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Abstract: In this paper, we present a mathematical algorithm for the optimal orientation of solar
panels for multi-apartment buildings. Currently, photovoltaic power generation has increasingly
become an effective method. It has the advantage of not causing environmental pollution; however,
it has the disadvantage of relatively low power generation efficiency. To increase the power efficiency
of the panel, one can consider a rotation. However, if there is a limitation to the rotation angle of the
solar panel, especially in multi-apartment buildings, it is desirable to install the panel at the optimal
angle under given constraints. Therefore, we present a simple and practical method to evaluate the
optimal installation angle of the panel. Using the proposed method, it is easy to find an optimal
installation angle to achieve the best power generation efficiency based on the latitude and azimuth
angles. To demonstrate the effectiveness of the proposed algorithm, several numerical simulation
results are provided.
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1. Introduction

Solar energy is one of the important energy sources, and many countries, therefore,
have realized the important role of renewable energies due to the depletion of conventional
energy sources [1,2]. In particular, interest in solar power generation is increasing due to
the dangers of nuclear/thermal power generation that have recently occurred in several
countries. The advantages of using solar power generation are as follows. First, because it
uses solar energy, it does not require fuel costs and is a clean energy source that does not
generate air pollution or waste. Second, because the power generation unit is composed
of semiconductor devices, there is no vibration and noise, and automation is easy. Lastly,
efficient power generation is possible because power can be maximized during the daytime
and summer when the power load is high.

However, photovoltaic power generation has several problems. First, there is a time
constraint on energy generation. This is a very important issue and inevitably causes
the problem of maximum efficiency and storage capacity in a limited time. Second, the
profitability is not good due to the high unit price for power generation. For example, it is
about 4 to 5 times more expensive than nuclear power generation.

In everyday life, one can often see solar panels installed in multi-apartment buildings
to generate solar energy, as shown in Figure 1. An installation angle of the solar panel is
important to collect photons efficiently [3]. If the solar panels are installed in a parallel
direction to the building, then the energy efficiency is usually not optimal at each location.
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Therefore, we propose a simple mathematical algorithm for setting the angle and direction
of the solar panel that can produce the maximum solar energy efficiency at each location
based on the latitude and azimuth angle under several constraints.

(a) (b)

Figure 1. (a) The actual solar panel installed in the apartment. (b) An enlarged view.

As there is a lot of interest in solar panels and photon collectors around the world,
many researchers have investigated calculating their optimal tilt angles [4–18]. Not only the
optimal angle calculation but also the research on factors that can affect the performance
of solar panels such as wind speed [19], weather [20], latitude and longitude [21] are in
progress. In South Africa, the authors in [5] calculated the annual solar insolation for all
possible angles on fixed collectors using the data obtained from the nine measuring stations.
Other studies proposed using incident beam radiation-based maximization approach [6],
a latitude-based optimization approach in the Mediterranean region [7], and non-linear
time-varying particle swarm optimization in Taiwan [8].

As most researchers have reported that the maximum power can be harvested when
a solar panel is equipped with a sun-tracking system. Referred researches suggest that
the different adjustment number of intervals from 4 to 12 to obtain maximum energy in
each country: 8 times a year in Iraq [10], 12 times a year in Syria [11], and also 12 times a
year but each month adjusting the tilt angle which can achieve 8% more surface radiation
compared with yearly adjustment in Saudi Arabia [12]. Furthermore, the solar panel
with a fixed tilt angle without representing the number of yearly adjustments got 10–25%
higher irradiations with increasing latitude in USA [13], the variation of optimal tilt angle
throughout a year is between 0◦ and 65◦ in Turkey [14].

In [16], the authors present several models to calculate the optimal slope of the solar
panel accurately at any location in the world. Using the proposed models, the authors
estimate the annual energy output along with the amount of irradiance stored per hour
according to the slope of the solar panel. There is a study that calculates the optimal tilt
angle of a solar panel using machine learning recently [17]. In this study, energy generation
simulations of panels are performed to calculate monthly and yearly panel angles, and
economic cost effects are also evaluated in real-world environments. In [18], the optimal
solar panel angle is calculated for the maximum energy yield. Calculating the cosine effect
of the angle of the sun and the angle of the panel, the authors present a permanent fixed
optimal angle but also a four-season or monthly adjustment to improve the total annual
solar energy yield. In [22], the authors investigate the arrangement of solar panels for
various spaces. Solar panels can be arranged to maximize energy production in limited
spaces such as rooftops of buildings. The results suggest that the suitable deployment of
solar panels could increase energy production by up to 6%. In [23], the authors introduce a
new term, the tolerance angle. The tolerance angles refer to the angular range of optimal
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solar panels that minimize economic losses. It can be useful during actually installing solar
panels.

The main purpose of this paper is to present a mathematical algorithm for the optimal
orientation of solar panels for multi-apartment buildings under several constraints. Let m
and n be the representative of the solar beam and normal vector of the panel, respectively.
Then, we consider the following optimizing problem

arg min
n

‖m− n‖2 , (1)

when the solar vector m and certain constraint for n is given.
The outline of this paper is as follows. A mathematical model for finding the optimal

position of a solar panel for buildings is described in Section 2. Numerical results are listed
in Section 3. We finalize the paper with the conclusion in Section 4. A code implementation
is included in Appendix A for users who may not be familiar with the content.

2. Mathematical Modeling

In this section, we propose our mathematical modeling to derive the optimal orienta-
tion of solar panels under several constraints. First, we consider a rectangular panel OABC
(represented dark gray) whose horizontal and vertical lengths are Ly and Lz, respectively,
as shown in Figure 2.

(a) (b)

Figure 2. Schematic illustrations of our mathematical modeling to the rotated panel, (a) fixing A and
(b) fixing B.

As shown in Figure 2a, we suppose that the panel OABC is on yz-plane and the
coordinates of A, B, and C are determined automatically. Then, we move the solar panel
while keeping the coordinate of A(0, 0, Lz) fixed. Moreover, we fix the height of panel
Lz. We then obtain a moved solar panel AB∗C∗O∗, which is represented by light gray.
Here, let a and b be the lengths of the perpendicularity from B∗ and C∗ to the plane OABC,
respectively. We can know that the length of the perpendicularity from O∗ to OABC is b− a.
Note that the foot perpendicular on the plane OABC from B∗ is a point on the plane, not B.
Similarly, it is important to know that each foot perpendicular on the plane OABC from O∗

and C∗ is also a point on the plane. By using the Pythagorean theorem, we can obtain the

coordinate of B∗ as (a,
√

L2
y − a2, Lz). However, we only obtain the x-coordinate of C∗ as

b. In this case, we define the coordinate of C∗ as (b, y, z), in which y and z are unknown
constants. The purpose of our modeling is to find the best-fitted normal vector of the plane
AB∗C∗O∗ to a given sunlight vector. In other words, finding (a, b, y, z) is our primary goal.
In our modeling, we can get the two equations from the geometry. The first equation is
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obtained from the fact that the length of AC∗ equals the diagonal of a rectangular panel.
That is,

b2 + y2 + (z− Lz)
2 = L2

y + L2
z . (2)

Moreover, we know that the length of B∗C∗ is equal to the height of the panel, Lz, we
have the following

(a− b)2 +
(√

L2
y − a2 − y

)2
+ (Lz − z)2 = L2

z . (3)

Then, we can combine the two Equations (2) and (3) to get y and z in terms of a, b, Ly,
and Lz as follows:

y =
L2

y − ab√
L2

y − a2
, z = Lz −

√
L2

y + L2
z − b2 − y2 . (4)

Now, we get O∗ = (b− a, y−
√

L2
y − a2, z) from the fact that it shares the midpoint

of the rectangle (O∗ + B∗ = A + C∗). To find the normal vector n of plane AB∗C∗O∗, we
define both vectors u and v using A, O∗, and B∗. By using the cross product of u and v, we
can find the normal vector n as follows:

n =

(
(Lz − z)

√
L2

y − a2, a(z− Lz), b
√

L2
y − a2 − ay

)
LyLz

. (5)

Similarly, we consider the case in which B is fixed as shown in Figure 2b. Following
the above method, we can obtain the specific coordinates of O∗, A∗, and C∗, which are
moved points from O, A, and C, respectively. To sum up, let us assume that the coordinates
O, A, B, and C are given as follows:

O = (0, 0, 0), A = (0, 0, Lz), B = (0, Ly, Lz), C = (0, Ly, 0) . (6)

For the cases (i) fixed A and (ii) fixed B, we can derive the remaining coordinates of
the panel as follows:

(i) O∗ = (b− a, y−
√

L2
y − a2, z), B∗ = (a,

√
L2

y − a2, Lz), C∗ = (b, y, z) , (7)

(ii) O∗ = (b, Ly − y, z), A∗ = (a, Ly −
√

L2
y − a2, Lz), C∗ = (b− a, Ly − y +

√
L2

y − a2, z) . (8)

Subsequently, we need to evaluate the normal vector of the panel. In multi-apartment
buildings, if an inclination angle is formed between the panel and the bottom plane
perpendicular to the wall where the panel is installed less than a certain degree, it can be a
nuisance downstairs due to a shade from the panel. For this reason, the angle is restricted
by regulation, and we take a threshold as π/3 in this paper. Therefore, we can set the
maximum value of b to Lz/2; hence we have the constraint 0 ≤ a ≤ b ≤ Lz/2 for the
problem (1). Figure 3a shows the curved triangular region where all the possible normal
vectors can be located. Note that we set Lz = 1 for simplicity.
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(a) (b)

Figure 3. (a) All the possibilities of normal vector can be located. It is a curved triangular shape.
Note that the black part corresponds to Figure 2a, and the blue part corresponds to Figure 2b. (b)
Schematic illustration of finding the nearest normal vector n, which is represented by green color,
using the projection of solar beam m, which is represented by red color, to the plane generated by
any two vectors, p and q, such that lie on the nearest boundary of the region to m. Note that we
normalize the magnitude of the normal vector.

There are two cases for the given vector representing a solar beam m. One is in the
curved triangular region, and the other is outside of the curved region. We just take n = m
to the former. However, one cannot take a normal vector that coincides with m if m is
outside of the region. In this case, we have to choose n such that m · n is maximized. Such
a vector can be found as normalizing the vector, which is given by the projection of m to
the plane generated by any two vectors that lie on the nearest boundary of the region to m.
Figure 3b depicts the process of how to find the corresponding fitted normal vector to m.

To be more precise, we can obtain the normal vector n as follows:

n =
‖n1‖2m− (m · n1)n1

‖‖n1‖2m− (m · n1)n1‖
, (9)

where n1 = p × q. An important thing is that we can simplify the representation of
boundary vectors as the relation between a and b. Three endpoints of the triangular
boundary are expressed by (i) a = 0, b = Lz/2, (ii) a = b, b = Lz/2 where A is fixed, (iii)
a = b, b = Lz/2 where B is fixed. Thus, one can easily get the best-fitted orientation for the
solar panel by following the above process.

The solar beam m is treated as a given constant throughout the whole process so far.
The only remaining thing is, therefore, to choose an appropriate representative m. One
way to find the representative of a solar beam is by applying the mean value property
to the trace of the sun. Assume that Earth is a sphere, and the orbit of Earth is a circle.
Then the azimuth can be computed. Considering the spherical coordinates system while
looking at the celestial body from the current position. Note that we fix the current position
as Seoul, whose latitude is approximately 37.5326◦. The south meridian altitude of the
sun is on a great circle of spheres when the celestial body passes through the meridian of
Earth. Furthermore, there are two times when the orbit of Earth and its axis of rotation are
perpendicular; we call this vernal / autumnal equinox, respectively. Moreover, summer
and winter solstices are parallel to the equinox. Therefore, the procedure assumes that
the values between the maximum and minimum south meridian altitude have the same
normal vector. To depict it clearly, we present Figure 4a as follows.
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(a)

(b) (c)

Figure 4. (a) Illustration of the trajectory of the sun when the positions of Earth are on solstice and
equinox in Seoul. Note that these three traces have an identical normal vector. (b) Illustration of a
trace of the sun (magenta) and possibly generating trajectory (solid line). Note that the dotted line is
part of the trace where the sunlight does not shine due to the azimuth angle of buildings. Solar vector
(red) and solar panel (blue) are represented with the shaded region, which represents a possible area
to receive sunlight. The black cuboid is a schematic illustration of the residence; it is actually treated
as a point (the origin) in our method. (c) Illustration of the solar vector (red) and the best-fitted
normal vector (blue). Note that a cyan-colored triangle represents the boundary of all possibly taken
normal vectors of the solar panel.

Because the normal vectors of solstice and equinox are identical, we can easily find the
trajectory of average solar movement via the intersection curve with this unique normal
vector. Then we can compute m if we know the azimuth angle of the place to install the
solar panel. Suppose that we wish to install the panel in the building to a certain degree.
Figure 4b depicts a trace of solar movement and the corresponding representative solar
vector.

Therefore, combining all of the above conditions, we can find the best-fitted vector
out of all the normal vectors that the solar panel can take along with respect to the solar
vector. Figure 4c shows the evaluated solar vector and the derived best-fitted normal vector
corresponding to the solar vector.

In summary, the optimal solar panel installation can be determined by knowing the
south-middle altitude of the desired area and the azimuth angle of the building where
the solar panel will be installed. Figure 5 depicts the procedure for finding the optimal
installation specification of solar panels with respect to geometric features.
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Get geometric positions and azimuth angles

Evaluate the solar vector m

Determine whether m is inside or outside of boundaries

Derive the normal vector n
with a = b or b = Lz/2 & n1 = p× q

Set the normal vector n = m
with y =

L2
y−ab√
L2

y−a2
& 0 ≤ a ≤ b ≤ Lz/2

Outside Inside

Figure 5. Schematic illustration to find the optimal installation specification of solar panels.

3. Numerical Simulation Results

We present several numerical simulation results in this section. We fix the solar
panel specification as Ly = 3 and Lz = 2 because this is the common length ratio of the
standard solar panel. To evaluate the solar elevation angle α at noon, we use the following
formula [24].

α = arcsin(sin φ sin δ + cos φ cos δ) , (10)

where φ is the latitude, and δ is the declination angle defined as

δ = arcsin
(
− sin Θ cos

(
2π(d + 10)

365.24
+ 0.0334 sin

(
2π(d− 2)

365.24

)))
, (11)

where Θ ≈ 23.44◦ is degree of the rotation axis of Earth, and d represents the number of
days since January 1st in 2022. For instance, one can take d = 3 + 9/24 for 09:00 A.M. on
January 4th 2022. Note that this approximation formula is fitted to UTC+00:00. Though
there is a slight difference (up to the second decimal place) between the fixed and local time-
based formula, this condition can be ignored because we consider the declination angle
only up to the first decimal place. All the latitudes are sourced from [25]. Table 1 shows
monthly installation specification data with respect to the monthly arithmetic average of
the south altitude of each city with the azimuth angle 73π/72 from the north. Note that we
use the notation (a, b, y, z) to represent the computed parameters hereafter.

Table 1. Installation specification with respect to the south meridian altitude of each city. The
azimuth angle is 73π/72. Note that the data is aligned by month from the top (January) to the bottom
(December).

City Seoul Ottawa Dublin

(a, b, y, z)

(0.0006, 1, 2.9998, 0.2677) (0.1309, 0.9244, 2.8540, 0.1665) (0.1309, 0.6668, 2.9250, 0.0739)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0.1309, 0.9270, 2.8532, 0.1677)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0.0999, 1, 2.9684, 0.2275)
(0, 1, 3, 0.2679) (0.1309, 1, 2.8271, 0.2037) (0.1309, 0.7508, 2.9045, 0.0996)

(0.0631, 1, 2.9796, 0.2423) (0.1309, 0.8553, 2.8755, 0.1376) (0.1309, 0.5941, 2.9406, 0.0549)
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Next, we present Table 2, a monthly installation specification data with respect to
the monthly arithmetic average of the south altitude of each city with the azimuth angle
35π/36 from the north.

Table 2. Installation specification with respect to the south meridian altitude of each city. The
azimuth angle is 35π/36. Note that the data is aligned by month from the top (January) to the bottom
(December).

City Wellington Copenhagen Paris

(a, b, y, z)

(0, 1, 3, 0.2679) (0.2615, 0.7166, 2.9132, 0.0536) (0.2615, 0.9395, 2.8491, 0.1219)
(0, 1, 3, 0.2679) (0.2615, 0.9775, 2.8363, 0.1367) (0.1356, 1, 2.9578, 0.2133)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0.0882, 1, 2.9719, 0.2322) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0.2035, 1, 2.9389, 0.1866) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)

(0.1574, 1, 2.9516, 0.2046) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0.2031, 1, 2.9391, 0.1868) (0.0129, 1, 2.9957, 0.2627)
(0, 1, 3, 0.2679) (0.2615, 0.8008, 2.8912, 0.0759) (0.2615, 1, 2.8213, 0.1542)
(0, 1, 3, 0.2679) (0.2615, 0.6438, 2.9301, 0.0376) (0.2615, 0.8695, 2.8712, 0.0972)

Subsequently, we present Table 3, which represents optimal installation specification
data with respect to the monthly average of the south altitude of each city with the azimuth
angle 17π/18.

Table 3. Installation specification with respect to the south meridian altitude of each city. The
azimuth angle is 17π/18. Note that the data is aligned by month from the top (January) to the bottom
(December).

City Rome Moscow Riyadh

(a, b, y, z)

(0.2391, 1, 2.9296, 0.1730) (0.5209, 0.9653, 2.8404, 0.0530) (0, 1, 3, 0.2679)
(0.0021, 1, 2.9993, 0.2671) (0.3910, 1, 2.8944, 0.1180) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0.0199, 1, 2.9934, 0.2598) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)
(0, 1, 3, 0.2679) (0, 1, 3, 0.2679) (0, 1, 3, 0.2679)

(0, 1, 3, 0.2679) (0.2798, 1, 2.9195, 0.1577) (0, 1, 3, 0.2679)
(0.1694, 1, 2.9482, 0.1999) (0.5209, 1, 2.8113, 0.0752) (0, 1, 3, 0.2679)
(0.2969, 1, 2.9154, 0.1514) (0.5209, 0.8942, 2.8636, 0.0371) (0, 1, 3, 0.2679)

According to the above tables, it can be verified that the rate of change of the parameter
(a, b, y, z) is nearly zero when the south meridian altitude is high, and the latitude is low.
These results are independent of the azimuth angle of buildings. Because time series data
can be generated, it would be better to rotate the panel in real-time; however, in the case of
installing a solar panel in a residential area, it is expensive to construct the panel support
that moves according to the time. Therefore, we employ a weighted mean of monthly
(a, b, y, z) based on daylight time. More precisely, we adopt the following weight formula
to each monthly weight wi as
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wi =
li

∑12
i=1 li

, i = 1, . . . , 12 , (12)

where li represents the length of the trajectory of the sun for the i-th month. Figures 6–8
represent the weighted average values of the south meridian altitude in selected regions
and those of parameters (a, b, y, z).
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Figure 7. Weighted average values of parameters (a, b, y, z) with respect to each region in Table 2. Note
that the number displayed after the city is the weighted average value of the south meridian altitude.
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Figure 8. Weighted average values of parameters (a, b, y, z) with respect to each region in Table 3. Note
that the number displayed after the city is the weighted average value of the south meridian altitude.

In addition, we evaluate the energy efficiency compared to the panel installed in
parallel to its support by using the following function,

E(n; m, n0) =
12

∑
i=1

Dim · (ni − n0)× 100(%) , (13)

where Di is given constant and n0 represents a normal vector of the panel installed in
parallel to its support. Table 4 shows the annual efficiency based on (13) for each city.
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Table 4. The annual energy efficiency based on (13) for each city. The azimuth angle is (a) 73π/72, (b)
35π/36, (c) 17π/18.

(a) Seoul Ottawa New Delhi Dublin Brasilia

Efficiency (%) 12.6241 9.7297 15.7840 7.1309 18.9755

(b) Kuala Lumpur Wellington Paris Copenhagen Asuncion

Efficiency (%) 20.1175 11.0114 8.5754 6.5555 16.558

(c) Jakarta Buenos Aires Rome Moscow Riyadh

Efficiency (%) 19.0135 13.1064 10.9335 6.8133 16.2883

From the above results, it is effective to set the installation angle of the solar panel
using the proposed method. In particular, the reason why the efficiency is higher in the
area near the equator is that the south meridian altitude is much higher than in other areas.

4. Conclusions

In this paper, we propose a simple mathematical method to obtain the optimal instal-
lation conditions for solar panels in multi-apartment buildings. The presented method
provides optimal installation information by considering the azimuth of the building and
the amount of sunlight (per month). Through the numerical simulation results, we can
confirm that more efficient energy generation can be expected via our method than the
panel simply fixed on support without rotation (parallel to the building). Note that the
efficiency is maximized if the panel can be rotated in real-time; however, it is not practical
for residence; hence, finding an optimal fixed position for the panel is essential to have
maximal efficiency under several constraints. In this study, the shadow effect (caused by
itself or any other buildings) and the diffuse and reflected irradiations are not considered
in the proposed method. These effects are common in urban areas; therefore, we plan to
address these aspects in future works.
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Appendix A

The following MATLAB codes are available from the corresponding author’s web-
page: https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/ (accessed on 1
November 2022).

https://mathematicians.korea.ac.kr/cfdkim/open-source-codes/
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c l e a r ; c l o s e a l l ;

f l a g =0; % I f you have data f i l e then f l a g =1

i f f l a g ==0
TAB= t a b l e ( { ' South Korea ' } , { ' Seoul ' } , 3 7 . 5 3 2 6 ) ;

e l s e
TAB=r e a d t a b l e ( ' ./ data1 . x l s x ' ) ; % Data f i l e

end

%% Pre - computing

l a t = t a b l e 2 a r r a y (TAB ( : , 3 ) ) /180* pi ;
dd= l i n s p a c e ( 0 , 3 6 4 . 5 , 7 3 0 ) ;
% d e c l i n a t i o n angle formula
del=as in ( s i n ( - 2 3 . 4 4 / 1 8 0 * pi ) * cos ( 2 / 3 6 5 . 2 4 * ( dd+10) * pi +2*0 .0167* s i n ( 3 6 0 / 3 6 5 . 2 4 * ( dd - 2 ) /180* pi ) ) ) ;
f o r i =1 : length ( l a t )

alp ( i , : ) =as in ( s in ( l a t ( i ) ) * s i n ( del ) +cos ( l a t ( i ) ) * cos ( del ) ) /pi * 1 8 0 ; % e l e v a t i o n angle formula
end

eqx=as in ( cos ( l a t ) ) /pi * 1 8 0 ; % equinox meridian a l t i t u d e
dat=alp ( : , 2 : 2:end) ;
Date=datetime ( 2 0 2 2 , 1 , 1 ) : datetime ( 2 0 2 2 , 1 2 , 3 1 ) ; Date=Date ' ;
Year=Date . Year ; Month=Date . Month ; Day=Date . Day ;
f o r i =1: length ( l a t )

showdat=dat ( i , : ) ' ;
Table= t a b l e ( Date , Year , Month , Day , showdat ) ;
% month - avg e l e v a t i o n angle
Info { i }= varfun (@mean, Table , ' GroupingVariables ' , { ' Year ' ' Month ' } , ' InputVar iab les ' , ' showdat ' ) ;

end

%% Procedure 1 & 2

N=100;
x= l i n s p a c e ( - 2 , 2 ,N) ;
y=x ; z=x ;
r =1;
[ xx , yy , zz ]= ndgrid ( x , y , z ) ;
d= s q r t ( xx .^2+yy.^2+ zz . ^ 2 ) - r ;

c t =0 ;

f o r i i =1:12 % month
f o r j j =1 : length ( l a t ) % # of c i t i e s

c t = c t +1;
c l f ;
th= t a b l e 2 a r r a y ( Info { j j } ( i i , 4 ) ) ; % meridian a l t i t u d e of month
t = l i n s p a c e ( - 1 , 1 , 1 0 0 ) ;
cpt =[ cos ( ( 1 8 0 - eqx ( j j ) ) * pi /180) 0 s i n ( ( 1 8 0 - eqx ( j j ) ) * pi /180) ] ;
nv=c r o s s ( [ 0 1 0 ] , cpt , 2 ) ;
upt =[ cos ( ( 1 8 0 - th ) * pi /180) 0 s i n ( ( 1 8 0 - th ) * pi /180) ] ;

% Use the curve of i n t e r s e c t i o n
c l e a r T k Y C X Z ;
Y= l i n s p a c e ( - 1 , 1 , 1 0 0 0 ) ;
k=(nv ( 1 ) *nv ( 2 ) *Y- nv ( 1 ) ^2* upt ( 1 ) -nv ( 1 ) *nv ( 3 ) * upt ( 3 ) ) /(nv ( 1 ) ^2+nv ( 3 ) ^2) ;
C=(nv ( 3 ) ^2 -nv ( 3 ) ^2*Y.^2 - nv ( 1 ) ^2* upt ( 1 ) ^2 -nv ( 2 ) ^2*Y.^2 - nv ( 3 ) ^2* upt ( 3 ) ^ 2 + . . .
2*nv ( 1 ) *nv ( 2 ) * upt ( 1 ) *Y+2*nv ( 2 ) *nv ( 3 ) * upt ( 3 ) *Y- 2 * nv ( 1 ) *nv ( 3 ) * upt ( 1 ) * upt ( 3 ) ) /(nv ( 1 ) ^2+nv ( 3 ) ^2)+k . ^ 2 ;

idx=C<0;
aa=f ind ( idx ==0 ,1 , ' f i r s t ' ) ;
bb=f ind ( idx ==0 ,1 , ' l a s t ' ) ;
f o r i =1 : aa -1

C( aa - i ) =C( aa+ i ) ;
Y( aa - i ) =Y( aa+ i ) ;

end
f o r i =1: length (C) -bb

C( bb+ i ) =C( bb - i ) ;
Y( bb+ i ) =Y( bb - i ) ;

end

C=[C( 1 : aa - 1 ) 0 C( aa : bb ) 0 C( bb+1:end) ] ; k=[k k(end) k(end) ] ;
YA=( s q r t ( 4 * nv ( 3 ) ^ 2 * ( ( nv ( 3 ) ^2 -nv ( 1 ) ^2* upt ( 1 ) ^2 -nv ( 3 ) ^2* upt ( 3 ) ^ 2 - . . .
2*nv ( 1 ) *nv ( 3 ) * upt ( 1 ) * upt ( 3 ) ) /(nv ( 1 ) ^2+nv ( 3 ) ^2)+k ( 1 ) ^2) ) ) /( -2* nv ( 3 ) ^2) ;
Y=[Y ( 1 : aa - 1 ) YA Y( aa : bb ) -YA Y( bb+1:end) ] ;
X1= -k+ s q r t (C) ; X2= -k - s q r t (C) ; X3= -X2 ; X4= -X1 ;
Z1= s q r t ( r ^2 -X1 .^2 -Y. ^ 2 ) ; Z2= s q r t ( r ^2 -X2 .^2 -Y. ^ 2 ) ;
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Z3= - s q r t ( r ^2 -X1 .^2 -Y. ^ 2 ) ; Z4= - s q r t ( r ^2 -X2 .^2 -Y. ^ 2 ) ;

idx1=f ind (Y==min (Y) ) ; idx2=f ind (Y==max(Y) ) ; idxs=f ind ( Z2==min ( Z2 ) ) ;

i f (180 - th ) < (180 - eqx ( j j ) ) % upper than equinox
ZL= -Z3 ( 1 : aa - 1 ) ; ZR= -Z3 ( bb+3:end) ;
z i d l =f ind (ZL==min (ZL) ) ; z idr=f ind (ZR==min (ZR) ) ; % f ind redundant i n d i c e s
ZL=ZL( z i d l:end) ; ZR=ZR ( 1 : z idr ) ;
XL=X1 ( 1 : aa - 1 ) ; XR=X1 ( bb+3:end) ;
XL=XL( z i d l:end) ; XR=XR ( 1 : z idr ) ;
YL=Y ( 1 : aa - 1 ) ; YR=Y( bb+3:end) ;
YL=YL( z i d l:end) ; YR=YR ( 1 : z idr ) ;
X2=X2 ( idx1 : idx2 ) ;
X2=[XL X2 XR ] ;
Y=Y( idx1 : idx2 ) ;
Y=[YL Y YR ] ;
Z2=Z2 ( idx1 : idx2 ) ;
Z2=[ZL Z2 ZR ] ;
Z3=Z3 ( idx1 : idx2 ) ;

e l s e i f (180 - th ) ==(180 - eqx ( j j ) ) % same
X2=X2 ( idx1 : idx2 ) ;
Y=Y( idx1 : idx2 ) ;
Z2=Z2 ( idx1 : idx2 ) ;

e l s e % lower than equinox
i f length ( idxs ) ==2

idx3=idxs ( 1 ) ; idx4=idxs ( 2 ) ;
Z2 ( idx3 +1) =0; Z2 ( idx4 - 1 ) =0;
Y( idx3 +1) = - s q r t ( - 4 * ( upt ( 1 ) ^2+nv ( 3 ) ^2* upt ( 3 ) ^2/nv ( 1 ) ^2+2* upt ( 1 ) * upt ( 3 ) *nv ( 3 ) /nv ( 1 ) - 1 ) ) /2;
Y( idx4 - 1 ) = s q r t ( - 4 * ( upt ( 1 ) ^2+nv ( 3 ) ^2* upt ( 3 ) ^2/nv ( 1 ) ^2+2* upt ( 1 ) * upt ( 3 ) *nv ( 3 ) /nv ( 1 ) - 1 ) ) /2;
X2 ( idx3 +1) = - s q r t ( 1 -Y( idx3 +1) ^2) ;
X2 ( idx4 - 1 ) = - s q r t ( 1 -Y( idx4 - 1 ) ^2) ;
idx3=idx3 +1; idx4=idx4 - 1 ;

e l s e
idx3=idxs ( f ind ( idxs >idx1 , 1 , ' f i r s t ' ) ) ; idx4=idxs ( f ind ( idxs <idx2 , 1 , ' l a s t ' ) ) ;

end
X2=X2 ( idx3 : idx4 ) ;
Y=Y( idx3 : idx4 ) ;
Z2=Z2 ( idx3 : idx4 ) ;

end

% Azimuth angle formula - standard south ( pi ) // 0 : south / r the +: west / r the - : e a s t
r the =0; % range = ( - pi /2 , pi /2)
azthe=pi+r the ;
i f azthe==pi

id=f ind ( X2>0) ; id2=f ind ( X2≤0) ;
e l s e i f rthe >0

id=f ind (Y<abs ( tan ( 0 . 5 * pi - r the ) ) *X2 ) ; id2=f ind (Y>=abs ( tan ( 0 . 5 * pi - r the ) ) *X2 ) ;
e l s e

id=f ind (Y> - abs ( tan ( 0 . 5 * pi+r the ) ) *X2 ) ; id2=f ind (Y≤ - abs ( tan ( 0 . 5 * pi+r the ) ) *X2 ) ;
end

P = 0 . 5 * [ X2 ( id2(end)) +X2 ( id2 ( 1 ) ) Y( id2(end)) +Y( id2 ( 1 ) ) Z2 ( id2(end)) +Z2 ( id2 ( 1 ) ) ] ;
M=[X2 ( id2 ( 1 ) ) Y( id2 ( 1 ) ) Z2 ( id2 ( 1 ) ) ] ;
P1=P -M;
S=c r o s s ( nv , P1 , 2 ) ;
t t = s q r t ( ( 1 - norm ( P , 2 ) ^2+dot ( P , S ) ^2/norm ( S , 2 ) ^2)/norm ( S , 2 ) ^2) - dot ( P , S ) /norm ( S , 2 ) ^2;
s o l a r =P+ t t * S ;

%% Procedure 3 & 4 & 5

the=pi - r the ;
Rot =[ cos ( the ) - s in ( the ) 0 ; s i n ( the ) cos ( the ) 0 ; 0 0 1 ] ;
Ly=3; Lz =2; b=Lz /2; a =0;
y1 =(2* Ly^2 -2* a * b ) /(2* s q r t ( Ly^2 -a ^2) ) ;
z1=Lz - s q r t ( Ly^2+Lz^2 -b^2 -y1 ^2) ;
pl1 =[b - a y1 - s q r t ( Ly^2 -a ^2) z1

b y1 z1
a s q r t ( Ly^2 -a ^2) Lz
0 0 Lz
b - a y1 - s q r t ( Ly^2 -a ^2) z1 ] ;

u1 = pl1 ( 1 , : ) - pl1 ( 4 , : ) ; v1 = pl1 ( 3 , : ) - pl1 ( 4 , : ) ;
n1 = c r o s s ( u1 , v1 ) ; n1 = n1/norm ( n1 ) ;
A=Rot * n1 ' ;
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a=b ; y =(2* Ly^2 -2* a * b ) /(2* s q r t ( Ly^2 -a ^2) ) ;
z=Lz - s q r t ( Ly^2+Lz^2 -b^2 -y^2) ;
pl =[b - a y - s q r t ( Ly^2 -a ^2) z

b y z
a s q r t ( Ly^2 -a ^2) Lz
0 0 Lz
b - a y - s q r t ( Ly^2 -a ^2) z ] ;

pr =[0 Ly Lz
a Ly - s q r t ( Ly^2 -a ^2) Lz
b Ly - y z
b - a Ly - y+ s q r t ( Ly^2 -a ^2) z
0 Ly Lz ] ;

u = pl ( 1 , : ) - pl ( 4 , : ) ; v = pl ( 3 , : ) - pl ( 4 , : ) ;
n = c r o s s ( u , v ) ; n = n/norm ( n ) ;
u2 = pr ( 2 , : ) - pr ( 1 , : ) ; v2 = pr ( 4 , : ) - pr ( 1 , : ) ;
n2 = c r o s s ( u2 , v2 ) ; n2 = n2/norm ( n2 ) ;
B=Rot *n ' ; C=Rot * n2 ' ;
aaa=norm (A- B , 2 ) ; bbb=norm ( B -C, 2 ) ; ccc=norm (C-A, 2 ) ;
s s s = . 5 * ( aaa+bbb+ccc ) ;
SSS= s q r t ( s s s * ( sss - aaa ) * ( sss - bbb ) * ( sss - ccc ) ) ;
tempn=c r o s s ( B -A, C-A) ; tempn=tempn/norm ( tempn , 2 ) ;
D= - dot ( tempn ,A) ;
X= -D/(tempn ( 1 ) +tempn ( 2 ) * s o l a r ( 2 ) . . .
/ s o l a r ( 1 ) +tempn ( 3 ) * s o l a r ( 3 ) / s o l a r ( 1 ) ) ;
Y= s o l a r ( 2 ) *X/ s o l a r ( 1 ) ; Z= s o l a r ( 3 ) *X/ s o l a r ( 1 ) ;
kk=[X Y Z ] ; kk=kk ' ;
s s s 1 = . 5 * ( norm (A- kk , 2 ) +norm ( B - kk , 2 ) +aaa ) ;
s s s 2 = . 5 * ( norm ( B - kk , 2 ) +norm (C- kk , 2 ) +bbb ) ;
s s s 3 = . 5 * ( norm (C- kk , 2 ) +norm (A- kk , 2 ) +ccc ) ;
SSS2= s q r t ( s s s 1 * ( sss1 - norm (A- kk , 2 ) ) . . .
* ( sss1 - norm ( B - kk , 2 ) ) * ( sss1 - aaa ) ) + . . .

s q r t ( s s s 2 * ( sss2 - norm ( B - kk , 2 ) ) . . .
* ( sss2 - norm (C- kk , 2 ) ) * ( sss2 - bbb ) ) + . . .
s q r t ( s s s 3 * ( sss3 - norm (C- kk , 2 ) ) . . .
* ( sss3 - norm (A- kk , 2 ) ) * ( sss3 - ccc ) ) ;

d i s tan =[norm (A' - so lar , 2 ) norm ( B ' - so lar , 2 ) norm (C' - so lar , 2 ) ] ;
maxd=max( d is tan ) ; indd=f ind ( d is tan==maxd) ;
Rot2 =[ cos ( r the ) - s in ( r the ) 0 ; s i n ( r the ) cos ( r the ) 0 ; 0 0 1 ] ;
i f length ( indd ) < 2

i f indd==1
pnv=c r o s s (C, B ) ;

e l s e i f indd==2
pnv=c r o s s (A,C) ;

e l s e
pnv=c r o s s ( B ,A) ;

end
pnv=pnv ' ;
i f abs ( SSS - SSS2 ) < 1e -7

rn= s o l a r ;
temprn=Rot2 * rn ' ;
rz=Lz - Lz * s q r t ( temprn ( 1 ) ^2+temprn ( 2 ) ^2) ;
a=abs ( temprn ( 2 ) *Ly* Lz/(Lz - rz ) ) ;
KK=temprn ( 3 ) * Lz * a/Ly ;
CC= - ( ( Ly^2 -a ^2) * ( ( Lz - z ) ^2 -Ly^2 -Lz^2) . . .
+temprn ( 3 ) ^2*Ly^2*Lz^2)/Ly^2;
ry= s q r t (CC+KK^2) -KK;
b=abs ( ( temprn ( 3 ) *Ly* Lz+a * ry ) . . .
/ s q r t ( Ly^2 -a ^2) ) ;

e l s e
rn=solar - dot ( so lar , pnv ) /norm ( pnv , 2 ) ^2*pnv ;
rn=rn/norm ( rn , 2 ) ;
i f rn ( 3 ) >A( 3 )

rn=A;
b=Lz /2;
a =0;
ry =(Ly^2 -a * b ) / s q r t ( Ly^2 -a ^2) ;
rz=Lz - s q r t ( Ly^2+Lz^2 -b^2 - ry ^2) ;

e l s e i f rn ( 3 ) < 0
d i s t 1 =norm ( so lar - B , 2 ) ;
d i s t 2 =norm ( so lar -C, 2 ) ;
rn =( dis t1 > d i s t 2 ) *C+( dis t1 < d i s t 2 ) *B ;
b=Lz /2;
a=b ;
ry =(Ly^2 -a * b ) / s q r t ( Ly^2 -a ^2) ;
rz=Lz - s q r t ( Ly^2+Lz^2 -b^2 - ry ^2) ;

e l s e
temprn=Rot2 * rn ' ;
b=Lz /2;
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rz=Lz - Lz * s q r t ( temprn ( 1 ) ^2+temprn ( 2 ) ^2) ;
a=abs ( temprn ( 2 ) *Ly* Lz/(Lz - rz ) ) ;
ry =(Ly^2 -a * b ) / s q r t ( Ly^2 -a ^2) ;

end
end

e l s e
i f s o l a r ( 3 ) > 0

rn=A;
b=Lz /2;
a =0;
ry =(Ly^2 -a * b ) / s q r t ( Ly^2 -a ^2) ;
rz=Lz - s q r t ( Ly^2+Lz^2 -b^2 - ry ^2) ;

e l s e
rn = . 5 * ( B+C) ;
b =0;
a =0;
ry =(Ly^2 -a * b ) / s q r t ( Ly^2 -a ^2) ;
rz=Lz - s q r t ( Ly^2+Lz^2 -b^2 - ry ^2) ;

end
end
val { j j , i i } = [ a b ry rz ] ;

end
end
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