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Abstract: With increasing customer demand, industry 4.0 gained a lot of interest, which is based
on smart factories. In smart factories, robotic components are vulnerable to failure due to various
industrial operations such as assembly, manufacturing, and product handling. Timely fault detection
and diagnosis (FDD) is important to keep the industrial operation smooth. Previously, only the
unloaded-based FDD algorithms were considered for the industrial robotic system. In the industrial
environment, the robot is working under various working conditions such as speeds, loads, and
motions. Hence, to reduce the domain discrepancy between the lab scale and the real working
environment, we conducted experimentations under various working conditions. For that purpose,
an extensive experimental setup is prepared to perform a series of various experiments mimicking
the real environmental condition. In addition, in previous research work, various machine learning
(ML) and deep learning (DL) approaches were proposed for robotic arm component fault detection.
However, various issues are related to the DL and ML approaches. The ML models are problem-
specific, and complex in computations. The DL model needs a huge amount of data. The DL model
is composed of various layers that have not been thoroughly explored; as a result, the fault detection
model lacks a comprehensive explanation. To overcome these issues, the transfer learning (TL)
model is considered with the diverse experimental scenarios. The main contribution is to increase
the generalization capabilities of the robotic PHM in the context of previously available research
work. For that purpose, the VGG16 model is used because of its autonomous feature extractions
for fault classification. The data are collected under a variety of different operating conditions such
as loadings, speeds, and motion patterns. The 1D signal is converted to a 2D signal (scalogram) to
perform the TL model. The proposed approach shows effective fault detection performance and has
the capabilities of generalization under variable working conditions.

Keywords: fault detection; prognostic health management; variable working condition; bearing fault;
servomotor fault

MSC: 68T01

1. Introduction

The smart factory is evolving regularly because of high flexibility, deep integration,
dynamic reconfiguration, and massive volume of data. The smart factory is composed
of various advancements such as artificial intelligence (AI), big data analysis, Internet
of Things (IoT), industrial internet, and cloud computing [1,2]. One of the important
factors of smart factories is to boost productivity. Hence, it is mandatory to keep the
industrial operation smooth without the downfall of each component. Prognostic health
management (PHM) can be used to keep industrial operations running smoothly and
consistently. In PHM, data-based techniques are prominent because of the issues related to
the physics-based modeling [3].

Mathematics 2023, 11, 945. https://doi.org/10.3390/math11040945 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11040945
https://doi.org/10.3390/math11040945
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6353-6302
https://orcid.org/0000-0001-5109-1633
https://orcid.org/0000-0001-7057-5174
https://doi.org/10.3390/math11040945
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11040945?type=check_update&version=1


Mathematics 2023, 11, 945 2 of 14

Machine learning (ML) and deep learning (DL) algorithms have been utilized for the
PHM of different mechanical systems [2,4,5]. These techniques are composed of supervised
and unsupervised approaches. In supervised approaches, the labeled data are utilized for
fault classification; however, in the case of unsupervised approaches, the unlabeled data
can be used for fault detection [6–8]. According to ML approaches, handcrafted features
are extracted, and the feature space is then reduced by selecting the most prominent feature
using feature selection methods. Afterward, the selected feature can be used for fault
classification using various ML classifiers. For instance, a feature selection approach with
Gaussian Ant Lion optimizer (GALO) is integrated with the K-nearest neighbor (KNN) for
the fault detection and diagnosis (FDD) of rotating machines [9]. Lee et al. [10] presented
an FDD technique based on the feature variable dimensional coordination to reduce the
computational cost. Buchaiah et al. [11] studied the bearing FDD using an ML approach
based on the Bhattacharyya distance and SVM. Guo et al. [12] presented motor current
signature analysis (MCSA) for the FDD using the multi-sensor data, the improved cyclic
spectral covariance matrix (ICSCM), and the MCSA combined which completely sustained
the connectivity of the various sensors. The DL model has been used for the FDD because
of its robustness and ease in computational complexities as compared to the hand-crafted
features. Surendran et al. [13] proposed a DL model using a sailfish optimizer (SFO) to
optimize the hyperparameters for accurate FDD. Ma et al. [14] proposed an ensemble
DL-based FDD for the bearing system to overcome the generalization performance by
integrating different DL models with multi-objective optimizations. In addition, various
DL models have been proposed for the FDD of rotating machinery [15–17].

The robotic system, especially the six degree of freedom (DOF) robot, is the backbone of
the smart factory; hence, its PHM is mandatory to keep the industrial operations. Over the
years, various approaches have been used for robotic PHM; ferrography analysis (FA) [18],
vibration analysis (VA) [19], and acoustic emission analysis (AEA) [20,21]. However,
various issues are concerned related those conventional approaches, such as installation
of extra sensors, real-time fault detection, bulky working environment, implementation
issues, and financial expenditures, etc. To overcome these issues, the encapsulated system
of the robot motor current signature analysis (MCSA) is applied for the PHM analysis [22].
For instance, a feature engineering-based ML-model is proposed for the FDD of the robotic
rotate vector (RV) based on simple motion [23]. In addition, a discrete wavelet transform
(DWT) is used to analyze the electrical current data and infuse feature extraction and
selection for the fault classification based on ML classifier. The handcrafted features,
however, are inherently problematic, and the model lacks generalization capabilities. To
overcome the issue, a DL model is developed for the robotic FDD. In the proposed approach,
a deep wavelet scattering (DWS) is applied for unloaded robotic strain wave gear (SWG)
reducer using two different kind of motion with variable speed of operation [24]. The
proposed approaches show good performance for unloaded robotic reducer. However,
in the proposed algorithms only unloaded conditions are considered. In real industrial
scenarios, the robot is operating at various working conditions such as speeds, loads and
motions. Hence, it is needed to reduce the domain discrepancy between the lab scale
and actual situations. The extensive experimental setup is required to perform a series
of various experiments mimicking the real environmental condition and various loading
conditions. In addition, various issues are related to the DL approaches; the DL model
is made up of various layers which are not well explored, hence, the FDD model lacks
comprehensive explanation. The number of parameters and hyperparameters in deeper
networks is enormous, necessitating a large amount of labeled data, and computational
complexities [25]. To overcome the issues related to the DL and ML, the transfer learning
(TL) model can be used with less computation and generalization capabilities [26–30].
Hence, in the proposed work, the TL-based component-level FDD is considered for the
actual industrial robotic system which is operating at the real working conditions, such as
loading, speed and various profiles of motions.
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In the current study, TL model is proposed for the robotic PHM to ensure the general-
ization capabilities of the model. The extensive experimental setup is prepared to perform
a series of various experiments mimicking the real environmental condition, and various
loading conditions are considered. The main contribution was to increase the generalization
capabilities of the robotic PHM in the context of previously available research work, as
given above. For that purpose, the electrical current data of the robotic system is collected
under real environmental conditions such as various loadings, speeds, and motion patterns.
In the proposed two different motions such as simple and welding motion are considered
with variable speed of operation by considering various loading conditions. The data
segmentation is performed based on a single cycle of the robotic arm. The 1D signal is
converted to a 2D signal to perform the TL model. The TL model is used to overcome
data-related issues and data complexities. The TL-based VGG16 model is utilized for the
first time in robotic PHM under real environmental conditions. The proposed approach
is used for efficient features extraction for the FDD of robotic system, that eliminates the
requirement to train the DL from scratch, allowing it to converge faster. The authenticity of
the model is evaluated by different FDD parameters and shows excellent results for the
FDD of the industrial robotic system.

The manuscript is arranged into different sections. Section 2 is composed of the overall
methodology, experimental details, data acquisition, data preprocessing, and TL model.
Section 3 overviews the results and discussions. Section 4 summarizes the conclusions of
the proposed research work.

2. Methodology

The proposed methodology of the research work carried out is shown in Figure 1. In
this work, the FDD model for the real industrial robot (Robostar RA004) is presented. The
servomotor bearing fault of axis 3 of the robotic arm is considered. The data are collected
under distinct operating conditions such as speed, motion, and loading conditions. To
mimic the real working conditions, only the loading-based data are collected for the
effective FDD model. The data preprocessing is carried out by data segmentation and
synchronization. The 1D data are converted into 2D scalogram images for the FDD model.
The TL model is used to overcome data-related issues and data complexities. The VGG16-
based TL model is considered for the extraction of efficient features for the FDD of the
robotic system. The authenticity of the VGG16 is based on the diverse type of data with
variable working conditions. For instance, overall, image-based data for various loading
conditions such as 500 g, 1000 g, 1500 g, 2000 g, 2500 g, and 3000 g are considered for
training the model based on the simple and welding motion, separately. Hence, for
both the motions, around 80% of the data is used for the training purpose. To check
the generalization capabilities of the model the highest loading conditions are used for
testing and validating the model. For that purpose, 20% of the data is used for testing and
validation, considering 10% for testing and 10% for validation. Hence, the health status
of the bearing is predicted for the highest loading condition (3500 g) using the trained
model with the lower loading condition. TL eliminates the requirement to train the DL
from scratch, allowing it to converge faster. Detailed methodology is presented in the
upcoming sections.

2.1. Experimental Detials

In the proposed work, the industrial robot (Robostar RA004) is under consideration. It
is a 6-DOF robot, where all six axes of the robot can move independently. Each axis of the
robot is powered by servomotor to operate various industrial operations and electric motor
for various motion of the axes. The specification of RA004 with related information of each
joint is shown in Table 1. Various parameters are mentioned such as maximum distance,
payload, repetitive positioning accuracy, motion range and speed range. Two health states
(healthy and faulty) are considered to carry the PHM process for the servomotor of the
robotics arm. The robotic servomotor bearing PHM is considered with two health states
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(healthy and faulty). The inner bearing fault is induced in the inner race of the bearing at
axis 3 of the robot. Figure 2 represents the flow of the experimental system used in the
proposed research work.
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Table 1. Specifications of Robostar RA004.

Variable Quantity (Unit)

Allowable distance 610 mm

Maximum load 4 kg

Repeated placement accuracy ±0.02 mm

Motion Range/Maximum Speed

J1 ±170◦/410◦/s

J2 −90◦ to +45◦/410◦/s

J3 −210◦ to +61◦/520◦/s

J4 ±190◦/560◦/s

J5 ±130◦/560◦/s

J6 ±360◦/900◦/s
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2.2. Data Acquisition

The data acquisition (DAQ) system is illustrated in Figure 3. The robotic arm is
powered by an electric motor and the electrical current data are collected using the current
sensors (JS16FL-100). The sensors are connected to the robot power supply to observe the
electrical current data. The DAQ system collects the data from the sensors and then the
data are forwarded to the to the lab view personal computer (PC). The information on the
collected is given in Table 2. In the experimental setup, two distinguished kinds of motion
such as simple and welding motion are considered. In simple motion, the axis is simply
moving forward and backward. On the other hand, all the axes are moving independently
in the welding motion [22]. The electrical current data are collected for the robotic arm with
10 different speeds, such as 10% to 100% with an increment of 10%. To consider the actual
environmental conditions, the data are collected under different loading conditions such as
(500 g, 1000 g, 1500 g, 2000 g, 2500 g, 3000 g and 3500 g).
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Table 2. Experimental descriptions.

Variable Description

Data type 1st phase of electrical current

Motion Simple and welding motion

Speed 10~100% with 10% increment

Fault type Inner bearing fault of servomotor

Fault location Robotic 3rd axis

Health states Normal, faulty

Sampling frequency 5 kHz

Loading conditions 500 g, 1000 g, 1500 g, 2000 g, 2500 g, 3000 g, and 3500 g
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2.3. Data Preprocessing

Data preprocessing is very crucial to clean and organize the PHM process. In the
proposed work, the data preprocessing is done in two steps. Initially, all the raw data are
converted to segmentation based on per cycle and then 1D signals are converted into 2D
images for the TL model for the robotic PHM. The upcoming sections describe the details
of the data segmentation and data conversion.

2.3.1. Data Segmentation

The collected data from the current sensors are raw and cannot be used directly for the
PHM process of the robotics system. The data needs to be cleaned by removing unnecessary
information. In addition, the data for the same operating conditions with different health
states needs to be synchronized to reduce the probability of confusion in the fault signature
because of the data pattern rather than the health states. Pre-processing of signals is
required for real-time FDD. It is hard to use continuously acquired signals for PHM, hence,
pre-processing is required to divide the data into a single cycle from the raw data set to
analyze the failure of a single cycle. The signal segmentation is carried out by using the
following steps.

I. Set a sample cycle from the overall raw signal of the collected data.
II. Perform short-time Fourier transform (STFT) on the original signal and sample data.
III. Based on the power spectral density (PSD) of the sample data from STFT, the sample

data are moved by the set window.
IV. The signal is divided by finding a case where the difference between the PSD value of

the sample data and the original signal is the local minimum region.
V. Finally, based on the local minimum, compute the start and end points of each cycle.

Through this operation, it is possible to divide the data into a single cycle from the
repetitive raw signal, as shown in Figure 4. Hence, the segmented and synchronized data
are achieved.
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2.3.2. Data Conversion

The input data are fed into the TL model in the form of 2D images to extract au-
tonomous features. As a result, the time domain data must be converted into 2D images.
Scalogram images are considered in the proposed method. The upcoming subsections are
related to the data conversion into 2D images.
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(a) Scalogram

The scalogram is a time- and frequency-dependent absolute value demonstration
of a signal’s continuous wavelet transform (CWT). The scalogram proves more useful
than the spectrogram for evaluating real-world signals with features occurring at different
scales, such as slow rate variable events interrupted by sudden transients. It can be used
to improve time localization for high-frequency, short-term events as well as frequency
tracking for low-frequency, longer-duration occurrences. Resampling the signal with a
time-scaled and shifted wavelet yields the CWT. Wavelets oscillate and can have a wide
range of values. On a prototype wavelet, scalability and transitioning operations are carried
out. The CWT scaling shrinks and stretches the prototype wavelet. When the prototype
wavelet is shrunk, it generates wavelets with short duration and high frequency, which
are useful for detecting transient events. When the prototype wavelet is stretched, long-
duration, low-frequency wavelets are produced, which can be used to isolate long-duration,
low-frequency events [31]. Figure 5 shows the representation of time domain signals and
their scalogram images for simple and welding motions.
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(b) Continuous wavelets transform (CWT)

The wavelet transform outperforms the conventional cosine and Fourier transforms
as a time-frequency transform. The continuous wavelet transform (CWT) decomposes com-
plex signal information and extracts interesting patterns by convolution of input sequence
with mother wavelet-generated functions. Although the convolution is computed using the
short-time Fourier transform, it provides different time-frequency resolutions. [32–34]. The
wavelet windowing method is used for varying resolution regions. Wavelet decomposition
uses a scale rather than a frequency to map a signal into a time-scale plan. This corresponds
to the time-frequency plan of the short-time Fourier transform (STFT), with each scale of
the time-scale plane representing a different frequency range of the time-frequency plan.
The wavelet transforms a signal into sinusoids of varying frequencies, whereas the Fourier
transforms a signal into transformed or sized contours from a mother wavelet.

2.4. Transfer Learning Model for Fault Detection

The general framework of TL between the target domain and source domain is shown
in Figure 6. Timely fault detection of bearings in the industrial robot is crucial for minimal
downtime and uninterrupted operations. The current data obtained from the servomotors
were used for bearing fault detection. The current signals are the time series data. The time
series data have been converted to scalogram images to better represent the data. These
scalogram-based images will be used to develop the FDD model. In the real-world scenario,
the availability of a huge amount of labeled data is a big challenge to train, test, and validate



Mathematics 2023, 11, 945 8 of 14

the DL model. The shortage of a large amount of data restricts the performance of the deep
CNN model. Moreover, training the DL model from scratch is a cumbersome task. The
application of transfer learning could mitigate this issue and resolve the issue of training
the fault detection model from scratch. The pretrained VGG16 model (already trained on
the ImageNet dataset) has been employed for knowledge transfer and fault detection. The
VGG6 model has performed efficiently on the ImageNet dataset and comprises multiple
convolution blocks, fully connected, and SoftMax layers as the final layer. The weights of
the convolutional blocks of the VGG16 model have been transferred to the FDD model.
The proposed FDD model is given in the Figure 7. These convolutional blocks (as shown in
Figure 7) have been used for extracting features from the input scalogram images developed
from the servomotor current signals. These extracted features have been fed to the fully
connected layers and SoftMax in the final layer for the bearing fault classification. The
weights of the convolutional blocks are frozen, and fully connected layers are kept trainable.
The fully connected layers were optimized with the help of the adaptive gradient optimizer.
The output layer must classify two states of the bearing faults of the servomotor used in
the robotic arm.
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3. Results and Discussions

The complete analysis has been carried out on the scalogram images obtained from
the current signals of the servomotor of the robotic arm. The dataset has considered various
operational modes of industrial robots, including the different motion profiles, operating
speeds, and multiple loading conditions. The speed variations from 10% to 100% of the
rated speed have been employed during the data collection. Moreover, a variety of loading
conditions, including 500 g, 1500 g, 2500 g, and 3500 g, have been considered during the
current data acquisition. These 1D current data have been converted into the 2D scalogram,
which has been used to develop the FDD model. The complete dataset has been divided into
the training, test, and validation dataset. The two states of the servomotor, namely healthy
and bearing fault, have been considered in the proposed work. Overall, image-based data
for various loading conditions such as 500 g, 1000 g, 1500 g, 2000 g, 2500 g, and 3000 g
are considered for training the model based on the simple and welding motion separately.
Hence, for both the motions, around 80% of the data is used for the training purpose. To
check the generalization capabilities of the model, the highest loading conditions are used
for testing and validating the model. For that purpose, 20% of the data is used for testing
and validation, considering 10% for testing and 10% for validation. Hence, the health status
of the bearing is predicted for the highest loading condition (3500 g) using the trained
model with the lower loading condition.

Training in deep architecture is a challenging task, as well as computationally ex-
pensive. The weights of the convolutional blocks of the VGG16 have been used for the
proposed transfer learning-based fault detection model. The extracted features from the
convolutional blocks have been fed to the trainable fully connected layers, with the Soft-
Max layer as the final layer. The model’s performance was evaluated with the help of a
confusion matrix and different performance metrics like accuracy, precision, sensitivity,
and F1-score [35].

Accuracy =
TP + TN

TN + TP + FN + FP
(1)

Precision =
TP

TP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

F1-score =
2 TP

2TP + FP + FN
(4)

where TP, TN, FN and FP represent true positive, true negative, false negative and false
positive, respectively.

3.1. Simple Motion

The TL model is used for the FDD of the robotic bearing using simple motion data. It
is very complicated to distinguish the healthy and faulty images with the necked eyes as
shown in Figure 8. Under the same operating condition of loading and speed, it is hard
to see the difference between the healthy and faulty states. However, the pattern for the
healthy and faulty states is changing with increasing loading. Hence, the application of the
TL model is utilized to predict the health state of the data based on 3500 g from a trained
model with lower loading cases.

The TL-based VGG-16 FD model consolidated after approximately 200 epochs. It
is demonstrated that the model converged in 200 epochs, as illustrated the training and
validation loss curves in Figure 9. For fault classification, an average accuracy of 98% is
achieved. Figure 10 depicts the proposed model’s confusion matrix (CM). The CM indicates
that healthy and faulty states have been efficiently classified using simple motion data. The
performance evaluation parameters such as precision (p), sensitivity (s), and F1-score are
shown in Table 3. It is noted that the proposed method shows 99.9%, 98%, and 98.08% of
training, testing, and validation accuracy, respectively. It is demonstrated that the presented
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approach of autonomous feature extraction of the TL model showed an effective FDD for
the robotic servomotor using simple motion data under variable operating conditions. It is
demonstrated that the health state of the higher loading conditions is predicted accurately.
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Table 3. Performance metrics for the proposed TL-based model for fault detection using simple motion.

State Precision (p) Sensitivity (s) F1-Score

Faulty 1.0 0.96 0.98
Healthy 0.96 1.0 0.98

3.2. Welding Motion

Similarly, the simple motion in the case of welding motion under the same operation
condition of loading it is complicated to find the fault characteristics for healthy and faulty.
However, the fault pattern of the scalogram images is changing with the increased loading
on the robotic arm, as shown in Figure 11. In view of that, the electrical motor draws
more electrical current with higher loading, hence the pattern changes with higher loading
conditions. To provide a generalized FDD model the higher loading data (3500 g) is used
for the testing and validation to predict the health state of this data set using the trained
model with the lower loading conditions.
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The TL-based VGG-16 FD model converged after approximately 200 epochs. Figure 12
depicts the training and validation loss curves. For fault classification, an average accuracy
of 99% is achieved. Figure 13 depicts the proposed model’s confusion matrix (CM). The CM
shows that conditions such as healthy, and faulty have been significantly classified using
welding motion data. The values of performance evaluation parameters such as precision
(p), sensitivity (s), and F1-score are shown in Table 4.
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Table 4. Performance metrics for the proposed TL-based FDD for welding motion.

State Precision (p) Sensitivity (s) F1-Score

Faulty 1.0 0.98 0.99
Healthy 0.98 1.0 0.99

It is noted that the proposed method shows 99.6%, 99%, and 99.2% of training, testing,
and validation accuracy, respectively. It is demonstrated that the proposed approach of
autonomous feature extraction of the TL model showed an effective FDD for the robotic ser-
vomotor using simple motion data under variable operating conditions. It is demonstrated
that the health state of the higher loading conditions is predicted accurately.

To sum up, in the proposed work, the issues related to the DL- and ML-based FDD are
solved. In the real-world scenario, the availability of a large amount of labeled data is a
big challenge to train, test, and validate the deep model. Hence, the application of TL is
applied to overcome the issues related to conventional ML and DL FDD. The above results
show the robustness of the proposed approach in terms of simple and welding motion
data sets. In addition, the generalization capabilities of the proposed model are validated
by using the highest loading conditions for testing and validation purposes. In view of
that, the proposed approach can predict the health state of a new data set (unseen data). In
future, more cases can be considered by evaluating a comprehensive analysis for predicting
the health state of unseen data. Further, the unsupervised model can be proposed for the
FDD of the robotic system.

4. Conclusions

In conclusion, the current research work proposed a robust FDD model for the robotic
system under the variable working condition of speed, motion, and various loaded. To
mimic real environmental conditions, the data were collected from the actual robotic
system with real-world operating conditions. For that purpose, a series of different loads
were integrated into the robotic manipulator. The electrical current data were collected
to overcome the issues of data handling and extra sensor installation. The raw data



Mathematics 2023, 11, 945 13 of 14

were preprocessed using data segmentation and data synchronization. The 1D data were
converted into 2D images for further processing. The application of TL was used to mitigate
the issues related to the DL- and ML-based FDD. The pretrained VGG16 model (already
trained on the ImageNet dataset) has been employed for knowledge transfer and fault
detection. The VGG6 model performed efficiently on the ImageNet dataset and comprises
multiple convolution blocks, fully connected, and SoftMax layers as the final layer. The
weights of the convolutional blocks of the VGG16 model were transferred to the fault
detection model. Convolutional blocks were used for extracting features from the input
scalogram images developed from the servomotor current signals. These extracted features
were fed to the fully connected layers and SoftMax in the final layer for the bearing fault
classification. The weights of the convolutional blocks are frozen, and fully connected
layers are kept trainable. The fully connected layers were optimized with the help of the
adaptive gradient optimizer. The output layer classified the health states into healthy and
faulty states. The proposed approach shows effective fault detection performance and has
the capabilities of generalization under variable working conditions.
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