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Abstract: These days, heat transfer plays a significant role in the fields of engineering and energy,
particularly in the biological sciences. Ordinary fluid is inadequate to transfer heat in an efficient
manner, therefore, several models were considered for the betterment of heat transfer. One of the
most prominent models is a single-phase nanofluid model. The present study is devoted to solving
the problem of micropolar fluid with a single-phase model in a channel numerically. The governing
partial differential equations (PDEs) are converted into nonlinear ordinary differential equations
(ODEs) by introducing similarity transformation and then solved numerically by the finite difference
method. Response surface methodology (RSM) together with sensitivity analysis are implemented
for the optimization analysis. The study reveals that sensitivity of the skin friction coefficient (Cfx) to
the Reynolds number (R) and magnetic parameter (M) is positive (directly proportional) and negative
(inversely proportional) for the micropolar parameter.

Keywords: micropolar fluid; nanofluid; thermal radiation; response surface methodology; sensitiv-
ity analysis

MSC: 76D55

1. Background

In previous decades, a demand to represent the fluid that depends on micro-components
has concluded in the establishment of micropolar fluid. Eringen [1,2] was the first researcher
to use the term micropolar. This term then became an area of dynamic exploration. A
simple microfluid, by definition, is a fluent medium whose properties and actions in each
of its volume elements are influenced by local movements of the material particles; such
a fluid has local inertia. Eringen [2] presents a complete discussion of motion and micro-
motions in the presentation of the theory, as well as evidence of the newly introduced
micro-deformation rate tensors, which is a prerequisite for the creation of the constitutive
equations used to characterise a simple microfluid. These classes of fluids identify many
engineering and industrial applications physically and mathematically. On the other hand,
a class of conventional Newtonian fluids cannot specifically identify the fluid flow for a
range of applications in the area of engineering. The examples of such fluids are polymeric,
colloidal solutions, paints, etc. In micropolar fluid, the micro-rotation vectors explain the
rotational motion in microfluid. Therefore, the curl of the velocity vector in this case will
be non-zero.

The control of magnetic induction past a plate in the existence of a micropolar fluid
have mainly been evaluated by Gorla and Mohammeadein [3]. Pedieson [4] evaluated and
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studied boundary layer theory of micropolar fluids. Gupta [5] pursued this work in a study
in which they examined the impact of the transmission of the heat of a fluid over a surface
that was stretched. The flow of fluid across a stretched surface was then determined in
order to do further research on Gupta’s work [6].

1.1. Literature Review

The importance of heat transfer and heat exchangers cannot be overstated. For instance,
raising the temperature will be necessary to increase the efficiency of the thermal processes
for the production of heat and electricity [7,8]. The transfer of energy from one place (high
concentration) to another place (low concentration) is known as heat transfer. Applications
of heat transportation can be seen in our daily lives; for example, the human body emits
heat continuously, and adjustment of the human body temperature is achieved by using
clothing to adapt changing climatic conditions. Heat transportation is also utilised to
manage temperature in our structures [9] and is required for cooking, refrigeration, and
drying. It is also utilised for temperature regulation in automotive radiators [10] and mobile
devices [11]. Solar thermal collectors [12,13] and spaceship thermal control elements [14]
use heat conversion to turn solar energy into heat and power. Many of these systems require
rapid heat dissipation to enable successful performance and optimum productivity inside
the system [15]. As modern sciences progress, devices have become tiny, necessitating
preferable temperature control. Basically, the smaller the scale, the more efficient cooling
technology is required [16]. In thermal engineering, heat transfer enhancement is therefore
a very important field.

Choi and Eastman [17] prepared nanofluids, which are colloidal suspensions of nano-
scale metallic or non-metallic particles in a host fluid (HF). There are few fundamental
conditions which met, low agglomeration of nanoparticles and steady-state suspension and
the HF should be chemically constant. Nanofluids have two subcategories: non-metallic
nanofluids (carbides: carbon, TiC, materials: SWCNT/MWCNT, graphene, diamond, etc.)
and metallic nanofluids (metals: Cu, Fe, Al, Ag, Au; metal oxides: SiO2, Al2O3, TiO2,
CuO). There are two methods to develop nanofluid: a one-step method, which involves
developing the HF and nanoparticles at the same time; and the two-step method, in which
it is generated separately and then mixed up [18]. For several applications, nanofluids have
important properties, such as good stability, high heat conductivity, reduced erosion and
friction coefficient, ultrafast heat transfer ability, and good lubrication.

Mathematical simulations by Rashid et al. [19] showed the combined effects of an
angled magnetic field and a predetermined surface temperature (PST) on Cu-Al2O3-type
nanoparticles in water. They found that the temperature rises by solid volume fraction φ,
magnetic parameter M, and slip-parameter for both Cu-H2O and Al2O3-H2O. Haq and
Aman [20] quantitatively evaluated the thermal performance of a water-based copper
oxide (CuO) nanofluid in a trapezoidal cavity with the use of the finite element method
(FEM). They concluded from this investigation that the velocity steadily decreases as the
fluid thickens and becomes denser due to the presence of a solid volume fraction (=0–0.2).
In a similar way, the rate of heat transmission is likewise decreasing as =0–0.2 increases,
owing to convection. The characteristics of non-uniform melting heat transmission of a
nanofluid over a sheet were investigated by Hayat et al. [21]. The base fluid (water, H2O)
was injected with copper (Cu) nanoparticles, and HAM was used to solve a governing
self-similar system of differential equations. In this investigation, they found that when the
volume fraction, Hartman number, and porosity parameter values increased, so did the skin
friction coefficient and local Nusselt number. The effects of heat transmission on aluminium
alloy nanoparticles suspended across a sheet under the influence of a magnetic field were
studied by Sandeep et al. [22]. They took into consideration two distinct kinds of nanopar-
ticles, AA 7072 (98% Al, 1% Zn, and 1% additives) and AA 7075 (90% Al, 5.6 Zn, 2.3 Mg,
1.2 Cu, and additives). Due to a larger proportion of copper used, the mathematical research
revealed that AA 7075 had a substantially higher heat transfer rate than AA 7072. (Cu).
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Shah et al. [23] conducted a mathematical investigation of aluminium and ethylene glycol
nanoparticles on a sheet while taking the second law of thermodynamics into account.

1.2. Motivations

The great efforts and expertise of the researchers have succeeded in publishing the
results of fluid flow between confined parallel plates. Suitable similar variables and numer-
ical approaches were adopted in order to generate the results. The following constituents
give the motivations of this research work.

• The problem of viscoelastic fluid in a confined space (channel) with extending walls
was discussed by Misra et al. [24]. According to the study, reverse flow occurs
close to the region’s (channel’s) centre and can be managed by applying an external
magnetic field.

• Ashraf et al. [25] looked into the issue of micropolar fluid flow with heat transmission
in a channel with stretching walls. Equations of fourth order coupled nonlinear
ordinary differential type were solved using the quasi-linearization approach. The
study exposed the fact that shear, coupled stresses and heat transfer rate at the walls are
increased by stretching the channel walls. They also quantified that their investigation
may be valuable for the flow and thermal control of polymeric processing.

• Researcher [26–28] examined the effect of heat transfer and nanoparticles on MHD
water/kerosene-based nanofluid in a channel numerically. The studies revealed the
fact that there exists a linear relationship between the thermal boundary layer thickness
and the solid volume fraction.

The above-mentioned motivations of the study are either a problem of simple microp-
olar fluid or simple nanofluid in a channel with stretching walls. Therefore, without any
doubt, it can be argued that there exists a potential research gap to investigate the problem
related to micropolar nanofluid flow in a channel with stretching/shrinking walls.

1.3. Contributions

The following items are the main contribution of the current research.

• It proposes the single-phase nanofluid model of micropolar copper–blood nanoparti-
cles in a channel with stretching and shrinking walls.

• Thermal radiations are also present in the channel to make the problem more appealing
for heat transfer.

• To control the reversibility of the flow due to the stretching walls, we impose a
transverse magnetic field.

• This research also investigates sensitivity analysis using response surface
methodology (RSM).

2. Proposed Model

Consider two-dimensional steady laminar incompressible micropolar nanofluid in a
channel with stretching and shrinking walls in the presence of a magnetic field and thermal
radiation. In this study, copper nanoparticles are the solid dispersed phase while blood is
the fluid continuum phase. The lower and upper walls of the channel stretch and shrink in
the direction of the fluid (x-axis) with some constant rate u = bx ∀ b ∈ R. If b > 0, then the
case is known as stretching and b < 0 is for shrinking walls of the channel (see Figure 1).
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Figure 1. Physical sketch of the problem.

2.1. Governing Equations

The general equations of micropolar fluids as given by Eringen [1] can be represented
in component form V = (u(x, y), v(x, y), 0), ν = (0, 0, N(x, y)), where N = ∇×V 6= 0 as:

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
−1
ρ

∂p
∂x

+
µ + κ

ρ
∇2u +

κ

ρ

∂N
∂y
−

σf B2
◦

ρn f
u (2)

∂v
∂x

+ v
∂v
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=
−1
ρ

∂p
∂y

+
µ + κ

ρ
∇2v− κ

ρ

∂N
∂x

(3)

ρn f j
(

u
∂N
∂x

+ v
∂N
∂y

)
= γn f∇2N + κ

(
∂v
∂x
− ∂u

∂y

)
− 2κN (4)(

u
∂T
∂x

+ v
∂T
∂y

)
=

kn f(
ρCp

)
n f

(
∂2T
∂x2 +

∂2T
∂y2

)
− 1(

ρCp
)

n f

∂qr

∂y
(5)

Here, p is the pressure, N is the micro-rotational velocity, γn f = j
(

k
2 + µn f

)
is the spine

gradient viscosity, and u and v are the axial and transverse velocities components, respectively.
The appropriate boundary conditions for the current investigation are:

u = ±bx, v = 0, N = −k
∂u
∂y

, T = T1 at y = −a (6)

u = ±bx, v = 0, N = −k
∂u
∂y

, T = T2 at y = +a (7)

These physical quantities are described mathematically as:

ρn f = ρ f (1− ϕ) + ϕρs (8)

µn f =
µ f

(1− ϕ)2.5 (9)
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(
ρCp

)
n f =

(
ρCp

)
f (1− ϕ) +

(
ρCp

)
s ϕ (10)

kn f

k f
=

ks + 2k f − 2ϕ
(

k f − ks

)
ks + 2k f + ϕ

(
k f − ks

) (11)

Here, ϕ is the solid volume fraction, ϕs is for the nanosolid-particles, and ϕ f is for the
base fluid.

We apply a Rosseland approximation for radiation as:

qr = −
4σ∗

3k∗
∂T4

∂y
(12)

Here, the Stefan–Boltzmann constant is given by σ∗ = 5.6697× 10−8 Wm−2K−4 and
the mean spectral absorption coefficient is denoted by k*. Further, blackbody emission
power, eb in terms of the Stefan–Boltzmann constant and absolute temperature, is given
by eb = σ∗T4.

It is assumed that the temperature differences within the flow, such as the term T4,
may be expressed as a linear function of temperature. We obtain the Taylor series expansion
for T4 at a free stream temperature T∞.

T4 = T4
∞ + 4T3

∞(T − T∞) + 8T2
∞(T − T∞)2 + . . .

After neglecting higher-order terms as:

T4 = 4T4
∞T − 3T4

∞ (13)

Using Equation (12) in (13), we obtain:

∂qr

∂y
= −16σ∗T3

∞
3k∗

∂2T
∂y2 (14)

Equation (5) is now converted in the light of (14) as:

(
ρCp

)
n f

(
u

∂T
∂x

+ v
∂T
∂y

)
= kn f

(
∂2T
∂x2 +

∂2T
∂y2

)
+

16σ∗T3
∞

3k∗
∂2T
∂y2 (15)

2.2. Similarity Solution

Now we introduce the similarity transformation as:

η =
y
a

, u = bx f ′(η), v = −ab f (η), θ(η) =
T − T2

T1 − T2
(16)

Using Equation (16) in Equation (1), we see that Equation (1) is identically satisfied and
eliminating the pressure term from (2) and (5), we obtain the required similarity coupled
system of the ordinary differential equation as:(

1 +
κ

Γ2

)
f
′′′′ − Γ1

Γ2
R
(

f ′ f ′′ − f f ′′′
)
− κ

Γ2
g′ − M2

Γ2
f ′′ = 0 (17)

(
1 +

κ

2Γ2

)
g′′ +

κ

Γ2
( f ′′ − 2g) +

Γ1

Γ2
R
(

f g′ − f ′g
)
= 0 (18)

1
Γ3Pr

(
Γ4 +

4
3

Rd
)

θ′′ + R f θ′ = 0 (19)
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Subject to the boundary conditions:

f (−1) = 0, f ′(−1) = ±1, g(−1) = 0, θ(−1) = 1 (20)

f (1) = 0, f ′(1) = ±1, g(1) = 0, θ(1) = 0 (21)

Here, R = a2b
ν f

is the Reynolds number, M2 =
σf B2

◦ a2

µ f
is the magnetic parameter, K = k

ν f

is the micropolar parameter, Pr =
ν f (ρCp) f

k f
is the Prandtl number, and Rd = σ∗T3

∞
3k∗k f

is the
radiation parameter. Also,

Γ1 = (1− ϕ) + ϕ
ρs

ρ f
, Γ2 =

1

(1− ϕ)2.5 ,

Γ3 = (1− ϕ) +

(
ρCp

)
s(

ρCp
)

f
ϕ, Γ4 =

ks + 2k f − 2ϕ
(

k f − ks

)
ks + 2k f + ϕ

(
k f − ks

)
3. Results and Discussion

The numerical results have been handled in this section in the form of tables and
graphs. Equations (17)–(19), subject to boundary conditions (20) and (21), are solved
with the aid of a numerical scheme called Runge–Kutta 4th order and finite difference
base scheme (bvp4c) [29]. Equations (17)–(19) are higher order ODEs, so we converted
them into a system of first order ODEs, however three (03) initial conditions were missing(

d2 f
dη2

∣∣∣η=0, d3 f
dη3

∣∣∣η=0, d2g
dη2

∣∣∣η=0, dθ
dη

∣∣∣
η=0

)
. To find these missing initial conditions, we employed

a shooting method. Once these missing conditions were found, then the solution computed
and satisfied the boundary conditions (20) and (21). Thermophysical properties of blood
and copper nanoparticles [27] are fetched from Table 1.

Table 1. Thermophysical properties of the blood and copper nanoparticles (see [27]).

Properties Blood Copper

Density
(

Kg
m3

)
1150 8933

Thermal conductivity
(

W
mK

)
0.53 401

Specific Heat
(

JKg−1K−1
)

3617 385

Figures 2–12 provide information on the hydrokinetic effects on velocity, angular
velocity, temperature, and concentration. The comparison of the two different approaches
of the numerical results is presented graphically in Figure 2 and it is depicted that the
results coincide with each other. Figure 3 depicts how the micropolar parameter affects the
velocity profile f ′(η) for stretching and contracting the wall. The velocity profile, which
is parabolic in character, is shown to decline as the micropolar parameter rises. However,
we deduced from Figure 4 that the micro-rotation g(η) profile gradually increases as the
micropolar parameter K increases after decreasing from the bottom wall to the channel
centre. The micro-rotation profile displays an entirely different pattern in the case of
diminishing walls. On other hand, the temperature profile θ(η) rises while the walls are
extending and falls when the walls are contracting. As can be observed from Figure 8, the
velocity profile decreases as the solid volume percentage increases for stretching walls and
rises for contracting walls. The impact of the stretching Reynolds number R on the velocity
profile is explained in Figure 9. This graphic demonstrates how the velocity profile for the
stretched walls reduces towards the channel borders and increases near the channel centre.
However, it can be seen in Figure 10 that the micro-rotation profile rises from the lower
wall to the channel’s centre, and then falls when the values of the Reynolds number for the
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stretched walls are raised. Figure 11 also illustrates the effect of the Reynolds number on
the temperature profile. We can observe that the temperature profile changes for the bottom
and upper halves of the channel when the Reynolds number values are increased. Figure 12
shows the effect of the radiation parameter on the temperature profile. The temperature
profile of the tube drops from the lower wall to the middle and climbs from the centre to
the top wall as the radiation parameter rises. The reverse result, however, can be seen in
the case of the diminishing walls.
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3.1. Application of Response Surface Methodology (RSM)
3.1.1. Optimization Process

RSM is one of many useful tools for describing a wide range of variables, together
with limited resources, quantitative data, and the required test design (response surface
methodology). The following steps were taken into account in this process:

1. To reach the suitable and believable requirements for the intended response, we
planned and investigated the data values.

2. We outlined the most appropriate mathematical models for the response surface.
3. We described the mathematical models for the response surface that are most suited.
4. We used an analysis of the variance to examine the parametric direct and interaction

impacts (ANOVA).

3.1.2. Optimization Analysis by RSM

The relation between the factor variables and the response variable (temperature
gradient) was investigated using a face-centred central composite design. Tables 2 and 3 in-
dicates the three factors and their levels. The quadratic model is presented in Equation (22),
where three linear, square, and interactive terms are involved.

Response = α0 + α1 A + α2B + α3C + α11 A2 + α22B2 + α33C2 + α12 AB + α13 AC + α23BC (22)

Table 2. Parameters with their levels for C fx(−1).

Parameters Symbols
Level

−1 0 1

R A −5 2 5
M B 0 1 1.5
K C 0.1 1 2
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Table 3. Parameters with their levels Nux(−1).

Parameters Symbols
Level

−1 0 1

R A −5 2 5
ϕ B 0 0.05 0.2

Rd C 0.1 1 2

Here (Equation (22)), αi and αij represent the regression coefficients. The statistical
analysis was performed for 20 runs, as prescribed by the defined conditions.

C fx(−1) = 3.0015 + 0.08816R + 0.1126M− 0.1056K + 0.000686R2 + 0.0843M2

+0.0479K2 − 0.00175RM− 0.02615RK− 0.0731MK
(23)

Nux(−1) = 0.758 + 0.1441R− 2.00ϕ− 0.288Rd + 0.00412R2 + 3.64ϕ2

+0.0665Rd2 − 0.2273Rϕ− 0.03759Rd.R + 0.614ϕRd
(24)

The values of skin friction coefficient and Nusselt number for coded values are given
in Table 4. The ANOVA Tables 5 and 6 provide a measure of accuracy for the approximate
model. A parameter is important when the p-value is less than 0.05 (with 95 percent
confidence). Since the p-value in the model is greater than 0.05, the linear, quadratic, and
interaction terms may be omitted. Nonetheless, as seen in Table 5,6 the model proves to be
superior since its coefficient of determination R2 is higher. The correct regression equation
is now as follows:

C fx(−1) = 3.0015 + 0.08816R + 0.1126M− 0.1056K + 0.0843M2 + 0.0479K2

−0.02615RK− 0.0731MK
(25)

Nux(−1) = 0.758 + 0.1441R− 0.288Rd− 0.03759Rd.R (26)

Table 4. Experimental design and responses.

Runs
Coded Values

A B C Response Cfx(−1) Response Nux(−1)

1 −1 −1 −1 2.569977654 0.039218876
2 1 −1 −1 3.4412049 1.706219612
3 −1 1 −1 2.931369225 0.182650354
4 1 1 −1 3.797708428 0.975161305
5 −1 −1 1 2.808665994 0.256515544
6 1 −1 1 3.173524221 0.828662877
7 −1 1 1 2.954689881 0.315102036
8 1 1 1 3.315963627 0.717271607
9 −1 0 0 2.832551727 0.185583893

10 1 0 0 3.347006534 0.981815599
11 0 −1 0 3.092057592 0.701100814
12 0 1 0 3.302840544 0.617231054
13 0 0 −1 3.340485946 0.860674809
14 0 0 1 3.124384046 0.614658362
15 0 0 0 3.187362637 0.679561304
16 0 0 0 3.187362637 0.679561304
17 0 0 0 3.187362637 0.679561304
18 0 0 0 3.187362637 0.679561304
19 0 0 0 3.187362637 0.679561304
20 0 0 0 3.187362637 0.679561304
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Table 5. ANOVA for C fx(−1).

Source DF Adjusted Sum of Square Adjusted Mean Square F-Value p-Value Remarks

Model 9 1.27499 0.141666 211.26 0.000 Significant
Linear 3 1.05111 0.350369 522.48 0.000 Significant

R 1 0.87703 0.877027 1307.85 0.000 Significant
M 1 0.14695 0.146950 219.14 0.000 Significant
K 1 0.03201 0.032010 47.73 0.000 Significant

Square 3 0.03435 0.011451 17.08 0.000 Significant
R.R 1 0.00055 0.000546 0.81 0.388 Not Significant

M.M 1 0.00474 0.004738 7.07 0.024 Significant
K.K 1 0.00509 0.005093 7.59 0.020 Significant

2-Way Interaction 3 0.15276 0.050919 75.93 0.000 Significant
R.M 1 0.00036 0.000362 0.54 0.480 Not Significant
R.K 1 0.12739 0.127394 189.97 0.000 Significant
M.K 1 0.02220 0.022204 33.11 0.000 Significant
Error 10 0.00671 0.000671

Lack-of-Fit 5 0.00671 0.001341 * *
Pure Error 5 0.00000 0.000000

Total 19 1.28170
R2 =99.48% Adjusted R2 = 99.01%

Table 6. ANOVA for Nux(−1).

Source DF Adj SS Adj MS F-Value p-Value Remarks

Model 9 2.39452 0.26606 26.11 0.000 Significant
Linear 3 1.76127 0.58709 57.62 0.000 Significant

R 1 1.65970 1.65970 162.90 0.000 Significant
Phi 1 0.03905 0.03905 3.83 0.079 Not Significant
Rd 1 0.06770 0.06770 6.64 0.028 Significant

Square 3 0.09999 0.03333 3.27 0.067 Not Significant
R.R 1 0.01970 0.01970 1.93 0.194 Not Significant

Phi.Phi 1 0.00191 0.00191 0.19 0.674 Not Significant
Rd.Rd 1 0.00982 0.00982 0.96 0.349 Not Significant

2-Way Interaction 3 0.41288 0.13763 13.51 0.001 Significant
R.Phi 1 0.11203 0.11203 11.00 0.008 Not Significant
R.Rd 1 0.26292 0.26292 25.81 0.000 Significant

Phi.Rd 1 0.02855 0.02855 2.80 0.125 Not Significant
Error 10 0.10188 0.01019

Lack-of-Fit 5 0.10188 0.02038 * *
Pure Error 5 0.00000 0.00000

Total 19 2.49640
R2 =95.92% Adjusted R2 = 92.25%

Tables 2 and 3 present the various levels of the parameters for C fx(−1) and Nux(−1),
respectively. However, Table 4 represents the values of the response function for 20 dif-
ferent points. In Tables 5 and 6, the R2 for C fx(−1) and Nux(−1) (99.48% and 95.92%
respectively), which was obtained by the testing methods and statistical analysis of the
model, is presented. However, the R2-adj amounts for C fx(−1) and Nux(−1) (99.01% and
92.25%, respectively) are ≤R2, but the model fits the data reasonably [30–33]. Moreover, the
importance of the model for the response variables C fx(−1) and Nux(−1) is depicted from
the F-value, which is equal to 211.26 and 26.11, respectively. According to Figure 13a,b, it is
observed that the plots of normal probability are well-behaved and in good condition [33].
From these two figures, the residual histograms exhibit a skewed distribution. When the
residual diagrams and fitted values were compared, the observed and fitted values showed
a strong correlation.
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Figures 14 and 15 show the mean total skin friction coefficient and Nusselt number
variations as effective parameters functions. The deviation of the skin friction coefficient in
terms of M and R are shown in Figure 14a. The skin friction coefficient increases as M and R
are increased, with the highest value (+1) and lowest value (−1) for M and R, respectively.
The variation in the response variable (skin friction) with respect to K and R are shown in
Figure 14b. It is observed that reducing the values of K and increasing the value of R causes
an increase in the skin friction coefficient. The highest value of skin friction is obtained in
the level of (−1) and (+1) and its lowest value is observed in the level of (+1) and (+1)
for K and R, respectively. The variance of the skin friction coefficient in terms of K and M
is shown in Figure 14c. The skin friction is increased when the value of K is reduced and
the value of M is increased. Furthermore, for K and M, the highest and lowest values of
the skin friction coefficient can be found at the levels of (−1) and (+1), respectively. The
variance of the total Nusselt number in terms of the solid volume fraction of a nanofluid
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and the Reynolds number R is shown in Figure 15a. The Nusselt number is increased
when the solid volume fraction is lower and the Reynolds number is higher. Moreover,
the Nusselt number gains its minimum value in (+1) and (−1) and its maximum in (−1)
and (+1) for ϕ and R, respectively. Figure 15b shows that the Nusselt number increases
by increasing the values of R and decreasing the values of Rd. Nevertheless, the Nusselt
number gains a maximum in level (−1) and (+1) and a minimum in (+1) and (−1) for
Rd and R, respectively. In the same vein, Figure 15c shows that the Nusselt number reaches
its highest value in (−1) and (−1) and its lowest value in (+1) and (+1) for Rd and the
solid volume fraction.
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The regression Equations (25) and (26) are used to calculate the sensitivity. The
sensitivity functions are the partial derivatives of the response variables with respect to the
factor variables, as shown below:

∂C fx

∂A
= 0.08816− 0.02615K (27)

∂C fx

∂B
= 0.1126 + 0.1686M− 0.0731K (28)

∂C fx

∂C
= −0.1056 + 0.0958K− 0.02615R− 0.0731M (29)

∂Nux

∂A
= 0.1441− 0.03759Rd (30)

∂Nux

∂B
= 0 (31)

∂Nux

∂C
= −0.288− 0.03759R (32)

The positive sensitivity value indicates that the objective function has improved as a
result of the improved input parameters. Its negative value, on the other hand, denotes a
decline in the objective function due to the increased input parameters. From Table 7, it is
seen that the sensitivity of C fx to A and B is positive and negative for C. Similarly, from
Table 8, the sensitivity of Nux to A is positive and negative for C.

Table 7. Sensitivity analysis of the response C fx.

A B C Sensitivity to A Sensitivity to B Sensitivity to C

0 −1 −1 0.11431 0.0171 −0.1283
0 −1 0 0.08816 −0.056 −0.0325
0 −1 1 0.06201 −0.1291 0.0633
0 0 −1 0.11431 0.1857 −0.2014
0 0 0 0.08816 0.1126 −0.1056
0 0 1 0.06201 0.0395 −0.0098
0 1 −1 0.11431 0.3543 −0.2745
0 1 0 0.08816 0.2812 −0.1787
0 1 1 0.06201 0.2081 −0.0829

Table 8. Sensitivity analysis of the response Nux.

A B C Sensitivity to A Sensitivity to B Sensitivity to C

−1 0 −1 0.18169 0 −0.25041
−1 0 0 0.1441 0 −0.25041
−1 0 1 0.10651 0 −0.25041
0 0 −1 0.18169 0 −0.288
0 0 0 0.1441 0 −0.288
0 0 1 0.10651 0 −0.288
1 0 −1 0.18169 0 −0.32559
1 0 0 0.1441 0 −0.32559
1 0 1 0.10651 0 −0.32559

4. Conclusions

In this investigation, we considered two-dimensional steady laminar incompressible
micropolar nanofluid in a channel with stretching and shrinking walls in the presence of
a magnetic field and thermal radiation. The copper nanoparticles are the solid dispersed
phase, while blood is the fluid continuum phase. The lower and upper walls of the channel
stretch and shrink in the direction of the fluid (x-axis). The governing similar ODEs were
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solved and verified by two different numerical schemes. After in-depth discussions of the
model, the main findings are drawn as below:

• The velocity of the fluid particles decreases by increasing the values of the micropolar
parameter.

• As the radiation parameter increases, the temperature profile decreases from the lower
wall to the middle and increases from the centre to the upper wall of the tube.

• The velocity profile declines as a solid volume fraction φ enhances for the stretching
walls and increases for the shrinking walls.

• The skin friction coefficient increases as the magnetic and Reynolds number
are increased.

• The Nusselt number is increased when the solid volume fraction is lower.
• The sensitivity of C fx to the Reynolds number and magnetic parameter is positive and

negative for the micropolar parameter.
• Nux is optimized by taking higher values of the Reynolds number and lower values

of the radiation parameter.
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