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Abstract: In this paper, we developed a new variational iteration method using the quasilinearization
method and Adomian polynomial to solve nonlinear differential equations. The convergence analysis
of our new method is also discussed under the Lipschitz continuity condition in Banach space. Some
application problems are included to test the efficacy of our proposed method. The behavior of the
method is investigated for different values of parameter t. This is a powerful technique for solving a
large number of nonlinear problems. Comparisons of our technique were made with the available
exact solution and existing methods to examine the applicability and efficiency of our approach. The
outcome revealed that the proposed method is easy to apply and converges to the solution very fast.
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1. Introduction

One of the challenging tasks in numerical analysis is solving nonlinear differential
equations. These equation frequently appear in a wide variety of problems, including
various applications in physics, engineering, biology, heat transfer within porous catalyst
particles, and the modeling of chemical reactions. We have many iterative methods for
solving these equations. One of the well-known methods is the variational iteration method,
which was first introduced by He [1] and has proven to be a useful technique for solving
both linear and nonlinear ODEs. Their applicability to different kinds of differential
equations was given in [2–8]. Without linearization, discretization, or perturbation, this
approach is directly applied to nonlinear ODEs. In [3], Abbasbandy proposed a new
application of the VIM to solve a quadratic Riccati differential equation using the Adomian
polynomial. Singh et al. [8] proposed an analytical technique for the solution of Lane–
Emden equations using the Adomian polynomial [9], which is based on the VIM and
control parameter h. Nilima et al. [6] proposed an algorithm based on the VIM for solving
numerically the Bratu-type and the Lane–Emden equations, where the recursive schemes
for approximate solutions are calculated by using the given boundary conditions. Recently,
Hayani [10] developed a method using the combination of the variational iteration method
and the homotopy analysis method to find the approximate solution to stiff systems of the
initial-value problem for ODEs by using a sequence of subintervals and the step size.

The main motivation for this study is to introduce the quasilinearization method
as a basis for the implementation of the VIM. The quasilinearization method was ini-
tially introduced by Bellman and Kalaba [11] as a generalization of Newton–Raphson’s
method. This is one of the most-powerful tools in which a sequence of linear differential
equations is obtained from the nonlinear differential equations. Some applications of the
quasilinearization method and the order of convergence of the method were discussed
in [12–15].
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In this work, the quasilinearization algorithm and Adomian polynomial were used to
implement a new variational iteration method. To the best of our knowledge, no researchers
have used the quasilinearization method and Adomian polynomial to develop the VIM for
solving nonlinear differential equations. We propose a new variational iteration method
using the QLM and ADM for solving ODEs. The convergence analysis of the method is
discussed. We solved some application problems, such as the one-boundary-value problem
and two-initial-value problems, to check the applicability and accuracy of the proposed
technique. The behavior of the method was examined for different values of parameter
t. We compared the obtained numerical results by our proposed iterative approach with
the available exact solution, ADM [9], and modified VIM [3] to test the applicability and
efficiency of our approach. The beauty of our method is that it easy to apply and converges
to the solution very fast.

The outline of the paper is as follows: In Section 2, we discuss the development of
a new variational iteration method by introducing a quasilinearization algorithm and
the Adomian polynomial. In Section 3, the convergence analysis confirms the conver-
gence to the solution discussed. In Section 4, some numerical experiments are performed
and the proposed methods are compared with existing methods, and we observe that
our method gives better results compared to the existing methods. Section 5 gives the
concluding remarks.

2. Construction of Modified Iterative Method

In this section, we illustrate the basic concepts of He’s variational iteration method
to construct a new modified variational iteration method. Consider the general nonlinear
ordinary differential equation:

Lu(t) + f (t, u(t)) = 0 (1)

where L represent linear components and f represent nonlinear components.
From the variational iteration method, the correction functional can be constructed as

um+1(t) = um(t) +
∫ t

0
λ(x, t)[Lum(x) + f (t, ũm(x))]dx. (2)

where λ is a general Lagrangian multiplier that can be easily identified by making the
above correction functional stationery by considering the nonlinear function f (t, ũm(x)) as
a restricted variation, i.e., δ ˜f um = 0; we obtain

δum+1(t) = δum(t) + δ
∫ t

0
λ(x, t)[Lum(x) + f (t, ũm(x))]dx

and

δum+1(t) = δum(t) + δ
∫ t

0
λ(x, t)[Lum(x)]dx.

In general, the Lagrangian multiplier λ, can be easily obtained by the stationary
conditions derived from the above equation.

Using Lagrangian multiplier λ, the variational iteration formula can be obtained as

um+1(t) = um(t) +
∫ t

0
λ(x, t)[L(um(x)) + f (um(x))]dx. (3)

Assume that the exact solution of (1) is uα(t) and the initial approximation is u0, which
is sufficiently close to the exact solution uα(t). Using the quasilinearization algorithm,
(3) can be written as

um+1(t) = um(t) +
∫ t

0
λ(x, t)[L(um) + f (u0) + (um − u0) fu(u0) + g(um)]dx.
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where
g(um) = f (um)− f (u0)− (um − u0) fu(u0) (4)

and

um+1(t) = um(t) +
∫ t

0
λ(x, t)[L(um) + um fu(u0) + C + g(um)]dx. (5)

where
C = f (u0)− u0 fu(u0). (6)

Now, define the series solution

um =
m

∑
i=0

yi, u0 = y0 (7)

assuming that g(um) is nonlinear. Using the Adomian decomposition method,

g(t, um) = g

(
x,

m

∑
i=0

yi

)
=

m

∑
i=0

Ai (8)

where Ai are Adomian polynomials [16] defined as

Ai =
1
i!

di

dpi

[
g

(
t,

∞

∑
j=0

yj pj

)]
. (9)

Using (7), (8), and (5), we obtain

m+1

∑
i=0

yi(t) =
m

∑
i=0

yi(t) +
∫ t

0
λ(x, t)

[
L(

m

∑
i=0

yi(x)) + fu(u0)
m

∑
i=0

yi(x) + C +
m

∑
i=0

Ai

]
dx

From this, we obtain the iterative scheme for solving (1):

ym+1(t) =
∫ t

0
λ(x, t)

[
L(

m

∑
i=0

yi(x)) + fu(u0)
m

∑
i=0

yi(x) + C +
m

∑
i=0

Ai

]
dx , m = 0, 1, 2, . . . (10)

The iterations ym, m ≥ 1 are successively obtained by choosing an initial guess u0.
Hence, the mth-order approximation of the solution obtained from (10) is given by

um(t) =
m

∑
i=0

yi(t). (11)

3. Convergence Analysis

In this section, we discuss the convergence analysis of our proposed method under
the Lipschitz continuity condition in Banach spaces.

Theorem 1. Suppose the nonlinear function f (u) satisfies the Lipschitz condition | f (u)− f (u∗)| ≤
k|u− u∗| and there exist R ∈ (0, 1), then the series ∑m

i=0 yi(t) defined in (11) is convergent in
Banach space X = (C[0, 1, ||u||]) with the norm defined by

||u|| = max
t∈[0,1]

|u(t)| u ∈ X

Proof. From (10) and (11) for m = 0, 1, 2 . . ., we obtain

um =
m

∑
i=0

yi = um−1 +
∫ t

0
λ(x, t)

[
L(

m−1

∑
i=0

yi(x)) + fu(u0)
m−1

∑
i=0

yi(x) + C +
m−1

∑
i=0

Ai

]
dx.

For r > s and for all r, s ∈ N,
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‖ur − us‖ = max
t∈[0,1]

| (ur−1 − us−1)+

∫ t

0
λ(x, t)

[
L

(
r−1

∑
i=0

yi

)
− L

(
s−1

∑
i=0

yi

)
+ fu(u0)

(
r−1

∑
i=0

yi −
s−1

∑
i=0

yi

)
+

(
r−1

∑
i=0

Ai −
s−1

∑
i=0

Ai

)]
dx |

‖ur − us‖ ≤ max
t∈[0,1]

|ur−1 − us−1|+

max
t∈[0,1]

∣∣∣∣∣
∫ t

0
λ(x, t)

[
L(ur−1)− L(us−1) + fu(u0)(ur−1 − us−1) +

(
r−1

∑
i=0

Ai −
s−1

∑
i=0

Ai

)]
dx

∣∣∣∣∣
≤ ‖ur−1 − us−1‖+ max

t∈[0,1]∫ t

0

∣∣∣∣∣λ(x, t)

[
L(ur−1)− L(us−1) + fu(u0)(ur−1 − us−1) +

(
r−1

∑
i=0

Ai −
s−1

∑
i=0

Ai

)]∣∣∣∣∣dx.

Using the relation ∑m
i=0 Ai ≤ f (um) and from [17], we obtain

‖ur − us‖ ≤ ‖ur−1 − us−1‖+

max
t∈[0,1]

∫ t

0
|λ(x, t)[(L(ur−1)− L(us−1)) + fu(u0)(ur−1 − us−1) + ( f (ur−1)− f (us−1))]|dx.

Since L is a continuous linear operator, then it is bounded in (C[0, 1], ||u||]). Hence,
there exists a real number γ such that

‖L(ur)− L(us)‖ ≤ γ‖ur − us‖. (12)

and

M = max
t∈[0,1]

∫ t

0
|λ(x, t)|dx. (13)

From (12) and (13) and using the Lipschitz condition, (12) gives

‖ur − us‖ ≤ ‖ur−1 − us−1‖+ Mγ‖ur−1 − us−1‖+ M| fu(u0)|‖ur−1 − us−1‖
+ Mk‖ur−1 − us−1‖
= {1 + M(γ + | fu(u0)|+ k)}‖ur−1 − us−1‖
= R‖ur−1 − us−1‖.

where R = 1 + M(γ + | fu(u0)|+ k). Setting r = s + 1, we obtain

‖us+1 − us‖ ≤ R‖us − us−1‖ ≤ R2‖us−1 − us−2‖ ≤ . . . ≤ Rs‖u1 − u0‖.

Using the triangular inequality for r > s, for all r, s ∈ N, we obtain

‖ur − us‖ =‖(ur − ur−1) + (ur−1 − ur−2) + (ur−2 − ur−3) + . . . + (us+1 − us)‖
≤‖ur − ur−1‖+ ‖ur−1 − ur−2‖+ ‖ur−2 − ur−3‖+ . . . + ‖us+1 − us‖

≤Rs
(

1 + R + R2 + . . . + Rr−s−1
)
‖u1 − u0‖

=Rs
(

1− Rr−s

1− R

)
‖y1‖

Since 0 < R < 1, this gives

‖ur − us‖ ≤
(

Rs

1− R

)
‖y1‖
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Letting r, s→ ∞, we obtain

lim
r,s→∞

‖ur − us‖ = 0

Therefore, < um > is a Cauchy sequence in Banach space (C[0, 1], ||u||]). Hence,
< um > converges to the solution.

4. Applications

In this section, we discuss the numerical results and the justification of our proposed
method to check the occurrence, reliability, and applicability of our proposed method by
performing some numerical examples of the nonlinear differential equation. We compared
the obtained numerical results by our proposed iterative approach with the exact solution,
ADM [9], and modified VIM [3].

Example 1. Consider the following temperature distribution equation in a uniformly thick rectan-
gular fin radiation to free space with higher order non-linearity [18,19].

u′′(t)− ηu4(t) = 0 (14)

subject to the boundary conditions u′(0) = 0, u(1) = 1.

Solution: By using He’s variational theory, the correction functional of this system
can be constructed as

um+1(x) = um(x) +
∫ t

0
λ(x, t)

[
u′′m(x)− ηũ4

m(x)
]
dx, m = 0, 1, 2, . . .

where λ is the general Lagrangian multiplier and ũm denotes restricted variations, i.e.,
δũm = 0. By making the above correction functional stationary, we obtain the following
stationary conditions:

i.e., 1− λ′(t) = 0, λ(x)|x=t = 0, λ′′(x) = 0

Solving the above equations for λ, we obtain

λ = x− t

From (10), the(m + 1)th iterative scheme gives

ym+1(t) =
∫ t

0
λ(x, t)

[
m

∑
i=0

y′′i (x) + fu(u0)
m

∑
i=0

yi(x) + C +
m

∑
i=0

Ai

]
dx, m = 0, 1, 2, . . . (15)

Using (4), (6), and (9), we obtain

g(um) = −ηu4
m + 4ηt3um − 3ηt4, C = 3ηt4

and Ai =
1
i!

di

dpi

[
g

(
t,

∞

∑
j=0

yj pj

)]
.

Using (15) with initial guess u0 = y0 = t and η = 0.1, the fourth approximation of the
solution of (14) is given by

u4(t) = t + 0.00333333t6 + 0.0000121212t11 + 4.797979797979796 × 10−8t16

+ 1.96408529741863 × 10−10t21.
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We define the absolute residual error functions for all t ∈ [0, 1]:

Rum(t) =| u′′m(t)− ηu4
m(t) |,

rvm(t) =| v′′m(t)− ηv4
m(t) |,

rwm(t) =|, w′′m(t)− ηw4
m(t) | .

Here, um, vm, and wm represent the solution of the proposed method, existing
ADM [9], and modified VIM [3], respectively. The absolute residual errors for the quantita-
tive comparison of the numerical results of the proposed method with the results obtained
by the existing ADM [9] and modified VIM [3] are shown in Table 1 for the different values
of t.

The efficiency of our proposed method was tested over the existing ADM [9] and
modified VIM [3] due to the absence of an exact solution. We included the absolute residual
error to check the applicability of the proposed method. The comparison of the numerical
results of (14) is shown in Table 1. We observed that the estimated fourth approximations
by our proposed method have comparatively higher accuracy than the existing ADM [9]
and modified VIM [3], as shown in Table 1 and Figure 1.

In Figure 1, Figure 1a represents the comparison of the numerical solutions obtained
by the proposed method, ADM [9], and modified VIM [3] for η = 0.1 and 0 ≤ t ≤ 1, and
Figure 1b represents the comparison of absolute residual errors obtained by the proposed
method, ADM [9], and modified VIM [3] for η = 0.1 and 0 ≤ t ≤ 1.

Table 1. Comparison of numerical results for Example 1.

t u4(t) v4(t) w4(t) Ru4 Rv4 Rw4

0.1 0.10000000 0.10000000 0.10000000 3.39× 1021 1.69× 10−21 1.33× 10−12

0.2 0.20000021 0.20000021 0.20000021 2.71× 10−20 5.42× 10−20 6.83× 10−10

0.3 0.30000243 0.30000243 0.30000243 7.59× 10−19 4.34× 10−19 2.62× 10−8

0.4 0.40001365 0.40001365 0.40001365 4.34× 10−19 1.73× 10−18 3.49× 10−7

0.5 0.50005209 0.50005209 0.50005210 3.38× 10−17 3.12× 10−17 2.60× 10−6

0.6 0.60015556 0.60015556 0.60015561 2.52× 10−15 2.52× 10−15 0.00001342
0.7 0.70039240 0.70039240 0.70039264 1.02× 10−13 1.02× 10−13 0.00005370
0.8 0.80087486 0.80087486 0.80087590 2.52× 10−12 2.52× 10−12 0.00017824
0.9 0.90177528 0.90177528 0.90177908 4.26× 10−11 4.26× 10−11 0.00051280
1.0 1.00334550 1.00334550 1.00335758 5.36× 10−10 5.36× 10−10 0.00131687

(a) Proposed method vs. ADM vs. VIM (b) Absolute residual error

Figure 1. Comparison of numerical solutions and absolute residual errors obtained by the proposed
method and existing methods for 0 ≤ t ≤ 1 of Example 1.
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Example 2. Consider the following Riccati differential equation [3]:

u′(t) = 2u(t)− u2(t) + 1, 0 ≤ t ≤ 1 (16)

with the initial condition u(0) = 0.

The exact solution of (16) is

u(t) = 1 +
√

2Tanh

(
√

2t +
1
2

√
2− 1√
2 + 1

)

Solution: From (10) and the (m + 1)th iterative scheme, we obtain

ym+1(t) =
∫ t

0
λ(x, t)

[
m

∑
i=0

y′i(x)− 2
m

∑
i=0

yi(x)− 1 + fu(u0)
m

∑
i=0

yi(x) + C +
m

∑
i=0

Ai

]
dx, m = 0, 1, 2, . . . (17)

The Lagrangian multiplier λ can be obtained by making the correction functional
of (16) stationary:

i.e., λ′(x) + 2λ(x) = 0, 1 + λ(x)|x=t = 0

Solving the above equations for λ, we obtain

λ = −e2(t−x)

Using (4), (6), and (9), we obtain

g(um) = u2
m − 2tum + t2, C = −t2

and, Ai =
1
i!

di

dpi

[
g

(
t,

∞

∑
j=0

yj pj

)]
.

Using (17) with initial guess u0 = y0 = t, the fourth approximation of the solution
of (16) is given by

u4(t) = 2t + 2t2 − 2t4 − 1.6t5 + 0.711111t6 + 3.707937t7 − 3.149206t8 + 0.69982t9.

The absolute residual errors for the quantitative comparison of the numerical results
of the proposed method with the results obtained by the existing ADM [9] and modified
VIM [3] as

Rum(t) =| u′m(t)− 2um(t) + u2
m(t)− 1 |,

rvm(t) =| v′m(t)− 2vm(t) + v2
m(t)− 1 |,

rwm(t) =| w′m(t)− 2wm(t) + w2
m(t)− 1 | .

are shown in Table 2 for the different values of t.
The efficiency of our proposed method was tested with the existing ADM [9], modified

VIM [3], and the available exact solution. Table 2 shows the applicability of our proposed
method. We observed that the estimated fourth approximations by our proposed method
have comparatively higher accuracy than the existing ADM [9] and modified VIM [3]
and are close to the exact solutions, as shown in Table 2 and Figure 2. Furthermore, the
absolute residual errors of our approximations, existing ADM [9], and modified VIM [3]
are presented in Figure 2.

In Figure 2, Figure 2a represents the comparison of the numerical solutions obtained
by the proposed method, ADM [9], and modified VIM [3] with the available exact solution
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for 0 ≤ t ≤ 1, and Figure 2b represents the comparison of the absolute residual errors
obtained by the proposed method, ADM [9], and modified VIM [3] for 0 ≤ t ≤ 1.

Table 2. Comparison of numerical results for Example 2.

t Exact Solution u4(t) v4(t) w4(t) Ru4 Rv4 Rw4

0.1 0.11029520 0.11029520 0.21978505 0.11029520 3.37× 10−8 1.00000153 3.37× 10−8

0.2 0.24197680 0.24197671 0.47637327 0.24197671 3.07× 10−6 1.00010509 3.07× 10−6

0.3 0.39510485 0.39510355 0.76104848 0.39510355 0.00002187 1.00049082 0.00002187
0.4 0.56781217 0.56781226 1.05952338 0.56781226 0.00015212 0.99959811 0.00015212
0.5 0.75601439 0.75611688 1.35414462 0.75611688 0.00273493 0.99208508 0.00273493
0.6 0.95356622 0.95455463 1.62751813 0.95455463 0.01912082 0.97226556 0.01912082
0.7 1.15294897 1.15860127 1.86660896 1.15860127 0.09083206 0.94524039 0.09083206
0.8 1.34636366 1.37046719 2.06611574 1.37046719 0.34008196 0.93920406 0.34008196
0.9 1.52691131 1.61103967 2.22992008 1.61103967 1.07927349 1.00638887 1.07927349
1.0 1.68949839 1.94266367 2.36966490 1.94266367 3.04564431 1.20296607 3.04564431

(a) Proposed method vs. ADM vs. VIM (b) Absolute residual error

Figure 2. Comparison of numerical solutions and absolute residual errors obtained by the proposed
method and existing methods for 0 ≤ t ≤ 1 of Example 2 with the available exact solution.

Example 3. Consider the following nonlinear differential equation:

u′(t) = u2(t) + 1, 0 ≤ t ≤ 1 (18)

with the initial condition u(0) = 0.

The exact solution is u(t) = Tan(t), and choose the initial guess u0(t) = t.
Solution: From (10) and the (m + 1)th iterative scheme, we obtain

ym+1(t) =
∫ t

0
λ(x, t)

[
m

∑
i=0

y′i(x)− 1 + fu(u0)
m

∑
i=0

yi(x) + C +
m

∑
i=0

Ai

]
dx, m = 0, 1, 2, . . . (19)

The Lagrangian multiplier can be identified as λ = −1 by making the correction
functional stationary. Using (4), (6), and (9),

g(um) = −u2
m + 2u0um − u2

0 , C = t2

and Ai =
1
i!

di

dpi

[
g

(
t,

∞

∑
j=0

yj pj

)]
.
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Using (19) with initial guess u0 = y0 = t, the fourth approximation of the solution
of (18) is given by

u4(t) = t + 0.333333t3 + 0.133333t5 + 0.053968t7 + 0.021869t9.

The efficiency of our proposed method was tested with the existing ADM [9], modified
VIM [3], and the available exact solution. Table 3 shows the applicability of our proposed
method. We observed that the estimated fourth approximations by our proposed method
have comparatively higher accuracy than the existing ADM [9] and modified VIM [3]
and are close to the exact solutions, as shown in Table 3 and Figure 3. Furthermore, the
absolute residual errors of our approximations, existing ADM [9], and modified VIM [3]
are presented in Figure 3.

In Figure 3, Figure 3a represents the comparison of the numerical solutions obtained
by the proposed method, ADM [9], and modified VIM [3] with the available exact solution
0 ≤ t ≤ 1, and Figure 3b represents the comparison of the absolute residual errors obtained
by the proposed method, ADM [9], and modified VIM [3] for 0 ≤ t ≤ 1.

Table 3. Comparison of numerical results for Example 3.

t Exact Solution u4(t) v4(t) w4(t) Ru4 Rv4 Rw4

0.1 0.10033467 0.10033467 0.20134409 0.10033467 9.78× 10−12 1.0000000 9.78× 10−12

0.2 0.20271004 0.20271004 0.41101941 0.20271004 1.01× 10−8 0.99999935 1.01× 10−8

0.3 0.30933625 0.30933623 0.63879462 0.30933623 5.92× 10−7 0.99996107 5.92× 10−7

0.4 0.42279322 0.42279282 0.89785420 0.42279282 0.00001073 0.99927694 0.00001073
0.5 0.54630249 0.54629767 1.20811287 0.54629767 0.00010286 0.99284423 0.00010286
0.6 0.68413681 0.68409916 1.60216886 0.68409916 0.00066015 0.95205369 0.00066015
0.7 0.84228838 0.84206970 2.13596069 0.84206970 0.00322294 0.75241906 0.00322294
0.8 1.02963856 1.02861057 2.90720815 1.02861057 0.01291904 0.06611274 0.01291904
0.9 1.26015822 1.25601754 4.08598759 1.25601754 0.04468657 3.03256885 0.04468657
1.0 1.55740772 1.54250441 5.96331570 1.54250441 0.13805001 12.88494362 0.13805001

(a) Proposed method vs. ADM vs. VIM (b) Absolute residual error

Figure 3. Comparison of numerical solutions and absolute residual errors obtained by the proposed
method and existing methods for 0 ≤ t ≤ 1 of Example 3 with the available exact solution.

5. Conclusions

In this paper, we developed a new variational iteration method for finding the approx-
imate series solution of nonlinear differential equations. The convergence analysis of the
proposed method was also discussed. Some application problems were included to test the
efficiency of our proposed method. This is a powerful technique for solving a large number
of nonlinear problems. By computing the residual error, the applicability and accuracy of
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the proposed method were investigated. The outcome revealed that the proposed method
is easy to apply and converges to the solution with fewer iterations.
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