 1. A pandemic tree with an eqidemiological R0 value of 3.

The reproduction number of a pandemic, rounded to the closest integer, is S0, and a
pandemic tree is a full S0-ary.

A rooted tree with no more than k offspring at each vertex is said to be k-ary. This
vertex’s descendants include all of a node’s offspring. The height of a k-ary tree is defined
as the greatest distance l from the leaf to the root vertex. Level 0 is referred to as the root
vertex. According to induction, the offspring of vertices at level i are also at level i + 1.
If every internal vertex on a k-ary tree has precisely k descendants, the tree is said to be
complete. A pandemic tree is a full k-ary tree that has the epidemiological S0 value of k.
rounded. This tree is represented by the letter Ωk

l , where l indicates its height k, l ≥ 2.
Figure 2 depicts the pandemic tree levels 5 and 6.
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Figure 2. A 5-level pandemic tree Ω3
5 and 6-level pandemic tree Ω6

6.

Theorem 1. Let Ωk
l stand for an epidemic tree with l levels and k reproductions. Then, IS(Ωk

l ) =

k2(k+1)
2k+1 + kl(k+1)

k+2 +
l−2
∑

i=1

kl−i(k+1)
2 .

Proof. For i, 0 ≤ i ≤ 1, the number of vertices of Ωk
l with level i is ki. Hence, we can

easily calculate the total number of vertices and edges in Ωk
l , that is,

∣∣∣V(Ωk
l )
∣∣∣ = kl+1−1

k−1 and∣∣∣E(Ωk
l )
∣∣∣ = kl+1−1

k−1 − 1. Now, we analyze the degree of any vertex x in Ωk
l as follows;

(i) If x is a leaf of Ωk
l , then λΩk

l
(x) = 1.

(ii) If x is a root of Ωk
l , then λΩk

l
(x) = k.

(iii) If x is an internal vertex of Ωk
l , then λΩk

l
(x) = k + 1.

Let us consider the following edge partitions of a tree Ωk
l based on its degrees of a

edge. Let Pij be the set of all edges with degree of end vertices i, j, that is, Pij = {xy ∈
E(Ωk

l )|λΩk
l
(x) = i, λΩk

l
(y) = j} and let pij be the number of edges in Pij. From the structure

of Ωk
l , it is clear that pk+1,k = k, p1,k+1 = kl and pk+1,k+1 =

l−2
∑

i=1
kl−i. Thus,

IS(Ωk
l ) = ∑

xy∈E(Tk
l )

λΩk
l
(x)λΩk

l
(y)

λΩk
l
(x) + λΩk

l
(y)

= pk+1,k

( λΩk
l
(x)λΩk

l
(y)

λΩk
l
(x) + λΩk

l
(y)

)
+ p1,k+1

( λΩk
l
(x)λΩk

l
(y)

λΩk
l
(x) + λΩk

l
(y)

)
+ pk+1,k+1

( λΩk
l
(x)λΩk

l
(y)

λΩk
l
(x) + λΩk

l
(y)

)
= k

( (k + 1)× k
(k + 1) + k

)
+ kl

( (k + 1)× 1
(k + 1) + 1

)
+

l−2

∑
i=1

kl−i ×
( (k + 1)× (k + 1)
(k + 1) + (k + 1)

)
=

k2(k + 1)
2k + 1

+
kl(k + 1)

k + 2
+

l−2

∑
i=1

kl−i(k + 1)
2

.

3. Curtain Tree Network

Let Ci represent a branch of a tree Ω created by connecting i pendant paths of length 2
to the vertex x in such a way that x has degree i + 1 in Ω. The curtain tree network, shown
by Ω(r, Cs

k) in Figure 3, is created by joining s branches of Ck to each vertex of path Pr.
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Figure 3. A 5-level pandemic tree Ω3
5 and 6-level pandemic tree Ω6

6.

Theorem 2. Let r, s, k be three positive integers such that r ≥ 3,k ≥ 2 and s ≥ 1. Then,

IS(Ω(r, Cs
k)) =

4krs(2k+6)
3(k+3) + s(k + 1)

(
2(s+1)
s+k+2 + s(r−2)

s+k+1

)
+ 2(s+1)(s+2)

2s+3 + (r−3)(s+2)2

2(s+2) .

Proof. We have rs of branches Ck based on the curtain tree network’s Ω(r, Cs
k) structure.

We shall first mark all of the branches’ edges as follows:

(i) 2k edges make up the branch of Ck, and k of those edges have two vertices: the first of
degree one, and the second of degree two. Two vertices can be found on other k edges
as well, the first of degree two and the second of degree k + 1.

(ii) The same is true for the rs edges connecting the vertices of the route and the branches
of Ck, 2s of which include two vertices, the first of degree s + 1 and the second of
degree k + 1. Two vertices are also present on the remaining (r− 2)s edges: one of
degree k + 1 and the other of degree s + 2.

(iii) Only the path’s edges are left at this point. This path has edges that are r− 1. The first
has a degree of s + 1, and the second has a degree of s + 2. Two of them have two
vertices. Additionally, there are two vertices with the same degree s + 2 on the
remaining r− 3 edges.

Let P′ij be the set of all edges with the degree of end vertices i, j, that is, P′ij = {xy ∈
E(Ω(r, Cs

k))|λΩ(r,Cs
k)
(x) = i, λΩ(r,Cs

k)
(y) = j} and let p′ij be the number of edges in P′ij.

From the structure of Ω(r, Cs
k), it is clear that p′1,2 = krs, p′k+1,2 = krs,p′k+1,s+1 = 2s,p′k+1,s =

s(r− 2),p′s+1,s+2 = 2 and p′s+2,s+2 = r− 3. Thus

IS(Ω(r, Cs
k)) = ∑

xy∈E(Ω(r,Cs
k))

λΩ(r,Cs
k)
(x)λΩ(r,Cs

k)
(y)

λΩ(r,Cs
k)
(x) + λΩ(r,Cs

k)
(y)

= p′1,2

( λΩ(r,Cs
k)
(x)λΩ(r,Cs

k)
(y)

λΩ(r,Cs
k)
(x) + λΩ(r,Cs

k)
(y)

) + p′k+1,2

( λΩ(r,Cs
k)
(x)λΩ(r,Cs

k)
(y)

λΩ(r,Cs
k)
(x) + λΩ(r,Cs

k)
(y)

)

+p′k+1,s+1

( λΩ(r,Cs
k)
(x)λΩ(r,Cs

k)
(y)

λΩ(r,Cs
k)
(x) + λΩ(r,Cs

k)
(y)

) + p′k+1,s

( λΩ(r,Cs
k)
(x)λΩ(r,Cs

k)
(y)

λΩ(r,Cs
k)
(x) + λΩ(r,Cs

k)
(y)

)

+p′s+1,s+2

( λΩ(r,Cs
k)
(x)λΩ(r,Cs

k)
(y)

λΩ(r,Cs
k)
(x) + λΩ(r,Cs

k)
(y)

) + p′s+2,s+2

( λΩ(r,Cs
k)
(x)λΩ(r,Cs

k)
(y)

λΩ(r,Cs
k)
(x) + λΩ(r,Cs

k)
(y)

)

= krs
(1× 2

1 + 2

)
+ krs

(2× (k + 1)
(k + 1) + 2

)
+ 2s

( (s + 1)(k + 1)
(s + 1) + (k + 1)

)
+s(r− 2)

( s(k + 1)
s + (k + 1)

)
+ 2
( (s + 1)(s + 2)
(s + 1) + (s + 2)

)
+ r− 3

( (s + 2)(s + 2)
(s + 2) + (s + 2)

)
=

4krs(2k + 6)
3(k + 3)

+ s(k + 1)
( 2(s + 1)

s + k + 2
+

s(r− 2)
s + k + 1

)
+

2(s + 1)(s + 2)
2s + 3

+
(r− 3)(s + 2)2

2(s + 2)
.
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4. Cayley Tree Network

A k-Cayley tree CN(k, l) with levels l is a tree where all vertices have the same degree
k except the leaves. Figure 4 depicts the Cayley tree’s structure, which has a degree of 3
and a level of 6.

Figure 4. A 3-Cayley tree CN(3, 6) with 6 levels.

Theorem 3. For a Cayley tree CN(k, l), with k, l ≥ 3, we have IS(CN(k, l)) = k(k(k−1)l−k+1)
2(k2−3k+2) +

k2(k−1)l

(k+1) .

Proof. Note that the number of vertices and edges in CN(k, l) are, respectively, k(k−1)l−2
k−2

and k(k−1)l−2
k−2 − 1. Let P′′ij be the set of all edges of CN(k, l) with a degree of end vertices i, j

and let p′′ij be its cardinality. Then, by the structure of CN(k, l), we have p′′k,k =
k(k−1)l−k+1

k2−3k+2
and p′′1,k = k(k− 1)l−1. Hence,

IS(CN(k, l)) = ∑
xy∈E(CN(k,l))

λCN(k,l)(x)λCN(k,l)(y)
λCN(k,l)(x) + λCN(k,l)(y)

= p′′k,k
λCN(k,l)(x)λCN(k,l)(y)

λCN(k,l)(x) + λCN(k,l)(y)
+ p′′1,k

λCN(k,l)(x)λC(k,l)(y)
λC(k,l)(x) + µCN(k,l)(y)

=
k(k− 1)l − k + 1

k2 − 3k + 2
×
( k× k

k + k

)
+ k(k− 1)l−1 ×

( k× 1
k + 1

)
=

k(k(k− 1)l − k + 1)
2(k2 − 3k + 2)

+
k2(k− 1)l

(k + 1)
.

5. Christmas Tree Network

If a graph can be created from a Meyniel graph by eliminating every edge between
any two nodes, it is said to be slim graph. A tree, also known as a linked acyclic undirected
graph, is an undirected graph in graph theory in which any two vertices are connected by
precisely one route. Thus, we can gain a slim tree in graph theory. For s ≥ 2, a Christmas
tree CTN(s) is composed of an sth slim tree ST(s) = (V1, E1, u1, l1, r1) and an (s + 1)th

slim tree ST(s + 1) = (V2, E2, u2, l2, r2) together with the edges u1u2,l1r2 and l2r1, where
ST(s) = (V, E, u, l, r), with V as the node set, E as the edge set, u ∈ V as the root node,
l ∈ V as the left node, and r ∈ V as the right node defined below:

(i) ST(2) is the complete graph K3 with its nodes labeled with u,l and r.
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(ii) The sth slim tree ST(s), with s ≥ 3 is composed of a root node u and two disjoint
copies of (s− 1)th slim trees as the left subtree and right subtree, denoted by STl(s− 1) =
(V1, E1, u1, l1, r1) and STr(s− 1) = (V2, E2, u2, l2, r2), respectively, and ST(s) = (V, E, u, l, r)
is given by V = V1 ∪ V2 ∪ {u},E = E1 ∪ E2 ∪ {(u, u1), (u, u2), (r1, l2)},l = l1, r = r2. For
illustration, the Christmas tree CT(3) is shown in Figure 5.

Figure 5. A Christmas tree CTN(3) with 3 levels.

Theorem 4. For a Christmas tree CTN(s), IS(CTN(s)) = (9× 2s − 6)× 3
4 .

Proof. The number of vertices and edges of CTN(s) are (3× 2s)− 2 and 9×2s−6
2 , respectively.

As CTN(s) is a 3-regular, E3,3 = {xy ∈ E(CTN(s))|λCTN(s)(x) = 3 and λCTN(s)(y) = 3} is
a only edge partition of CTN(s) and its number of edges is 9×2s−6

2 . Hence,

IS(CTN(s)) = ∑
xy∈E(CTN(s))

λCTN(s)(x)λCTN(s)(y)
λCTN(s)(x) + λCTN(s)(y)

= |E3,3|
(3× 3

3 + 3

)
=

(9× 2s − 6)
2

× 9
6
= (9× 2s − 6)× 3

4
.

6. Corona Product of Graphs

Graph operations facilitate decomposition of a graph Ω into two or more isomorphic
subgraphs. The corona product Ω1 ⊕Ω2 of two graphs Ω1 and Ω2 is defined as the graph
obtained by taking a copy of Ω1 and |V(Ω1)| copies of Ω2, and then joining the ith vertex of Ω1
with edges to every vertex in the ith copy of Ω2. It easily shows that |V(Ω1 ⊕Ω2)| = |V(Ω1)|+
|V(Ω1)||V(Ω2)| and |E(Ω1 ⊕Ω2)| = |E(Ω1)|+ |V(Ω1)||E(Ω2)|+ |V(Ω1)||V(Ω2)|. Now,
we obtain the value for ISI of corona product of Christmas tree CTN(S) and a path graph Pn.

Theorem 5. If CTN(S) ⊕ Pn is a tree with s, n ≥ 2, then IS(CTN(S) ⊕ Pn) = (3 × 2s −
2)
(

6n+22
n+5 + 3(n−2)(n+3)

n+6 + 9(n−1)
4

)
.

Proof. The number of vertices and edges of CTN(S)⊕ Pn are 3× 2s − 2 + (3× 2s − 2)n
and 9×2s−6

2 + ((3× 2s)− 2)(2n− 1), respectively. From the structure of the corona product
of CTN(S) and Pn, we have the following five edge partitions based on degrees of vertices;
Pn+3,n+3 = {xy ∈ E(CTN(S)⊕ Pn)|λCTN(S)⊕Pn(x) = n + 3 and λCTN(S)⊕Pn(y) = n + 3},
Pn+3,2 = {xy ∈ E(CTN(S)⊕ Pn)|λCTN(S)⊕Pn(x) = n + 3 and λCTN(S)⊕Pn(y) = 2},
Pn+3,3 = {xy ∈ E(CTN(S)⊕ Pn)|λCTN(S)⊕Pn(x) = n + 3 and λCTN(S)⊕Pn(y) = 3},
P2,3 = {xy ∈ E(CTN(S)⊕ Pn)|λCTN(S)⊕Pn(x) = 2 and λCTN(S)⊕Pn(y) = 3}, and
P3,3 = {xy ∈ E(CTN(S)⊕ Pn)|λCTN(S)⊕Pn(x) = 3 and λCTN(S)⊕Pn(y) = 3}.

One can observe that pn+3,n+3 = 9×2s−6
2 ,pn+3,2 = 2(3× 2s − 2), pn+3,3 = (n− 2)(3×

2s − 2),p2,3 = 2(3× 2s − 2) and p3,3 = (n− 3)(3× 2s − 2). Hence
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IS(CTN(S)⊕ Pn) = ∑
xy∈E(CTN(S)⊕Pn)

λCTN(S)⊕Pn(x)λCTN(S)⊕Pn(y)
λCTN(S)⊕Pn(x) + λCTN(S)⊕Pn(y)

=
9× 2s − 6

2

( (n + 3)× (n + 3)
(n + 3) + (n + 3)

)
+ 2(3× 2s − 2)

( (n + 3)× 2
(n + 3) + 2

)
+(n− 2)(3× 2s − 2)

( (n + 3)× 3
(n + 3) + 3

)
+ 2(3× 2s − 2)

(2× 2
2 + 2

)
+ (n− 3)(3× 2s − 2)

(3× 3
3 + 3

)
=

3(3× 2s − 2)
2

( (n + 3)
2

)
+ 2(3× 2s − 2)

(2(n + 3)
n + 5

)
+(n− 2)(3× 2s − 2)

(3(n + 3)
n + 6)

)
+ 2(3× 2s − 2) +

3(n− 3)(3× 2s − 2)
2

= (3× 2s − 2)
(6n + 22

n + 5
+

3(n− 2)(n + 3)
n + 6

+
9(n− 1)

4

)
.

Theorem 6. The IS invariant of the corona product of two paths is IS(Pr ⊕ Ps) = 32(s+1)
(s+3) +

24(s−2)(s+1)+16(r−2)(s+2)
(s+4) + 2(s+1)+2(r−3)(s+2)+6r(s−3)

2 + 34r
5 + 4(s+1)(s+2)

(2s+3) + 6(s+2)(s−2)(r−2)
(s+5) .

Proof. One can observe that the number of vertices and edges of the graph Pr ⊕ Ps are,
respectively, r + rs and 2rs− 1. Let Pij be the set of all edges with the degree of end vertices
i, j, that is, Pij = {xy ∈ E(Pr ⊕ Ps)|λPr⊕Ps(x) = i, λPr⊕Ps(y) = j}. Let pij be the number of
edges in Pij. From the structure of Pr ⊕ Ps, it is clear that

ps+1,2 = 4, ps+1,3 = 2(s − 2), ps+1,s+1 =

{
0 if r > 2
1 if r = 2

,

ps+2,s+2 =

{
0 if r = 2
r− 3 if r > 2

, ps+1,s+2 =

{
0 if r = 2
2 if r > 2

, ps+2,2 =

{
0 if r = 2
2(r− 2) if r > 2

,

ps+2,3 =

{
0 if r = 2
(r− 2)(s− 2) if r > 2

, p2,2 =

{
r if s = 2
0 if s > 2

, p2,3 =

{
0 if s = 2
2r if s > 2

and

p3,3 =

{
0 if s = 2
r(s− 3) if s > 2

.

• If r = s = 2, then

IS(Pr ⊕ Ps) = ∑
xy∈E(G)

λPr⊕Ps(x)λPr⊕Ps(y)
λPr⊕Ps(x) + λPr⊕Ps(y)

= 4
( 2(s + 1)
(s + 1) + 2

)
+ 2(s− 2)

( 3(s + 1)
(s + 1) + 3

)
+
( (s + 1)(s + 1)
(s + 1) + (s + 1)

)
+2(r− 2)

( 2(s + 2)
(s + 2) + 2

)
+ r
(2× 2

2 + 2

)
=

8(s + 1)
(s + 3)

+
6(s− 2)(s + 1)

(s + 4)
+

(s + 1)
2

+
4(s + 2)(r− 2)

(s + 4)
+ r

=
(8(s + 1)
(s + 3)

)
+
( (s + 1)

2

)
+ r +

(6(s− 2)(s + 1) + 4(r− 2)(s + 2)
(s + 4)

)
.

• If r = 2 and s > 2, then
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IS(Pr ⊕ Ps) = 4
( 2(s + 1)
(s + 1) + 2

)
+ 2(s− 2)

( 3(s + 1)
(s + 1) + 3

)
+
( (s + 1)(s + 1)
(s + 1) + (s + 1)

)
+2(r− 2)

( 2(s + 2)
(s + 2) + 2

)
+2r

(3× 2
3 + 2

)
+ r(s− 3)

(3× 3
3 + 3

)
=

8(s + 1)
(s + 3)

+
6(s− 2)(s + 1)

(s + 4)
+

(s + 1)
2

+
4(s + 2)(r− 2)

(s + 4)

+
12r
5

+
3r(m− 3)

2
.

• If r = s = 2, then

IS(Pr ⊕ Ps) = 4
( 2(s + 1)
(s + 1) + 2

)
+ 2(s− 2)

( 3(s + 1)
(s + 1) + 3

)
+ 2
( (s + 1)(s + 2)
(s + 1) + (s + 2)

)
+(r− 3)

( (s + 2)(s + 2)
(s + 2) + (s + 2)

)
+ 2(r− 2)

( 2(s + 2)
(s + 2) + 2

)
+(r− 2)(s− 2)

( 3(s + 2)
(s + 2) + 3

)
+ r
(2× 2

2 + 2

)
=

8(s + 1)
(s + 3)

+
6(s− 2)(s + 1)

(s + 4)
+

2(s + 1)(s + 2)
(2s + 3)

+
(r− 3)(s + 2)

2

+
4(r− 2)(s + 2)

(s + 4)
+

3(r− 2)(s− 2)(s + 2)
(s + 5)

+ r.

• If r > 2 and s > 2, then

IS(Pr ⊕ Ps) = 4
( 2(s + 1)
(s + 1) + 2

)
+ 2(s− 2)

( 3(s + 1)
(s + 1) + 3

)
+ 2
( (s + 1)(s + 2)
(s + 1) + (s + 2)

)
+(r− 3)

( (s + 2)(s + 2)
(s + 2) + (s + 2)

)
+ 2(r− 2)

( 2(s + 2)
(s + 2) + 2

)
+ (r− 2)(s− 2)

( 3(s + 2)
(s + 2) + 3

)
+2r

(3× 2
3 + 2

)
+ r(s− 3)

(3× 3
3 + 3

)
=

8(s + 1)
(s + 3)

+
6(s− 2)(s + 1)

(s + 4)
+

2(s + 1)(s + 2)
(2s + 3)

+
(r− 3)(s + 2)

2

+
4(r− 2)(s + 2)

(s + 4)
+

3(r− 2)(s− 2)(s + 2)
(s + 5)

+
12r
5

+
3r(s− 3)

2
.

Theorem 7. The IS invariant of the corona product of two cycles is IS(Cr ⊕ Cs) =
r(s+2)+3rs

2 +
3rs(s+2)
(s+5) .

Proof. Clearly, the number of vertices and edges of the graph Cr ⊕ Cs are, respectively,
r + rs and r + 2rs when r, s > 2. Let Pij be the set of all edges with the degree of end vertices
i, j, that is, Pij = {xy ∈ E(Cr ⊕ Cs)|dCr⊕Cs(x) = i, dCr⊕Cs(y) = j}. Let pij be the number
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of edges in Pij. From the structure of Cr ⊕ Cs, it is clear that ps+2,s+2 = r,ps+2,3 = rs and
p3,3 = rs. Thus,

IS(Cr ⊕ Cs) = ∑
xy∈E(Cr⊕Cs)

λCr⊕Cs(x)λCr⊕Cs(y)
λCr⊕Cs(x) + λCr⊕Cs(y)

= r
( (s + 2)(s + 2)
(s + 2) + (s + 2)

)
+ rs

( 3(s + 2)
(s + 2) + 3

)
+ rs

(3× 3
3 + 3

)
=

r(s + 2)2

2(s + 2)
+

3rs(s + 2)
(s + 5)

+
3sr
2

=
r(s + 2) + 3rs

2
+

3rs(s + 2)
(s + 5)

.

Theorem 8. The IS invariant of the corona product of a complete graph Kr and a path graph Ps is
IS(Kr ⊕ Ps) =

r(r−1)(r+s−1)
2 + 8r(r+s−1)

(r+s+1) + 6r(s−2)(r+s−1)
(r+s+2) + 3r(s−3)

2 + 17r
5 .

Proof. One can observe that the number of vertices and edges of the graph Kr ⊕ Ps are,
respectively, r + rs and rs + r(s− 1) + r(r−1)

2 . Let Pij be the set of all edges with the degree
of end vertices i, j, that is, Pij = {xy ∈ E(Kr ⊕ Ps)|dKr⊕Ps(x) = i, dKr⊕Ps(y) = j}. Let pij be
the number of edges in Pij. From the structure of Pr ⊕ Ps, it is clear that

pr+s−1,r+s−1 = r(r−1)
2 ,pr+s−1,2 = 2r,pr+s−1,3 = r(s− 2),p2,2 =

{
0 if s > 2
r if s = 2

,

p2,3 =

{
0 if s = 2
2r if s > 2

and p3,3 =

{
0 if s = 2
r(s− 3) if s > 2

. Hence

• If r ≥ 2 and s = 2, then

IS(Kr ⊕ Ps) = ∑
xy∈E(Kr⊕Ps)

λKr⊕Ps(x)λKr⊕Ps(y)
λKr⊕Ps(x) + λKr⊕Ps(y)

=
r(r− 1)

2

( (r + s− 1)(r + s− 1)
(r + s− 1) + (r + s− 1)

)
+ 2r

( 2(r + s− 1)
(r + s− 1) + 2

)
+r(s− 2)

( 3(r + s− 1)
(r + s− 1) + 3

)
+ r
(2× 2

2 + 2

)
=

r(r− 1)(r + s− 1)
4

+
4r(r + s− 1)
(r + s + 1)

+
3r(s− 2)(r + s− 1)

(r + s + 2)
+ r.

• If r ≥ 2 and s > 2, then

IS(Kr ⊕ Ps) =
r(r− 1)

2

( (r + s− 1)(r + s− 1)
(r + s− 1) + (r + s− 1)

)
+ 2r

( 2(r + s− 1)
(r + s− 1) + 2

)
+r(s− 2)

( 3(r + s− 1)
(r + s− 1) + 3

)
+ 2r

(3× 2
3 + 2

)
+ r(s− 3)

(3× 3
3 + 3

)
=

r(r− 1)(r + s− 1)
4

+
4r(r + s− 1)

r + s + 1
+

3r(s− 2)(r + s− 1)
r + s + 2

+
12r
5

+
3r(s− 3)

2
.

It is easy to see that Ω1 ⊕ Ω2 is not in general isomorphic to Ω2 ⊕ Ω1. Thus, the
following theorem gives the value for ISI of Pr ⊕ Ks.

Theorem 9. IS(Pr ⊕ Ks) =
4r2(r+1)

2r+1 + 2r2(r+1)+2(r+1)+(s+2)(s−3)
2 + 2(r+1)(r+2)

2r+3 + r2(r+2)(s−2)
2(r+1) .
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Proof. One can observe that the number of vertices and edges of the graph Pr ⊕ Ks are,
respectively, r + rs and rs + (s− 1) + sr(r−1)

2 . Let Pij be the set of all edges with the degree
of end vertices i, j, that is, Pij = {xy ∈ E(Pr ⊕ Ks)|dPr⊕Ks(x) = i, dPr⊕Ks(y) = j}. Let pij be
the number of edges in Pij. From the structure of Pr ⊕ Ks, it is clear that

pr,r =
sr(r−1)

2 ,pr,r+1 = 2r,pr+1,r+1 =

{
0 if s > 2
1 if s = 2

, pr+1,r+2 =

{
0 if s = 2
2 if s > 2

,

pr+2,r =

{
0 if s = 2
r(s− 2) if s > 2

and pr+2,r+2 =

{
0 if s = 2
(s− 3) if m > 2

. Hence

• If r ≥ 2 and s = 2, then

IS(Pr ⊕ Ks) = ∑
xy∈E(Pr⊕Ks)

λPr⊕Ks(x)λPr⊕Ks(y)
λPr⊕Ks(x) + λPr⊕Ks(y)

=
(r + 1)(r + 1)

(r + 1) + (r + 1)
+

sr(r− 1)
2

( r× r
r + r

)
+ 2r

( r(r + 1)
r + (r + 1)

)
= (r + 1) +

r2(r− 1)
2

+
2r2(r + 1)

2r + 1
.

• If r ≥ 2 and s = 2, then

IS(Pr ⊕ Ks) =
sr(r− 1)

2

( r× r
r + r

)
+ 2r

( r(r + 1)
r + (r + 1)

)
+ 2
( (r + 1)(r + 2)
(r + 1) + (r + 2)

)
+(s− 3)

( (r + 2)(r + 2)
(r + 2) + (r + 2)

)
+ r(s− 2)

( r(r + 2)
r + (r + 2)

)
=

r2(r− 1)
2

+
2r2(r + 1)

2r + 1
+

2(r + 1)(r + 2)
2r + 3

+
(s− 3)(r + 2)

2
+

r2(s− 2)(r + 2)
2r + 2

.

Theorem 10. The value of IS of the corona product of two complete graphs is IS(Kr ⊕ Ks) =
s2(s−1)

2 + rs2(r+s−1)
r+2s−1 + r(r−1)(r+s−1)

4 .

Proof. One can observe that the number of vertices and edges of the graph Kr ⊕ Ks are,
respectively, r + rs and rs + (s − 1) + sr(r−1)

2 . Let Pij be the set of all edges with degree
of end vertices i, j, that is, Pij = {xy ∈ E(Kr ⊕ Ks)|λKr⊕Ks(x) = i, λKr⊕Ks(y) = j}. Let
pij be the number of edges in Pij. From the structure of Kr ⊕ Ks, it is clear that ps,s =
rs(s−1)

2 ,ps,r+s−1 = rs and pr+s−1,r+s−1 = r(r−1)
2 . Hence,

IS(Kr ⊕ Ks) = ∑
xy∈E(Kr⊕Ks)

λKr⊕Ks(x)λKr⊕Ks(y)
λKr⊕Ks(x) + λKr⊕Ks(y)

= s(s− 1)
s.s

s + s
+ rs

( s(r + s− 1)
s + (r + s− 1)

)
+

r(r− 1)
2

( (r + s− 1)(r + s− 1)
(r + s− 1) + (r + s− 1)

)
=

s2(s− 1)
2

+
rs2(r + s− 1)

r + 2s− 1
+

r(r− 1)(r + s− 1)
4

.

Corona products occasionally appear in chemical literature as plerographs of the
typical hydrogen-suppressed molecular graphs known as Kneographs. For example, for
a path Ps, the graph K2 ⊕ Ps is called the bottleneck graph of Ps. Let Ct be the cycle with t
vertices and define the molecular graph Tr,3 = Gr(C3, v1), which is the corona product of Pr
and K2. The fan graph Fs+1 = K1 ⊕ Ps. By using above theorems, we obtain the following:

(i) ISI(K2 ⊕ Ps) =
(s+1)(s+19)

s+3 + 12(s−2)(s+1)
s+4 + 15s−11

5 ,
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(ii) ISI(K1 ⊕ Ps) =
8s

s+2 + 6s(s−2)
s+3 + 15s−11

10 and

(iii) ISI(Pr ⊕ K2) =
4r2(r+1)

2r+1 + 2(r+1)(r+2)
2r+3 + (r + 1)(r2 + 1)− 2.

7. Bicyclic Graphs

The generic formula for the IS invariant of various bicyclic graphs is given in this
section. To start, we have the following assumption related to the jellyfish graph ΩCk (r, s, t).
A linked graph is said to be bicyclic if there are one more edges than vertices in the graph.
The Jellyfish graph is created by connecting two cycles of length r and s by a path of length
t, then adding branches of length Ck to each vertex in the two cycles and path (except from
the terminal vertices in the path where we add one of Ck), as illustrated in Figure 6.

Figure 6. The graph ΩCk (r, s, t).

Theorem 11. Let r, s, k be positive integers such that r ≥ 3,k ≥ 2 and s ≥ 1. Then, IS(ΩCk(r, s, t)) =

2(n + m + r− 3)
(

2k(k+1)
k+3 + 4(k+1)

k+5 + 2k
3

)
+ 2(n + m + r− 1).

Proof. We have 2(r + s + t− 3) of branches Ck based on the ΩCk (r, s, t) structure of the
Jellyfish graph. We shall first mark all of the branches’ edges as follows:

(i) 2k edges make up the branch of Ck, and k of those edges have two vertices: the first of
degree one, and the second of degree two. Two vertices, the first of degree two and
the second of degree k + 1, may be found on another k edge of them.

(ii) Additionally, there are 2(r + s + t − 3) edges connecting branches of Ck that each
contain two vertices, the first of degree 4 and the second of degree k + 1.

(iii) We also have r + s + t− 1 edges with degree 4 vertices in them.

Let Q′ij be the set of all edges with the degree of end vertices i, j, that is, Qij =

{xy ∈ E(Ω(r, Cs
k))|λΩCk (r,s,t)(x) = i, λΩCk (r,s,t)(y) = j}. Let qij be the number of edges

in Qij. From the structure of ΩCk (r, s, t), it is clear that q1,2 = 2k(r + s + t− 3), qk+1,2 =
2k(r + s + t− 3), qk+1,4 = 2(r + s + t− 3) and q4,4 = r + s + t− 1. Thus,

IS(ΩCk (r, s, t)) = ∑
xy∈E(ΩCk (r,s,t))

λΩCk (r,s,t)(x)λΩCk (r,s,t)(y)

λΩCk (r,s,t)(x) + λΩCk (r,s,t)(y)

= q1,2

(1× 2
1 + 2

)
+ qk+1,2

( (k + 1)× 2
(k + 1) + 2

)
+ q4,k+1

(4× (k + 1)
(k + 1) + 4

)
+ p4,4

(4× 4
4 + 4

)
= 2k(r + s + t− 3)

(2
3

)
+ 2k(r + s + t− 3)

(2(k + 1)
(k + 3)

)
+2(r + s + t− 3)

(4(k + 1)
(k + 5)

)
+ 2(r + s + t− 1)

= 2(r + s + t− 3)
(2k(k + 1)

k + 3
+

4(k + 1)
k + 5

+
2k
3

)
+ 2(r + s + t− 1).

In order to discover a generic formula for IS, we will now examine applications of
the bicyclic graph in chemistry, such as polycyclic alkanes, as seen in Figure 7. In order to
produce numerous rings, two or more cycloalkanes are linked together to form polycyclic
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alkanes, which are molecules. The carbons of cycloalkanes are organized in the shape of a
ring, making them cyclic hydrocarbons. Additionally, saturated cycloalkanes have single
bonds between all of the carbon atoms that make up the ring (no double or triple bonds).

Figure 7. Molecular graph of polycyclic alkane.

Classes of alkanes with one hydrogen atom removed are referred to as the group of
alkyl or branches of alkyl. Its main equation is Cn H2n+1. It will include the branches of
alkyl if n is larger than or equal to 1. A novel kind of bicyclic chemical graph is created
when two separate chemical compounds are joined as cycloalkanes by an alkyl branch.

The molecular graph for the bicyclic chemical graphs is given by the symbol CRi
n,m,

where n, m and r are the number of carbon atoms. The IS invariant connected to bicyclic
chemical networks CRi

n,m is given by the following theorem.

Theorem 12. Let n, m, r be a positive integer such that n, m ≥ 3,r ≥ 1. Then IS(CRi
n,m) =

18(n+m+r−1)
5 .

Proof. There are two different kinds of edges in the bicyclic chemical graphs CRi
n,m. In this

graph, we will first mark each edge as follows:

(i) In the first kind, there are two vertices with the same degree of four on each of
n + m + r− 1 edges.

(ii) In the second kind, there are two vertices of degree one and degree four that are
incident on edges with the value 2(n + m + r− 1).

Let Q′ij be the set of all edges with the degree of end vertices i, j, that is, Q′ij = {xy ∈
E(CRi

n,m)|λC
Ri
n,m

(x) = i, λ
C

Ri
n,m

(y) = j}. Let q′ij be the number of edges in Q′ij. From the

structure of CRi
n,m, it is clear that q′4,4 = n + m + r− 1 and q′1,4 = 2(n + m + r− 1). Thus,

IS(CRi
n,m) = ∑

xy∈E(C
Ri
n,m)

λ
C

Ri
n,m

(x)λ
C

Ri
n,m

(y)

λ
C

Ri
n,m

(x) + λ
C

Ri
n,m

(y)

= q′4,4

(4× 4
4 + 4

)
+ q′1,4

(1× 4
1 + 4

)
=

18(n + m + r− 1)
5

.

Let CRs
n,r,m be a bicyclic graph connected to a certain class of chemical compound’s

molecular graph. This class’s molecular structure is created by combining two distinct
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cycloalkanes of lengths n and m with an alkyl branch of length r. We create a new class of
bicyclic chemical graphs and the molecular graph CRs

n,r,m that represents them by adding
branches of alkyl Rs to each hydrogen atom.

Theorem 13. Let r and s be positive integers such that r ≥ 3 and s ≥ 1. Then, IS(CRs
n,r,m) =

2(2s+1)
5

(
9(n + m + r)− 10s + 1

)
.

Proof. We have 2(n + m + r− 1) branches in the bicyclic graph CRs when we consider its
structure. First, we shall designate each branch’s margin as follows:

(i) The branch of Rs has 3s edges, 2s + 1 of which have two vertices, the first of degree 1
and the second of degree 4. Two vertices of degree 4 are also present in the remaining
s− 1 edges.

(ii) We also have branches of Rs with vertices of two cycles and a connecting route,
each with two vertices of the same degree 4, and 2(n + r + m − 1) edges linking
those branches.

(iii) The connecting path for all of the edges in this instance has two vertices of the same
degree 4. We also have n + m + r + 1 of edges that formed two cycles.

Let Q′′ij be the set of all edges with the degree of end vertices i, j, that is, Q′′ij =

{xy ∈ E(CRs
n,r,m)|λCRs

n,r,m
(x) = i, λCRs

n,r,m
(y) = j}. Let q′′ij be the number of edges in Q′′ij.

From the structure of CRi
n,m, it is clear that q′′1,4 = (4s + 2)(n + m + r − 1) and q′′4,4 =

(2s + 1)(n + m + r)− 2s + 1. Thus,

IS(CRs
n,r,m) = ∑

xy∈E(CRs
n,r,m)

λCRs
n,r,m

(x)λCRs
n,r,m

(y)

λCRs
n,r,m

(x) + λCRs
n,r,m

(y)

= q′1,4

(1× 4
1 + 4

)
+ q′4,4

(4× 4
4 + 4

)
=

8(2s + 1)(n + m + r− 1)
5

+ 2(2s + 1)(n + m + r)− 4s + 2

=
2(2s + 1)

5

(
9(n + m + r)− 10s + 1

)
.

8. Conclusions

To create quantitative structure–activity relationships (QSAR), quantitative structure–
property relationships (QSPR), and quantitative structure–toxicity relationships, topological
indices (TI) are often utilized as molecular descriptors (QSTR). We have demonstrated in
the present study that the TIs created are crucial for assessing the network data present
in pandemic trees. The graph theoretical methods described here can also help with a
variety of predictions about the dynamics of the ongoing epidemic. Last but not least, we
calculated the degree-based entropy of the pandemic trees and the associated networks.
These results significantly increased our understanding of how serious the continuing
COVID-19 pandemic scenario is.
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