
Citation: Tang, H.; Wang, J.; Wang, L.

Mining Significant Utility

Discriminative Patterns in

Quantitative Databases. Mathematics

2023, 11, 950. https://doi.org/

10.3390/math11040950

Academic Editor: Yumin Cheng

Received: 16 December 2022

Revised: 25 January 2023

Accepted: 8 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Mining Significant Utility Discriminative Patterns in
Quantitative Databases
Huijun Tang 1,2, Jufeng Wang 1,* and Le Wang 3

1 Faculty of Finance and Information, Ningbo University of Finance & Economics, Ningbo 315175, China
2 Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China
3 Faculty of Digital Technology and Engineering, Ningbo University of Finance & Economics,

Ningbo 315175, China
* Correspondence: wjf@nbt.edu.cn

Abstract: Drawing a discriminative pattern in quantitative datasets is often represented to return a
high utility pattern (HUP). The traditional methods output patterns with a utility above a pre-given
threshold. Nevertheless, the current user-centered algorithm requires outputting the results in a
timely manner to strengthen the interaction between the mining system and users. Pattern sampling
can return results with a probability guarantee in a short time, and it could be a candidate technology
to mine such discriminative patterns. In this paper, a novel approach named HUPSampler is proposed
to sample one potential HUP, which is extracted with probability significance according to its utility
in the database. HUPSampler introduces an interval constraint on the length of HUP and randomly
extracts an integer k according to the utility proportion firstly; then, the HUPs could be obtained
efficiently from a random tree by using a pattern growth way, and finally, it returns a HUP of length k
randomly. The experimental study shows that HUPSampler is efficient in regard to memory usage,
runtime, and utility distribution. In addition, case studies show that HUPSampler can be significantly
used in analyzing the COVID-19 epidemic by identifying critical locations.

Keywords: high utility pattern; sampling; quantitative database; COVID-19

MSC: 68-04

1. Introduction

Pattern Mining is one of the key technologies of big data analysis [1–3]. HUP mining
is used to discover patterns in quantitative databases whose utilities are bigger than a pre-
given utility threshold. HUP has utility discriminative characteristics, and many algorithms
have been proposed for mining kinds of HUP types in quantitative databases, including
traditional high utility itemsets mining [4], frequent high utility itemsets mining [5], cross-
level high utility itemsets mining [6], etc.

Different from traditional frequent pattern mining, mining HUP seems more complex
because HUP mining focuses on both internal and external utility factors of itemsets rather
than their frequency. In addition, downward closure property [4], which is known as
an effective strategy in frequent pattern mining for reducing the mining computations,
cannot be referenced in the HUP mining process. In order to achieve the goal of mining
HUPs more efficiently, some algorithms have been introduced to process such problem,
including ULBMiner [7], FHM [8], D2HUP [9], EFIM [10], HUI-Miner [11], FHM+ [12], etc.
However, it is important to note that all these algorithms return the same HUPs under a
pre-given utility parameter. Therefore, the difference between such algorithms is not their
output, but how each algorithm finds the results; most of the algorithms focused on mining
improvement of time-space efficiency.

It will take huge computations to mine HUPs on large datasets. A feasible method
is to extract only a sample of the data since the computation of mining algorithms based

Mathematics 2023, 11, 950. https://doi.org/10.3390/math11040950 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11040950
https://doi.org/10.3390/math11040950
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11040950
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11040950?type=check_update&version=1

Mathematics 2023, 11, 950 2 of 18

on the sample could be greatly reduced. Several size-sampling methods have been pro-
posed. Riondato and Upfal present a progressive sampling method under the control of
VC dimension [13] or Rademacher averages [14] to get the approximate frequent items,
Djenouri et al. [15] use the heuristics method to obtain the sampling size. Parthasarathy [16]
proposes progressive sampling-based algorithms based on frequency constraints, which
determine the stopping size. Many effective data structures (such as pattern trees [17], link
lists [18], header tables [19], etc.) are also used to search the approximate results based on
sampling theory. The biggest challenge for sampling-based methods is how to ensure the
effectiveness of the results obtained on the sample set. Some useful methods are utilized to
settle such problems. Interval estimation is used to mine approximate association rules [20]
or frequent itemsets [21] based on sample theory. Bashir [22] uses the strategy of inequality
control to guarantee the results for frequent itemsets mining. Yan Chen [23] first introduces
Hoeffding’s inequality and Chebyshev’s inequality [24] to mine approximate HUPs, but its
probability-bound guarantee may be relatively loose.

These sampling methods, which usually return an effective sample size, can be sum-
marized as firstly reasoning an integer size with sample theory, and then mining-related
HUPs based on this size by probability guarantees to ensure the significance of sample-
based mining results. The progressive sampling method does not fix the sample size and it
relies on bounding the stopping condition of the sample. The computational complexity of
progressive sampling may be related to the characteristic of the dataset (dense or sparse),
which cannot completely ensure outputting patterns timely. More importantly, recently,
user-centered pattern mining algorithms have become a new research trend [25–27], requir-
ing that the generated patterns are not only timely but also diversified. All the complete
mining methods, which return exact HUPs cannot finish the task of abstracting HUP in a
short response time. Fixed size-based sampling methods may still be time-consuming, as
they only extract a size with accuracy bound on the whole dataset. For example, on the
chess dataset [28], such a method takes more than 106 s under a 90% probability guarantee
and more than 104 s under a 50% probability guarantee; the size-based method cannot
meet our goal of real-time interaction between the patterns and the users. Recently, some
advanced sampling algorithms are not going to return the pattern set that is based on the
user’s requirements, and they just return one pattern that is discriminative with high prob-
ability. Algorithm CSSAMPLING [29] extracts sequential patterns randomly based on the
length constraints of the patterns. The sampling patterns returned by such an approach are
according to the probabilities of frequency. Firstly, according to the proportion of frequency,
draw one transaction randomly, and then return a pattern randomly which is proportional
to its frequency in the transaction extracted before. HAISampler [30] considers the problem
of the pattern drawing with utility. It outputs the patterns, which are proportional to their
average utility in the transaction. Unfortunately, it can indeed return results in a relatively
short time, but the returned results may not be HUP, which provides research inspiration
for us to pursue returning one HUP in a short time.

In this study, we propose HUPSampler, which returns a HUP randomly according
to the utility proportion and can meet the requirements of users, returning the results in
a short time and strengthening the interaction between the users and the mining system.
Meanwhile, it can present a set of varied patterns in a short time so as to have a tight
interaction between the two parts. Such a method has hitherto been considered, and it
relies on a two-phase procedure.

In Step 1, two positive integers m and M (m < M) are given by the users; we draw
a length k according to the utility proportion of the patterns of length k. Firstly, for each
length in the interval of [m, M], we can obtain the total utility of patterns of each length
by scanning the dataset once based on an efficient tree structure, and then an integer k is
drawn randomly according to the utility probability of patterns with length k.

In Step 2, we randomly draw a HUP of length k which is obtained by Step 1. Firstly,
the HUP set of length k is efficiently mined from the tree established in Step 1. This number

Mathematics 2023, 11, 950 3 of 18

k may be a most probable length in the interval of [m, M] according to the utility proportion.
Then, we output one HUP of length k uniformly so as to reflect diversity in each interaction.

The rest of this paper is as follows. Section 2 defines relevant terms. Section 3 gives our
corresponding algorithm HUPSampler. Section 4 shows experimental results, and Section 5
gives conclusions.

2. Preliminaries and Problem Statement

A transactional dataset D = {T1, T2, T3, . . . , Tn}, Td is one transaction with unique
identification d. There are n unique items I = {i1, i2, . . . , in}. Td may contain several items
in I and its corresponding number, which is donated as q (ij, Td), e.g., T1 = {(B, 4) (C, 3) (B,
3)} in Table 1. An item ij also has a profit p (ij), e.g., p (A) = 2 in Table 2. The notations of
this paper are summarized in Table 3.

Table 1. An example of a transactional dataset.

Transaction

T1 (B, 4) (C, 3) (E, 3)
T2 (A, 1) (C, 4) (F, 10)
T3 (A, 4) (B, 3) (E, 2) (F, 6)
T4 (B, 1) (D, 1)
T5 (A, 3) (B, 3) (C, 2) (D, 1) (E, 2)
T6 (A, 3) (C, 2) (D, 1)

Table 2. Profits.

Item A B C D E F

Profit 2 5 4 6 10 1

Table 3. Notations.

Symbol Definition

HUP High utility pattern
HUPK High utility pattern of length k

D Transactional Dataset
Td dth transaction in D

HUP[m, M] Set of patterns with length in [m, M]
MHUPK Algorithm of mining HUPK
TU[m, M] Sum list of transaction utility with length in [m, M]

TWU Transaction-weighted utility value of D
RTWUK The maximum utility of patterns of length k in D

TUk Sum of transaction utility of length k
U(X) Utility of pattern X
U(Td) Utility of transaction Td

δ Minimum utility threshold
ID-tree A utility tree

m Minimum lengthof HUP
M Maximum length of HUP

Definition 1. U (ij, Td) is defined as utility value of ij in Td, and

U(ij, Td) = p(ij)× q(ij, Td) (1)

In Tables 1 and 2, U (B, T1) = 5 × 4 = 20, U (C, T1) = 3 × 4 = 12, and U (E, T1) = 3 × 10 = 30.

Definition 2. U (X, Td) is defined as utility value of X in Td, and

Mathematics 2023, 11, 950 4 of 18

U(X, Td) =

 ∑
ij∈X

U(ij, Td), i f X ⊆ Td

0 else
(2)

In Tables 1 and 2, U ({BC}, T1) = 32, U({BE}, T1) = 50.

Definition 3. U (X) is defined as the utility of itemset X in D, and

U(X) = ∑
Td∈D∧X⊆Td

U(X, Td) (3)

In Tables 1 and 2, U ({CE}) = U ({CE}, T1) + U ({CE}, T5) = 42 + 28 = 70.

Definition 4. TU (Td) is defined as the utility value of transaction Td, and

TU(Td) = ∑
ij∈Td

U(ij, Td) (4)

In Tables 1 and 2, TU (T4) = U (B, T4) + U (D, T4) = 5 + 6 = 11.

Definition 5. TU is defined as utility value of D, and

TU = ∑
Td∈D

TU(Td) (5)

In Tables 1 and 2, TU = 62 + 28 + 49 + 11 + 55 + 20 = 225.

Definition 6. TWU(X) is defined as transactional weighted utility of X, and

TWU(X) = ∑
Td∈D∧Td⊇X

TU(Td) (6)

Definition 7. MinU is defined as the minimum utility value based on a threshold δ, which is known
as a user-specified percentile of total transaction utility values of the given dataset D, and

MinU = TU × δ (7)

Definition 8. X is a HUP if U(X) ≥MinU. A HUP of length k is denoted as HUPK.

Property 1. For a pattern X, if TWU(X) < MinU, X will not be a HUP.

Proof. TWU (X) ≤ MinU. That is to say, the sum of transaction utility of X is less than
MinU, U (X) ≤ TWU (X), X will not be a candidate. �

Definition 9. TUK (Tw, k) is defined as the maximum sum of utility of k items in Tw, and

TUK(Tw, k) =

{
max(∑k

j=1 U(xij , Td)
∣∣∣xij ∈ Tw) i f |Tw|≥ k

0, else
(8)

In Tables 1 and 2, TUK (T1,3) = max (U (BCE, T1,)) = max (62) = 62.

Definition 10. TUK (X, Tw, k) is defined as maximum utility in Tw of length k containing X, and

TUK(X, Tw, k) =
{

U(X, Tw) + TUK(Tw − X, k−|X|) i f X ⊆ Tw∧|Tw|≥ k
0, else

(9)

In Tables 1 and 2, TUK ({C}, T1, 2) = U (C, T1) + TUK({T1 − {C}, 1) = 12 + max (U (B, T1),
U (E, T1)) = 12 + max (20, 30) = 42.

Mathematics 2023, 11, 950 5 of 18

Definition 11. RTWUK (X, k) is defined as the maximum utility of length k containing X in
D, and

RTWUK(X, k) = ∑
Tw∈D∧Tw⊇X

TUK(X, Tw, k) (10)

In Tables 1 and 2, RTWUK ({E}, 2) = TUK ({E}, T1, 2) + TUK ({E}, T3, 2) + TUK ({C}, T5,
2) = 50 + 35 + 35 = 120.

Definition 12. X is considered as a candidate of HUPK if its RTWUK < MinU.

The detailed instructions of Definitions 9–12 can be found in Ref. [31], and we use
such a RTWUK property to draw a HUP randomly.

We aim to randomly extract a HUP according to the utility proportion. Based on
the pre-given two parameters m and M, HUP[m, M] is donated as the set of all patterns
with length in the interval [m, M]. We draw a HUP S with a significance-based utility
discriminative value P (S) in D, i.e.,

P(S) =
U(S)

∑
S′∈HUP[m,M]

U(S′)
(11)

U (B) = 22, U (C) = 44, if m = 1, M = 1, our objective is to develop a sampling method such
that the probability to draw C is two times more than the that of extracting B.

3. Two-Phase Sampling Procedure
3.1. Overview of the Procedure

We are going to sample a HUP proportionally to its utility in the length internal of [m,
M] based on a two-phase procedure in [29,30]. HUPSampler returns a high utility pattern
of length between m and M. The whole procedure of the HUPSampler could be seen in
Algorithm 1.

Algorithm 1: HUPSampler

Input: D: Dataset
[m, M]: the user-specified length interval
δ: minimum utility threshold
Output: a random HUP
//Step 1: Sampling an integer k
1. Create an ID-tree by scanning D once.
2. For each integer j in [m, M], calculate TUj, TU[m, M] and TU based on ID-tree
3. Draw an integer k in [m, M] based on the utility distribution TUk~TU[m, M]
//Step 2: Sampling a HUP
4. Create an ID-tree of RTWUK with random item sequence
5. Randomly return a HUP of length k with utility > δ · TU based on ID-tree

For calculating the utility of TUj (j = m, m + 1, . . . , M), by scanning D, we first establish
a novel tree structure ID-Tree (Line 1), which stores compressed original data as well as
pattern indexing information. The same items of the transactional data are compressed
to the same node. When each transaction is added to the ID-tree, leaf-nodes record the
utility of the candidates, TUj is calculated by a pattern growth method, TU[m, M] could be
calculated cumulatively (Line 2), and we can draw integer k randomly in accordance with
the probability of TUj/TU[m, M] (Line 3). In the second phase, we randomly output a HUP
of length k from D. Firstly, a tree with a random item sequence by the RTWUK proportion
of utility is established (Line 4). Then, we draw one HUP of length k randomly based on
the new tree, and once a HUP is satisfied, we output such a HUP in a timely manner, and
the pursuit procedure is done (Line 5).

Mathematics 2023, 11, 950 6 of 18

3.2. ID-Tree for Drawing Integer k
3.2.1. Structure of ID-Tree

For storing the sequence information in an ID-tree, each node Nd contains three
ordinary fields:

• Nd.name records the name of the item in Nd;
• Nd.parent records the parent of Nd;
• Nd.children records the children of Nd.

The leaf nodes are also known as tail nodes, and to each tail node in the tree, there
exists a path from the tail node to the root node. The items in the path could be known as
an itemset, and it contains the following fields:

• Nd.piu records the utility of the items in the path which is from Nd to the root node.
And it can be visited by the indexes of the nodes;

• Nd.bu saves the utility list of base-item which contains the utility of Nd and could be
known as a sub set of the path from Nd to the root node.

All patterns with required lengths could be known in the ID-Tree. That is to say, with
one scanning, it could be known that the path from nodes in leaf node to the root store
HUPs of any length. Based on the data in Tables 1 and 2, Figure 1 shows the creation of the
ID-tree. The right most node D is a tail node; 8, 6, 6 on the node means the utilities of items
C, A, D, respectively. They are sorted by the descending TWU of the items.

Figure 1. ID-tree constructed from the data in Tables 1 and 2.

3.2.2. ID-Tree Construction

An ID-Tree is established by scanning the dataset once. The pseudocode can be seen
in Algorithm 2. By scanning transactions in D, we can calculate the TWU of the items in
header table H, and they can be sorted by descending TWU. For an empty ID-tree, the items
in each transaction, which are sorted as the items in H, can be added to the tree, and the tail
node to the root consists of a path. The utilities of items in the path could be known in the
list of the tail node.

We take the data in Tables 1 and 2 as an example to demonstrate the tree creation
process which could be known in Figure 2. The header table in Figure 2a consists of
two parts, which are TWU and the link pointer. With one scan, we create the header table
H, sort the items in H by descending order, add T1 to the tree in the same descending order,
and save the utility of path in leaf node such as ‘C’ (20, 30, 12); in Figure 2b, ‘C’ is the
leaf node, and the list shows the utility of items in this path. For the items in the header
table, the link pointer is designed to draw a pointer, which is linked to the tail nodes of
the tree, and by link point, the nodes can be visited conveniently. Adding each transaction
to the tree sequentially, the tree after processing the second transaction T2 can be seen in
Figure 2c,d indicates the result after adding the third transaction. In the process of addition,
if the transaction path already exists in the tree, you only need to add the corresponding
utility. The result after adding all transactions to the tree is shown in Figure 2e.

Mathematics 2023, 11, 950 7 of 18

Figure 2. A case of creating a tree and a header table from the data in Tables 1 and 2.

3.2.3. Calculating TU[m, M] and Drawing Integer k Proportionally

The specific process of TU[m, M] calculation is shown as CalculateTU in Algorithm 3.
Based on the ID-tree, we are going to calculate TUj (j = m, m + 1, . . . , M) based on the tree
returned by Algorithm 2. It starts from each tail node of the ID tree (Line 1). The combined
itemset from the tail to the root whose length is in [m, M] could be known in Path (P, m, M)
(Line 2), and we use a dictionary DC to accumulate the utility with each length in [m, M]
(Lines 3–5), then pass the utility list to the parent node (Lines 7–14) and delete the current
item from the tree (Line 15). For a new T and H, we recursive call CalculateTU until all
items in the original H are processed (Line 18).

Algorithm 2: CreateTree

Input: D: Dataset
Output: a ID-tree T
1. For each transaction Td of D do
2. For each item X in Td do
3. Calculate H.X.TWU
4. End For
5. End For
6. Initialize a Tree T with an empty root node, initialize a Table H with TWU descending order
7. T = root()
8. For each transaction Td of D do
9. Insert Td to T with the same descending order of H
10. Add utility to the leaf node
11. Add the links
12. End For
13. Return T

Mathematics 2023, 11, 950 8 of 18

Algorithm 3: CalculateTU

Input: T: a tree
H: a header table
m: Minimum length
M: Maximum length
Dictionary DC
Output: TUj (j = m, m + 1, . . . , M)
1. For each tail node P in H do:
2. base-itemset = Path (P, m, M)
3. If len (base-itemset) ≥ m and len (base-itemset) ≤M then
4. DC [len (base-itemset)] + =U (base-itemset)
5. End If
6. End For
7. For each tail node P in H do:
8. If P.parent.bu = NULL then
9. P.parent.bu = P.bu
10. P.parent.piu = P.piu
11. else:
12. P.parent.bu + =P.bu
13. P.parent.piu + =P.piu
14. End If
15. Remove P from T
16. End For
17. Create a header table subH
18. CalculateTU (T, subH, m, M,DC)

For the data in Tables 1 and 2, as an example when m = 2 and M = 5, firstly processing
the first bottom tail node ‘F’, there are two paths where ‘F’ is the leaf node, <B,E,A,F> and
<C,A,F>, thus the number and utility of patterns with ‘F’ and length in (2,5) could be easily
calculated. For example, to the path<B,E,A,F>, there are three patterns of length 2 ({BF},
{EF}, and {AF}, respectively), three patterns ({BEF}, {BAF}, and {EAF}) of length 3, and one
pattern ({BEAF}) of length 4. Then, tail nodes ‘D’ and ‘C’ are processed based on the same
procedure, and TUj (j = 2, 3, 4, 5) can be accumulated continuously. After processing these
three tail nodes, the ID-tree T is updated according to the transition of the tail node; the tail
node will pass the utility to its parent if the parent exists. Based on Figure 2, the updated
ID-tree can be seen in Figure 3. There are two lists in the rightmost item ‘A’. As two leaf
nodes pass the utility to ‘A’, the TWU of each item should be re-calculated. According to
the new ID-tree, Algorithm 3 will be recursively called until no pattern that appears on the
tree meets the length requirement.

Figure 3. Update of ID-tree from the data in Tables 1 and 2.

According to the new tree in Figure 3, the final result of TUj (j = 2, 3, 4, 5) could be
known in Table 4. It is clearly known that the integer k = 2 or 3 may be selected with high
probability due to its high utility.

Mathematics 2023, 11, 950 9 of 18

Table 4. TUj of data in Tables 1 and 2 when m = 2 and M = 5.

Length j TUj TU[2,j]

2 570 570
3 587 1157
4 269 1426
5 55 1481

3.2.4. Draw a HUP Uniformly

In this section, we will draw a HUP randomly based on the integer k extracted by
Section 3.2.3. We propose an algorithm, called MHUPK (Mining HUPK) with RTWUK,
based on Definitions 9–11.

MHUPK is going to pursue HUPKs, and it is also processed based on the tree structure.
However, unlike the ID-tree, we look for HUPs of length k with RTWUK constraints,
and because RTWUK < TWU, the computation of MHUPK could be reduced greatly.
Additionally, we save RTWUK in the header table, which could be known as the updating
of TWU. The process of MHUPK can be identified as Algorithm 4. The biggest difference is
that we use RTWUK in the header table, and the items in the new header table are sorted
randomly by the proportion of RTWUK.

If MinU = 30 and we are randomly drawing k = 3 from Table 4, taking the data in
Tables 1 and 2 and based on the tree nodes in Figure 1, the RTWUK value of each item
could be known in Table 5.

Table 5. RTWUK of the items when k = 3.

Item A B C D E F

RTWUK 132 148 143 61 150 69

To output an HUP of more than 30 randomly, we are going to establish a new tree by
sorting the item randomly according to the proportion of RTWUK from small to big. That
is to say, since the RTWUK of item ‘B’ is the biggest, it is ranked last by a high probability.
The random tree with RTWUK may be in Figure 4.

Figure 4. A case of creating a random tree and a random header table with RTWUK.

MHUPK is going to return one HUPK based on the random tree and header table in
each iterative calculation. It is important to find the HUPs of certain base-items whose
length are k, and the pattern whose length is less than k could be a candidate. A sub-tree
and sub-table are established according to the pattern produced growth method. We visit
the new sub table and sub tree recursively until one pattern is satisfied. The steps of
MHUPK could be known in Algorithm 4.

Mathematics 2023, 11, 950 10 of 18

Algorithm 4: MHUPK

Input: H: a random header table
T: a random tree with RTWUK corresponding to H.
k: length of pattern
MinU: minimum utility value
base-item
Output: A random HUP of length k
1. For each item P in H (with a bottom-up sequence) do:
2. If H.P.RTWUK ≥MinU then
3. base-item = base-item ∪{P}
4. If |base-item| = k and H.P.utility ≥MinU then
5. Break and Return base-item
6. End If
7. If |base-item| < k then
8. Create SubHeader SubH and SubTree SubT
9. MHUPK (subT, subH, k, MinU, base-item)
10. End If
11. Remove P
12. End If
13. End For

Algorithm 4 is meant to mine one HUP from a tree with RTWUK. It consists of
five steps: (1) For item X in the header table, if the RTWUK of X is less than MinU, such
an item node should be removed from the tree, and we can begin to deal with the next
item in the header table; otherwise, continue to carry out the next step. (2) Add the
current processing item to the variable base-item, which is used to save the growth pattern,
and the initialization of the base-item is null (Line 3). (3) When the base-item satisfies
two conditions: one is that its length is k, and the other is that its utility is more than MinU,
it could be discovered as a HUPK (Lines 4–6). (4) The sub header table and sub tree are
created when then length of base-item is not more than k, and the algorithm will pursue
HUPK based on the new header table and tree. This shows the idea of pattern growth,
and one HUPK could be obtained by recursion (Lines 7–10). (5) When the current item is
completed, it will be removed from the header table (Line 11), the next item in the original
table will be processed until one HUPK is satisfied.

Figure 4 shows the corresponding header table and tree based on RTWUK, and we
are going to output one HUPK from the tree. The item in the header table is randomly
produced according to the RTWUK proportion, and item ‘E’ may be the last item in the
table since it has the biggest RTWUK value. It can generate the items one by one, and
the items in the random header table are sorted by the generation sequence of the items.
Here, we assume that the generated header table is as shown in Figure 4, and we firstly
process the last item ’E’ in the header table. (1) It could know that the RTWUK of ‘E’ is
150, which is more than MinU. The item ‘E’ should be added to the set of the base-item,
i.e., base-item = {E}. (2) According to the procedure of Algorithm 4, to the length of the
base-item, which is less than 3, it will produce a corresponding random sub header table,
which may be acted as Figure 5a. Thus, the corresponding sub-tree could be established
by Figure 5b according to the new order. All the items could be added to the sub tree if its
TWUK is more than MinU. (3) Continue to access the new table and tree. If the length of the
new pattern has not reached 3, generate new random tables and the corresponding trees. In
the mining process, once a pattern with a length of 3 and a utility meeting the requirements
is found, it is outputted as HUPK, and the procedure is finished. Figure 5b is the sub tree
of item ‘E’, and Figure 5c,d are the sub trees of itemset ‘BE’ and ‘CE’, respectively. Table 6
shows HUPs of length 3 based on the data in Tables 1 and 2, and we can draw one HUP
with high probability such as {BCE} since it may be found earlier than other HUPs.

Mathematics 2023, 11, 950 11 of 18

Figure 5. A case of creating a sub tree with RTWUK.

Table 6. HUPs of length 3 and MinU ≥ 30.

Rank HUP Utility

1 {BCE} 105
2 {ABE} 84
3 {BEF} 41
4 {BDE} 41
5 {ACD} 40
6 {ACE}, {CDE} 34
7 {ADE} 32

4. Experimental Study

In this section, we evaluate the performance of the proposed algorithm HUPSampler
on real datasets, including Chainstore, Pumsb, Retail, Connect, Mushroom, and Chess. All
the datasets are from SPMF [28]. The utility setting is consistent with the existing HUP
mining literature [32,33]. The details of these datasets are provided in Table 7, and the
length constraint is initialized as (1,10). The experimental platform is configured as follows:
Windows 10 operating system, 2G Memory, Intel (R) Core (TM) i3-2310 CPU@2.10 GHz.

Table 7. Dataset characteristics.

Dataset Distinct Items (#) Average Length Transactions (#)

Chainstore 46,086 7.2 1,112,949
Pumsb 2111 74 49,046
Retail 16,470 10.3 88,162

Connect 129 43 67,557
Mushroom 119 23 8124

Chess 76 37 3196

4.1. Running Time

Table 8 shows the average running time and maximum memory consumption of
100 different runs on the six datasets under different minimum utility thresholds. HUP-
Sampler can obtain the results in a short running time on each dataset. Since the numbers

Mathematics 2023, 11, 950 12 of 18

of HUPs generated under different thresholds are not the same, the smaller the threshold is,
the more the number of HUPs will be generated. However, HUPSampler can always return
patterns in a few seconds. For example, for each support threshold on Pumsb, Mushroom,
and Chess, the running time of the algorithm HUPSampler is always less than 25 s. On
sparse datasets such as Retail, the running time does not grow much; the sampling results
can be obtained in less than 50 s. The HUPSampler only outputs one HUP, which may be
with the largest utility proportion in the original transactional datasets, and the running
time can be reduced greatly.

Table 8. Running time of HUPSampler under different utility thresholds.

Datasets Minimum Utility
Threshold (%) Running Time (s) Memory Usage (MB)

Chainstore

0.015 58.4 70.1
0.02 32.6 53.8

0.025 25.6 35.6
0.03 13.5 21.8

0.035 5.3 15.8

Pumsb

5 23.5 52.5
6 18.5 30.7
7 15.3 21.5
8 10.5 11.5
9 4.9 10.4

Retail

0.05 43.3 30.6
0.06 33.5 21.6
0.07 29.5 15.6
0.08 19.6 11.7
0.09 13.4 10.5

Connect

14 36.5 41.3
16 30.6 40.6
18 28.7 40.1
20 26.5 38.7
22 24.3 36.5

Mushroom

2.0 22.2 38.8
2.2 14.5 36.9
2.4 9.9 34.4
2.6 8.4 30.4
2.8 7.1 26.1

Chess

20 6.7 23.9
22 5.9 22.2
24 4.0 21.9
26 3.6 13.8
28 2.8 10.7

To further illustrate the effectiveness of the algorithm, HUPSampler is compared with
three efficient HUP mining methods, which are EFIM [10], FHM+ [12], and ULBMiner [7],
respectively. The running time results are shown in Figure 6. As we know that the
running time of HUPSampler is significantly lower than the others on any minimum utility
thresholds, we can clearly see that HUPSampler can draw HUP smoothly.

In view of the requirements for real-time returning of sampling results under different
sizes, we also analyzed the running time of the algorithm based on different data volumes.
As the amount of data increases, the running time of the algorithm increases by scanning
the dataset. However, our results show that HUPSampler can always return results in a
short time since it only outputs one HUP. Figure 7 shows the running time on datasets
Chainstore and Mushroom compared with other algorithms under the utility thresholds
of 0.04% and 2.5%, respectively. It is clearly seen that the performance of HUPSampler is
stable. The results on other datasets can also achieve the same effect.

Mathematics 2023, 11, 950 13 of 18

Figure 6. Running time comparisons of four algorithms.

Figure 7. Running time under different data size.

4.2. Memory Usage

From Table 8, we can clearly see that the memory consumption of HUPSampler is
always kept at a low level. Even with the constant reduction of the minimum utility
parameter, it can always return a result in a memory less than 100 MB, which greatly
improves the memory operation efficiency of the algorithm.

We also compared the memory consumption of HUPSampler with the three typical
effective algorithms mentioned above. The relevant comparison results are shown in
Figures 8 and 9, where Figure 8 returns the memory consumption under different minimum
utilities on six data sets. Figure 9 shows the running results under different data volumes on
ChainStore and Mushroom under the corresponding fixed minimum utility parameters. It
can be significantly shown that from both figures, the memory consumption of HUPSampler
has been greatly improved. For example, in Figure 8, when the minimum utility parameter
is set to 0.07% on the Retail, the memory consumption of the other three algorithms is
greater than 100 MB, while the memory usage of HUPSampler is only 15.6 MB. The same
conclusion can also be shown on the Chainstore and Mushroom in Figure 9 based on
different data sizes.

Mathematics 2023, 11, 950 14 of 18

Figure 8. Memory usage comparisons by four algorithms.

Figure 9. Memory usage under different data sizes.

4.3. Utility Distribution

Figure 10 returns the distribution of utility values for 100 runs under different mini-
mum utility parameters. The utility value of HUPSampler is well controlled. For example,
on Retail, the extraction times with utility greater than 1500 account for 92.5%, and on
Connect, the extraction times with utility greater than 300 account for 90.5%. This result
shows that our sampling method can relatively return patterns with high utility with high
time-space efficiency.

In addition, Table 9 shows the ratio of the HUPs comparison of HUPSampler to the
state-of-the-art algorithm ULBMiner, which returns all exact HUPs under length constraints
with utility thresholds of 0.025%, 7%, 0.07%, 18%, 2.4%, and 24%, respectively. Thanks to
our extraction mode, it can be seen that HUPSampler can return most HUPs under the
length constraints. For example, on Chainstore, HUPSampler returns more than 90% of
HUPs; the diversity of the return patterns could be guaranteed by the high probability with
low time-space computations.

Mathematics 2023, 11, 950 15 of 18

Figure 10. Utility distribution by HUPSampler.

Table 9. Ratio of HUPs by running HUPSampler 1000 times.

Dataset
Length Constraints

(10, 20) (10, 30) (10, 40) (10, 50) (10, 60) (10, 70)

Chainstore 0.913 0.933 0.934 0.954 0.964 0.966

Pumsb 0.892 0.912 0.923 0.925 0.931 0.931

Retail 0.873 0.895 0.904 0.905 0.912 0.921

Connect 0.852 0.874 0.883 0.883 0.893 0.902

Mushroom 0.812 0.823 0.835 0.836 0.846 0.875

Chess 0.823 0.832 0.843 0.851 0.861 0.863

4.4. Case Study

COVID-19 has seriously affected people’s lives [34]. The spread of the virus will be
accelerated in the crowd gathering environment. Once there are new cases, the best way
is to conduct epidemiological investigation and study the path trajectories of patients for
finding people associated with these locations who may be potential infectors. The path
information of patients is very important. Accurate identification of these key places is of
great significance to identify the high-risk areas with epidemic development, so as to make
corresponding prevention measures to control the spread of the epidemic.

We use the data obtained from http://wsjkw.hebei.gov.cn/html/yqtb/index_30.jhtml
(accessed on 10 December 2022). Such data is textual and contains the path trajectories
and location information of COVID-19 patients. The span time was from 3 January 2021
to 28 January 2021. A total of 698 cases were collected, involving 1361 locations. A path
example of an infected individual could be known as “Xiao Guo Zhuang, Shi Jia Zhuang
5th Hospital, Xin Le Hospital, Zhang Jia Zhuang”; it can be identified as a transaction in
Table 1. Here, the internal numbers and profits (importance) of the places cannot be known
like the data in Tables 1 and 2 can. Since we cannot give the number and profits of locations

http://wsjkw.hebei.gov.cn/html/yqtb/index_30.jhtml

Mathematics 2023, 11, 950 16 of 18

subjectively, the utility setting method in the literature [32,33] is adopted. The number
of places in the transactions (internal utility value) is a random integer less than 10 and
greater than 0; the external utility value (profits) of the item is also a randomly generated
value (greater than or equal to 0.01, less than or equal to 10.0). We use HUPSampler to get
the path with high utility. Table 10 shows the length and utility distribution by run the
algorithm 100 times when the minimum utility thresholds are 0.25, 0.5, and 0.7, respectively.
According to the 300 sampling results based on different utility thresholds, Table 11 shows
the top 10 single locations sorted by the average high utility (sum of utility/sampling
times). Such places may be high-risk and should be paid more attention. Some epidemic
prevention measures may be taken firstly in such places.

Table 10. Length proportion and utility distribution.

Minimum Utility
Threshold

Proportion
(k < 3)

Proportion
(3 ≤ k ≤ 5)

Proportion
(k > 5)

Average
Utility

0.25 23% 61% 16% 34.6

0.5 35% 57% 8% 134.4

0.75 12% 86% 2% 125.6

Table 11. Top 10 location combinations with high utility.

Top 10 Places with High Utility Average Utility

Xiao Guo Zhuang 212.6
Liu Jia Zuo 178.5

Shi Jia Zhuang 5th Hospital 126.4
Xin Le Hospital 87.6

Xiao Guo Zhuang Primary School 75.8
Gao Cheng Hospital 70.9
No. 7 Middle School 67.5

Hao Yun Lai Restaurant 60.8
Zeng Cun 58.6

Ou Jing Yuan 50.6

5. Conclusions and Feature Work

We introduce an efficient algorithm named HUPSampler to return HUP randomly
with high time-space efficiency. Such an algorithm could be divided into two parts. First,
it extracts an integer k proportionally to the utility based on a random length interval
determined by the users, and then it outputs a HUP of length k randomly. For calculating
one HUP of k in a short time, our approach uses a pattern growth method to output the
result in a timely manner based on a random tree structure. The experimental results on
real datasets demonstrate the feasibility and advantages of the method. A case study of
COVID-19 is also introduced to show the effectiveness and applicability of our approach.
There are several possible improvements, which could be done in the future. For example,
HUPSampler is designed for returning one HUP, so the randomly selected HUP may not
have utility representativeness when the transaction is homologous. In addition, if the
transaction is uncertain, that is, the transaction itself has a probability, the utility proportion
calculation method of the extracted pattern should also be different. We will investigate
these problems in our future work.

Author Contributions: Formal analysis, H.T. and L.W.; Methodology, H.T. and J.W.; Writing—original
draft, H.T. and L.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Social Science Foundation of China grant num-
ber 21BGL088.

Institutional Review Board Statement: Not applicable.

Mathematics 2023, 11, 950 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cheng, J.; Xie, Y.; Zhang, J. Industry structure optimization via the complex network of industry space: A case study of Jiangxi

Province in China. J. Clean. Prod. 2022, 338, 130602. [CrossRef]
2. Wang, E.T.; Chen, A.L. Mining frequent itemsets over distributed data streams by continuously maintaining a global synopsis.

Data Min. Knowl. Discov. 2011, 23, 252–299. [CrossRef]
3. Cheng, J.; Luo, X.W. Analyzing the land leasing behavior of the government of Beijing, China, via the multinomial logit model.

Land 2022, 11, 376. [CrossRef]
4. Tseng, V.; Shie, B.; Wu, C.; Yu, P. Efficient Algorithms for Mining High Utility Itemsets from Transactional Databases. IEEE Trans.

Knowl. Data Eng. 2013, 25, 1772–1786. [CrossRef]
5. Nguyen, H.; Le, N.; Bui, H.; Le, T. A new approach for efficiently mining frequent weighted utility patterns. Appl. Intell. 2022, 53,

121–140. [CrossRef]
6. Tung, N.T.; Nguyen, L.T.; Nguyen, T.D.; Fourier-Viger, P.; Nguyen, N.T.; Vo, B. Efficient mining of cross-level high-utility itemsets

in taxonomy quantitative databases. Inf. Sci. 2022, 587, 41–62. [CrossRef]
7. Duong, Q.H.; Fournier-Viger, P.; Ramampiaro, H.; Norvag, K.; Dam, T.L. Efficient high utility itemset mining using buffered

utility-lists. Appl. Intell. 2018, 48, 1859–1877. [CrossRef]
8. Fournier-Viger, P.; Wu, C.W.; Souleymane, Z.; Vincent, S. FHM: Faster high-utility itemset mining using estimated utility

co-occurrence pruning. In Foundations of Intelligent Systems, 1st ed.; Springer: Cham, Switzerland, 2014; pp. 83–92.
9. Liu, J.; Wang, K.; Fung, B. Direct Discovery of High Utility Itemsets without Candidate Generation. In Proceedings of the 2012

IEEE 12th International Conference on Data Mining (ICDM), Brussels, Belgium, 10–13 December 2012; pp. 984–989.
10. Souleymane, Z.; Fournier-Viger, P.; Jerry, C.; Lin, W.; Wu, C.W.; Vincent, S.T. EFIM: A fast and memory efficient algorithm for

high-utility itemset mining. Knowl. Inf. Syst. 2017, 51, 595–625.
11. Liu, M.; Qu, J. Mining high utility itemsets without candidate generation. In Proceedings of the 21st ACM International

Conference on Information and Knowledge Management, Maui, HI, USA, 29 October–2 November 2012; pp. 55–64.
12. Fournier-Viger, P.; Lin, J.C.; Dong, Q.; Dam, T. FHM+: Faster high-utility itemset mining using length upper-bound reduction. In

Proceedings of the International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems,
Berlin/Heidelberg, Germany, 2–4 August 2016; pp. 115–127.

13. Jenkins, S.; Walzer-Goldfeld, S.; Riondato, M. SPEck: Mining Statistically-significant Sequential Patterns Efficiently with Exact
Sampling. Data Mining Knowl. Disc. 2022, 36, 1575–1599. [CrossRef]

14. Pellegrina, L.; Cousins, C.; Vandin, F.; Riondato, M. McRapper: Monte-Carlo Rademacher Averages for Poset Families and
Approximate Pattern Mining. ACM Trans. Knowl. Discov. Data 2022, 16, 124. [CrossRef]

15. Djenouri, Y.; Comuzzi, M. Combining Apriori heuristic and bio-inspired algorithms for solving the frequent itemsets minin
problem. Inf. Sci. 2017, 420, 1–15. [CrossRef]

16. Pietracaprina, A.; Riondato, M.; Upfal, E.; Vandin, F. Mining top-k frequent itemsets through progressive sampling. Data Min.
Knowl. Disc. 2010, 21, 310–326. [CrossRef]

17. Lin, J.C.W.; Zhang, Y.; Zhang, B.; Fournier-Viger, P.; Djenouri, Y. Hiding sensitive itemsets with multiple objective optimization.
Soft Comput. 2019, 23, 12779–12797. [CrossRef]

18. Tseng, V.S.; Wu, C.W.; Fournier-Viger, P.; Yu, P.S. Efficient Algorithms for Mining Top-K High Utility Itemsets. IEEE Trans. Knowl.
Data Eng. 2016, 28, 54–67. [CrossRef]

19. Yun, U.; Ryang, H.; Ryu, K.H. High utility itemset mining with techniques for reducing overestimated utilities and pruning
candidates. Expert Syst. Appl. 2014, 41, 3861–3878. [CrossRef]

20. Zhang, C.; Zhang, S.; Webb, G.I. Identifying approximate itemsets of interest in large databases. Appl. Intell. 2003, 18, 91–104.
[CrossRef]

21. Gan, W.; Lin, J.C.W.; Zhang, J. Fast utility mining on sequence data. IEEE Trans. Cybern. 2021, 51, 487–500. [CrossRef]
22. Bashir, S.; Lai, D. Mining Approximate Frequent Itemsets Using Pattern Growth Approach. Inf. Technol. Control 2022, 50, 627–644.

[CrossRef]
23. Yan, C.; Aijun, A. Approximate Parallel High Utility Itemset Mining. Big Data Res. 2016, 6, 26–42.
24. Diego, S.; Leonardo, P.; Matteo, C.; Fabio, V. SPRISS: Approximating Frequent K-mers by Sampling Reads, and Applications.

Bioinformatics 2022, 38, 3343–3350.
25. Cheng, J. Analysis of the factors influencing industrial land leasing in Beijing of China based on the district-level data. Land Use

Policy 2022, 122, 106389. [CrossRef]
26. Han, Y.; Moghaddam, M. Analysis of sentiment expressions for user-centered design. Expert Syst. Appl. 2021, 171, 114604.

[CrossRef]
27. Yin, P.; Cheng, J. A MySQL-based software system of urban land planning database of Shanghai in China. CMES-Comp. Model

Eng. 2023, 135, 2387–2405. [CrossRef]

http://doi.org/10.1016/j.jclepro.2022.130602
http://doi.org/10.1007/s10618-010-0204-8
http://doi.org/10.3390/land11030376
http://doi.org/10.1109/TKDE.2012.59
http://doi.org/10.1007/s10489-022-03580-7
http://doi.org/10.1016/j.ins.2021.12.017
http://doi.org/10.1007/s10489-017-1057-2
http://doi.org/10.1007/s10618-022-00848-x
http://doi.org/10.1145/3532187
http://doi.org/10.1016/j.ins.2017.08.043
http://doi.org/10.1007/s10618-010-0185-7
http://doi.org/10.1007/s00500-019-03829-3
http://doi.org/10.1109/TKDE.2015.2458860
http://doi.org/10.1016/j.eswa.2013.11.038
http://doi.org/10.1023/A:1020995206763
http://doi.org/10.1109/TCYB.2020.2970176
http://doi.org/10.5755/j01.itc.50.4.29060
http://doi.org/10.1016/j.landusepol.2022.106389
http://doi.org/10.1016/j.eswa.2021.114604
http://doi.org/10.32604/cmes.2023.023666

Mathematics 2023, 11, 950 18 of 18

28. Fournier-Viger, P.; Gomariz, A.; Gueniche, T. Spmf: A java open source pattern mining library. J. Mach. Learn. Res. 2014, 15,
3389–3393.

29. Diop, A.; Giacometti, D.; Li, A.S. Sequential Pattern Sampling with Norm Constraints. In Proceedings of the IEEE International
Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 89–98.

30. Diop, L. High Average-Utility Itemset Sampling Under Length Constraints. In Proceedings of the 26th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Berlin/Heidelberg, Germany, 16–19 May 2022; pp. 134–148.

31. Wang, L. An Algorithm for Mining Fixed-Length High Utility Itemsets. In Lecture Notes in Computer Science, 1st ed.; Springer:
Cham, Switzerland, 2022; pp. 3–20.

32. Ahmed, C.F.; Tanbeer, S.K.; Jeong, B.S.; Lee, Y.K. Efficient Tree Structures for High Utility Pattern Mining in Incremental Databases.
IEEE Trans. Knowl. Data Eng. 2009, 21, 1708–1721. [CrossRef]

33. Li, Y.C.; Yeh, J.S.; Chang, C.C. Isolated items discarding strategy for discovering high utility itemsets. Data Knowl. Eng. 2008, 64,
198–217. [CrossRef]

34. Cheng, J.; Yin, P. Analysis of the complex network of the urban function under the lockdown of COVID-19: Evidence from
Shenzhen in China. Mathematics 2022, 10, 2412. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TKDE.2009.46
http://doi.org/10.1016/j.datak.2007.06.009
http://doi.org/10.3390/math10142412

	Introduction
	Preliminaries and Problem Statement
	Two-Phase Sampling Procedure
	Overview of the Procedure
	ID-Tree for Drawing Integer k
	Structure of ID-Tree
	ID-Tree Construction
	Calculating TU[m, M] and Drawing Integer k Proportionally
	Draw a HUP Uniformly

	Experimental Study
	Running Time
	Memory Usage
	Utility Distribution
	Case Study

	Conclusions and Feature Work
	References

