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Abstract: This article presents a simple but effective two-step analytical–numerical algorithm for
solving multi-dimensional multi-term time-fractional equations. The first step is to derive an analytic
representation that satisfies boundary requirements for 1D, 2D, and 3D problems, respectively. The
second step is the meshless approximation where the Müntz polynomials are used to form the
approximate solution and the unknown parameters are obtained by imposing the approximation
for the governing equations. We illustrate first the detailed derivation of the analytic approximation
and then the numerical implementation of the solution procedure. Several numerical examples are
provided to verify the accuracy, efficiency, and adaptability to problems with general boundary
conditions. The numerical results are compared with exact solutions and numerical methods reported
in the literature, showing that the algorithm has great potential for multi-dimensional multi-term
time-fractional equations with various boundary conditions.

Keywords: multi-dimensional fractional equations; multi-term fractional equations; meshless method;
collocation method; analytic representation
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1. Introduction

In recent years, many mathematical models with time-fractional multi-term derivatives
have been studied in physics, hydrology, chemistry, etc. Hilfer [1] provided a collection of
fractional calculus applications in physics. Molz [2] reviewed some fundamental properties
of fractional motion and applications in hydrology. Singh [3] analyzed a chemical kinetics
system pertaining to a fractional derivative. Furthermore, the applications of fractional
equations can also be found in [4]. The well-known cable equations with fractional-order
temporal operators belong to this class. They were introduced to model electronic properties
of spiny neuronal dendrites [5,6]. The time-fractional partial differential equations (TFPDEs)
can also include the Sobolev equations, which have been used to model many phenomena,
such as the migration of moisture in soil, thermodynamics, and the motion of fluid in
various media [7,8]. The equations of different models of heat transfer, whether the classical
or dual-phase-lagging ones, undoubtedly also fall into this group [9]. Fractional differential
equations have broad applications for the fact that fractional operators can describe physical
phenomena more precisely than classical integral operators for some practical problems.
The collection of real world applications of fractional differential equations can be seen
in [10] and references therein.

Solutions to fractional partial differential equations are crucial for representing phys-
ical phenomena. Some analytical methods have been proposed that can be useful for
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parametric study. Liu carried out an analytical study for magnetohydrodynamic flow
using fractional derivatives [11]. Ming derived the analytical solution for the problems
containing multi-term time-fractional diffusion [12]. Ding proposed an analytical solu-
tion to the multi-term TFPDEs considering the non-local damping term [13] and also the
fractional delay PDEs with mixed boundary conditions [14]. Jong used the analytic ex-
pression of the multi-term fractional integral operators to obtain the analytical expressions
for the fractional equations [15]. Jiang investigated the multi-term fractional diffusion
equations and obtained the analytical solutions by the method of separation variables [16].
In [17], the Laplace transform method was used to derive the solution to the time-fractional
distributed-order heat conduction law. The Adomian decomposition method was also
being used in [18]. Despite the fact that so many analytical techniques have been developed,
the explicit forms of analytical or semi-analytical solutions are rare only for some problems
under certain idealized conditions. For the further prospects of engineering applications,
the numerical methods are still necessary and useful tools in this field. Numerical methods
have already been used to observe some important mathematical models. Liu investigated
the fluid mechanics for semiconductor circuit breakers based on finite element analysis [19].
Yang, Liu, and Xu applied functional differential equations to analyze the problems in
financial accounting [20–22]. A computational heuristic was designed to solve the nonlinear
Lienard differential model [23]. The nonuniform difference scheme was applied to study
the distributed-order fractional parabolic equations with fractional Laplacian in [24]. A fast
Fourier spectral exponential time-differencing method was used to solve time-fractional
mobile–immobile equations [25]. A fast difference scheme was proposed to solve the
fractional equations considering non-smooth data [26]. Some other works can be found
in [27–29] and references therein. Among them, the most popular methods are mesh-based
methods. Some of the references and studies are listed below. Dehghan [30] proposed a
high-order numerical algorithm based on the finite difference scheme for multi-term time-
fractional diffusion wave problems. The Galerkin finite element method [31] was proposed
for the approximation of the multi-term time-fractional diffusion equations. The finite
difference and the finite element method were used to solve the multi-term time-fractional
equations that are mixed by the sub-diffusion and diffusion-wave equation [32]. The fast
algorithm combined with the finite difference method was used to solve multi-term time-
fractional reaction–diffusion wave equations with stability analysis and error analysis [33].
The second-order numerical method was proposed for the problems with non-smooth
solutions [34]. As implied by the name, mesh-based methods require the mesh of the
whole domain and also information about the nodal topology that may introduce some
unreasonable constraints on the problems. The automatic and efficient approach to con-
structing mesh for 3D complicated domains has long been the challenge for computational
mechanics. Spectral methods [35,36] and spectral-based methods, especially those based on
the collocation method, have been published recently [37,38]. The spectral-based method
has also been used to solve the distributed order time-fractional diffusion equations in [39].
A pseudo-spectral method based on the reproducing kernel has been proposed to study
the time-fractional diffusion-wave equation [40].

In this paper, considering the advantages of analytical and numerical methods, a novel
analytical–numerical method is proposed for solving multi-term TFPDEs with boundary
conditions of general kinds. First, we apply the Fourier method, which can also be re-
garded as an expansion method over the eigenfunctions, in order to remove the partial
derivatives with respect to the space variables and transform the original TFPDE into
fractional ordinary differential equations (FODEs) without truncation error. In the general
case of the time-dependent non-homogeneous boundary conditions, the solutions with the
features of separation of spatial variables are not available naturally. The time-dependent
non-homogeneous term in the equation also poses a problem for the application of the
Fourier method. To deal with the time dependence boundary conditions and the source
term, the Green function method and the operational methods such as the Laplace trans-
form method are used [41]. A similar technique has been proposed for the time-fractional
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PDEs [42,43]. Then, we apply the recently proposed meshless collocation method, the back-
ward substitution method (BSM) [44–46], to solve each FODE individually. In [44], the BSM
was also applied to solve systems of FODEs. The BSM technique can also deal with the
non-homogeneous time-dependent source term. The BSM is a newly developed mesh-
less method. By introducing special analytical functions or numerical approximations
that satisfy the boundary conditions, the original problem is degenerated into a homo-
geneous one. Then, the BSM attempts to form an orthogonal basis system that satisfies
the homogeneous boundary conditions in a general way. The approximated solution is
formed using the proposed basis system where the weighted parameters are determined by
backward substituting the approximation into the governing equations. This improvement
has significantly increased the accuracy and stability of the usual collocation methods.
Recently, some variants of the BSM have been proposed, such as the space-time BSM [47],
the localized BSM [48], and the Fourier-based BSM [49]. In order to apply the BSM for the
fractional differential equations, some special bases should be used. Firstly, the solution of
the fractional equations can contain the fractional-power terms where the common bases
cannot be used for such purpose. Secondly, in terms of the BSM, the collocation method is
applied. In order to apply the collocation method, it is critical that derivatives of the trial
functions should be approximated by the same trial bases where the common polynomial
bases cannot be used. In order to match the two requirements, the Müntz polynomials
can be considered as alternative bases. The reasons behind this is to apply the critical
feature that a fractional derivative of a Müntz polynomial is again a Müntz polynomial.
Therefore, we can hope to obtain a good approximation for the fractional derivatives by the
Müntz polynomial approximation. Due to these outstanding features, Müntz polynomials
have been widely used for the solution of fractional equations in literature. Esmaeili [50]
provided the solution for fractional differential equations with the Müntz polynomial collo-
cation method. Mokhtary [51] solved the fractional problems with the Müntz polynomial
Tau method. Bahmanpour discussed the Müntz polynomial wavelets collocation method
for fractional equations [52]. Recently, Maleknejad discussed the Müntz–Legendre wavelet
approach [53]. The Müntz polynomial has also been absorbed in the BSM to solve fractional
equations [46].

The remainder of this paper is organized as follows. Section 2 contains a brief definition
of the problems to be solved and also a brief description of the solution process. Section 3
contains the derivation of the analytical approximations satisfying the general boundary
conditions. This technique for the orthogonal basis is described in detail in Section 4.
Following the main algorithm in Section 5, numerical examples that illustrate the presented
procedure are placed in Section 6. Finally, a brief conclusion is drawn in Section 7.

2. Preliminaries

In the present work, our goal is to find an effective solution to the following multi-
dimensional multi-term time-fractional partial differential equations (TFPDEs):

Lt[u] =Mt

[
∇2u

]
+ f (x, t), t ∈ [0, T], x ∈ Ωd = [0, 1]d, d = 1, 2, 3, (1)

where

Lt = D(µ)
t +

I

∑
k=1

ak(t)D(µk)
t , Mt =

K

∑
k=I+1

ak(t)D(µk)
t , (2)

in which µ ∈ (l − 1, l], 0 ≤ µk < µ, D(0)
t [ϕ] ≡ ϕ is the identical operator, and ak(t),

k = 1, . . . , K. Some initial conditions (ICs) should be prescribed in advance for the time-
dependent problems

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), . . . ,

∂l−1u(x, 0)
∂tl−1 = ul−1(x), (3)

where l is the highest integer derivative of the considered problem.



Mathematics 2023, 11, 929 4 of 26

The operator D(ν)
t , which has the following form,

D(ν)
t [ξ(x, t)] =

 1
Γ(n−ν)

∫ x
0

∂
(n)
t ξ(x,τ)dτ

(t−τ)ν−n+1 , n− 1 < ν < n,

∂
(n)
t ξ(x, t), ν = n,

(4)

is the Caputo fractional derivative of the order ν. In particular, if ξ(x, t) is the power
function tz, we have

D(ν)
t [tz] = 0, (5)

if z ∈ N0 and z < n, and

D(ν)
t [tz] =

Γ(z + 1)
Γ(z + 1− ν)

tz−ν, (6)

if z ∈ N0 and z ≥ n or z /∈ N0 and z > n − 1. Further, N0 denotes the set of all non-
negative integers.

In order to solve Equation (1), suitable boundary conditions have to be prescribed to
ensure the solvability of the problems. In the present work, we address general forms of
boundary conditions:

Bi[u] = αi
∂u(x, t)

∂ni
+ βiu(x, t) = gi(x, t), x ∈ ∂Ωd, Ωd = [0, 1]d, α2

i + β2
i 6= 0, (7)

where ∂u(x, t)/∂ni denotes differentiation along the outward unit normal direction of the
surface boundary, and i = 1, 2, for d = 1, i = 1, . . . , 4 for d = 2, and i = 1, . . . , 6 for d = 3.

It is known to all that in mathematics and engineering applications, the Fourier
expansion in eigenfunctions of the differential operator is an efficient numerical method in
the case of homogeneous BCs when the solution can be represented as a linear combination
of eigenfunctions ψ

(1)
n1 (x1), ψ

(2)
n2 (x2), ψ

(3)
n3 (x3),

u(x, t) =
∞

∑
n1,n2,n3=1

Un1,n2,n3(t)ψ
(1)
n1 (x1)ψ

(2)
n2 (x2)ψ

(3)
n3 (x3), (8)

and the unknowns can be determined by substituting the expression into the initial con-
ditions using the orthogonality property of eigenfunctions with different eigenvalues. It
should be emphasized that, for the application of the Fourier method, we have to transform
the original problem into a homogeneous problem. In this case, our main goal is to calculate
the analytic function vg(x, t) that exactly satisfies the boundary conditions of Equation (7)
for any given αi, βi, gi(x, t) at each t in Equation (7). This function can be used to solve
the problem of the non-homogeneous boundary conditions cardinally. Suppose that the
solution can be approximated by the following approximation:

u(x, t) = vg(x, t) + w(x, t). (9)

Substituting the above equation into Equations (1), (3), and (7), we have:

Lt[w] =Mt

[
∇2w

]
+ f1(x, t), t ∈ [0, T], x ∈ Ωd, (10)

∂iw(x, 0)
∂ti = wi(x), i = 0, . . . , l − 1, (11)

Bi[w] = αi
∂w(x, t)

∂ni
+ βiw(x, t) = 0, x ∈ ∂Ωd. (12)
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It is evident that the boundary conditions have been transformed into the homoge-
neous one, which makes it possible to use the Fourier-series expansion as follows:

w(x, t) =
∞

∑
n=1

wn(t)ψn(x), (13)

where the orthonormal basis ψn(x) is corresponding to the BC Equation (12), which satisfies

∇2ψn(x) = −λ2
nψn(x), x ∈ Ωd, Bi[ψn(x)] = 0, x ∈ ∂Ωd. (14)

This orthonormal basis will be described in Section 4. By substituting Equation (13)
into Equation (10) and projecting 〈. . . , ψn〉, we have

Lt[wn(t)] = −λ2
nMt[wn(t)] + θn(t), t ∈ [0, T] (15)

for the approximation of each wn, which will be described in detail in the following several
sections.

3. The Algorithm for Computing vg(x, t)

Construction of the analytic function vg(x, t), which exactly satisfies the BCs of the
original problem, is the main subject of the proposed method. In this section, we will
propose an approach to derive vg(x, t) for the (1 + 1)-dimensional problems, (2 + 1)-
dimensional problems, and (3 + 1)-dimensional problems, respectively.

3.1. (1 + 1)-Dimensional Problems

In this case, the problem of finding the function vg(x, t), which conforms the BC

LW
[
vg(x, t)

]
(x = 0) = αW

∂vg

∂x
(0, t) + βWvg(0, t) = gW(t), (16)

LE
[
vg(x, t)

]
(x = 1) = αE

∂vg

∂x
(1, t) + βEvg(1, t) = gE(t), (17)

at the endpoints of the interval Ω1 = [0, 1] is a trivial one. Indeed, one can prove easily that
the following functions

θE(x) =
αW − βW x

αW βE − βW(αE + βE)
, (18)

θW(x) =
βEx− (αE + βE)

αW βE − βW(αE + βE)
, (19)

satisfy the conditions

LW(x)[θW(x)](0) = 1, LE(x)[θW(x)](1) = 0, (20)

LW(x)[θE(x)](0) = 0, LE(x)[θE(x)](1) = 1. (21)

Then, the function

vg(x, t) = θE(x)gE(t) + θW(x)gW(t) (22)

satisfies the BCs of Equations (16) and (17).
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3.2. (2 + 1)-Dimensional Problems

For the (2 + 1)-dimensional problem, we intend to obtain the vg satisfying the BCs in
a square domain; for example:

LW(x)
[
vg
]
≡ αW

∂vg

∂x
+ βWvg = gW(y, t), x = 0, 0 ≤ y ≤ 1, (23)

LE(x)
[
vg
]
≡ αE

∂vg

∂x
+ βEvg = gE(y, t), x = 1, 0 ≤ y ≤ 1, (24)

LS(y)
[
vg
]
≡ αS

∂vg

∂y
+ βSvg = gS(x, t), 0 ≤ x ≤ 1, y = 0, (25)

LN(y)
[
vg
]
≡ αN

∂vg

∂y
+ βNvg = gN(x, t), 0 ≤ x ≤ 1, y = 1. (26)

We assume that the desired function vg(x, y, t) is smooth enough and so the functions
gW(y, t), gE(y, t), gS(x, t), and gN(x, t) guarantee continuity condition at the apexes (0, 0),
(0, 1), (1, 0), and (1, 1) of the unit square [0, 1]2:

LS(y)[gW(y, t)] = LW(x)[gS(x, t)] at (0, 0), (27)

LN(y)[gW(y, t)] = LW(x)[gN(x, t)] at (0, 1), (28)

LS(y)[gE(y, t)] = LE(x)[gS(x, t)] at (1, 0), (29)

LN(y)[gE(y, t)] = LE(x)[gN(x, t)] at (1, 1). (30)

Let us define the functions

θN(y) =
αS − βSy

αSβN − βS(αN + βN)
, (31)

θS(y) =
βNy− (αN + βN)

αSβN − βS(αN + βN)
, (32)

which are similar to the functions θE(x), θW(x). They satisfy the boundary conditions

LS(y)[θS(y)](0) = 1, LN(y)[θS(y)](1) = 0, (33)

LS(y)[θN(y)](0) = 0, LN(y)[θN(y)](1) = 1. (34)

Let us define the function

v1 = θE(x)gE + θW(x)gW . (35)

One can easily prove that v1 satisfies Equations (23) and (24):

LW(x)[v1(x, y, t)]x=0 = gW(y, t), 0 ≤ y ≤ 1, (36)

LE(x)[v1(x, y, t)]x=1 = gE(y, t), 0 ≤ y ≤ 1. (37)

This follows directly from Definitions (20) and (21). Additionally, we define gN1(x, t)
and gS1(x, t) as follows:

gN1(x, t) = gN(x, t)− LN(y)[v1(x, y, t)]y=1, (38)

gS1(x, t) = gS(x, t)− LS(y)[v1(x, y, t)]y=0. (39)

Finally, we can prove that the following combination,

vg(x, y, t) = v1(x, y, t) + θN(y)gN1(x, t) + θS(y)gS1(x, t), (40)
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satisfies Equations (23)–(26).

3.3. (3 + 1)-Dimensional Problems

For (3 + 1)-dimensional problems, we try to seek a smooth analytical function vg that
satisfies

LW(x)
[
vg
]
≡ αW

∂vg

∂x
+ βWvg = gW(y, z, t), x = 0, (41)

LE(x)
[
vg
]
≡ αE

∂vg

∂x
+ βEvg = gE(y, z, t), x = 1, (42)

LS(y)
[
vg
]
≡ αS

∂vg

∂y
+ βSvg = gS(x, z, t), y = 0, (43)

LN(y)
[
vg
]
≡ αN

∂vg

∂y
+ βNvg = gN(x, z, t), y = 1, (44)

LT(z)
[
vg
]
≡ αT

∂vg

∂z
+ βTvg = gT(x, y, t), z = 1, (45)

LB(z)
[
vg
]
≡ αB

∂vg

∂z
+ βBvg = gB(x, y, t), z = 0, (46)

where 0 ≤ x, y, z ≤ 1 if the variables x, y, z are not defined in the above equations.
Without loss of generality, the operators LE(x) and LN(y) hold the general property
LE(x)[LN(y)[u]] = LN(y)[LE(x)[u]] in the presence of any given smooth function u for
x = 1, y = 1, 0 ≤ z ≤ 1. It follows that

LE(x)[LN(y)[u]]x=1,y=1 = LN(y)[LE(x)[u]]x=1,y=1 ⇒ LE(x)
[

LN(y)[u]y=1

]
x=1

= LN(y)[LE(x)[u]x=1]y=1 ⇒ LE(x)[gN(x, z, t)]x=1 = LN(y)[gE(y, z, t)]y=1. (47)

The above condition is obviously fulfilled for the remaining 11 edges. Let us define
the functions θT(z), θB(z) as

θT(z) =
αB − βBz

βTαB − βB(αT + βT)
, (48)

θB(z) =
βTz− (αT + βT)

βTαB − βB(αT + βT)
, (49)

similar to Equations (18), (19), (31), and (32), which satisfy the boundary conditions

LT(z)[θT(z)](1) = 1, LB(z)[θT(z)](0) = 0, (50)

LT(z)[θB(z)](1) = 0, LB(z)[θB(z)](0) = 1. (51)

Let us now try to construct the set of auxiliary functions along with their linear combinations

v1 = θT(z)gT(x, y, t) + θB(z)gB(x, y, t), (52)

gN1 = gN(x, z, t)− LN(y)[v1(x, y, z, t)]y=1, (53)

gS1 = gS(x, z, t)− LS(y)[v1(x, y, z, t)]y=0, (54)

v2 = v1 + θN(y)gN1 + θS(y)gS1, (55)

where θN(y) and θS(y) can be defined according to Equations (31) and (32). Then, let us define
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gE1(y, z, t) = gE(y, z, t)− LE(x)[v2(x, y, z, t)]x=1, (56)

gW1(y, z, t) = gW(y, z, t)− LW(x)[v2(x, y, z, t)]x=0, (57)

and, finally,

vg(x, y, z, t) = v2(x, y, z, t) + θE(x)gE1(y, z, t) + θW(x)gW1(y, z, t), (58)

which determines the objective function that satisfies the BC Equations (41)–(46). Note also
that there are not any problems in the derivation of vg for various boundary conditions,
including the boundary conditions of the third kind. Furthermore, it is noteworthy that the
vg obtained in this section is not unique. In the present work, we show a simple form of
the formulas for easy application. Other methods such as numerical methods can also be
used for such purposes that are not reported in the present work.

4. Orthogonal Basis for the Fourier Expansion

This section deals with the application of the Fourier method to the solution of cor-
responding homogeneous problems. As mentioned earlier, once we obtain the function
vg(x, t), the original equation can be transformed into the following homogeneous system
by substituting the vg(x, t) into the governing equations and boundary conditions

Lt[w] =Mt

[
∇2w

]
+ f1(x, t), f1(x, t) = f (x, t) +Mt

[
∇2vg(x, t)

]
−Lt

[
vg(x, t)

]
, (59)

which satisfies homogeneous BC

Bi[w] = αi
∂w(x, t)

∂ni
+ βiw(x, t) = 0, x ∈ ∂Ωd, (60)

where the solution can now be approximated with the following functional form,

w(x, t) =
∞

∑
n=1

wn(t)ψn(x), (61)

over the orthonormal basis ψn(x), corresponding to BC Equation (60),

∇2ψn(x) = −λ2
nψn(x), Bi[ψn(x)] = 0, x ∈ ∂Ωd. (62)

In this section, we describe the orthonormal basis ψn(x) and begin with the (1 + 1)-dimensional
problem as an example.

4.1. (1 + 1)-Dimensional Problems

Let us consider the following Sturm–Liouville problem:

d2ψ

dx2 = −µψ, (63)

LW(x)[ψ]x=0 =

(
αW

dψ

dx
+ βWψ

)
x=0

= 0, LE(x)[ψ]x=1 =

(
αE

dψ

dx
+ βEψ

)
x=1

= 0, (64)

where we describe some possible forms of the eigenfunctions corresponding to Equations (63) and (64).

1. First, let us consider the general case αW 6= 0, αE 6= 0. We write the boundary
conditions in the traditional form for transport problems:

dψ

dx
− b1ψ|x=0 = 0,

dψ

dx
+ b2ψ|x=1 = 0, b1, b2 ≥ 0. (65)
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The change of the sign is connected to the different direction of the outward normal at
the endpoints x = 0 and x = 1 [41].

From Equation (63), it follows:

µ
∫ 1

0
ψ2dx = −

∫ 1

0

d2ψ

dx2 ψdx =
∫ 1

0

[(
dψ

dx

)2
dx− d

(
ψ

dψ

dx

)]

= −
(

ψ
dψ

dx

)
|10 +

∫ 1

0

(
dψ

dx

)2
dx

= ψ(0)
dψ(0)

dx
− ψ(1)

dψ(1)
dx

+
∫ 1

0

(
dψ

dx

)2
dx.

(66)

Using Equation (65), one gets:

µ
∫ 1

0
ψ2dx = b1ψ2(0) + b2ψ2(1) +

∫ 1

0

(
dψ

dx

)2
dx. (67)

Thus, under the condition b1, b2 ≥ 0, the values of µ are positive, and we denote
µ = λ2. The function

ψ1,n(x) =
1
Rn

[
cos(λnx) +

b1

λn
sin(λnx)

]
, (68)

where

Rn =

√√√√1
2

(
1 +

b2
1

λ2
n

)
+

b1

2λ2
n
+

b2

2λ2
n

λ2
n + b2

1
λ2

n + b2
2

(69)

and where λn is the nth solution that can be obtained by solving the following system of
transcendental equation (

λ2 − b1b2

)
tan(λ) = (b1 + b2)λ, (70)

where ψ1,n(x) constructs an orthonormal basis in the Hilbert space L([0, 1]), and the follow-
ing identity holds for different bases

〈ψ1,n, ψ1,m〉 =
∫ 1

0
ψ1,n(x)ψ1,m(x)dx = δn,m. (71)

2. Let us consider the case αW = 0, αE 6= 0. We get the Dirichlet condition at the left
endpoint x = 0:

ψ|x=0 = 0,
dψ

dx
+ b2ψ|x=1 = 0, b2 ≥ 0. (72)

The function
ψ2,n(x) =

1
Rn

sin(λnx), (73)

is an eigenfunction of Sturm–Liouville Problems (63) and (72). Here

Rn =

√
1
2

(
1− sin(2λn)

2λn

)
, (74)

and λn is the nth solution of the transcendental equation

λ cos(λ) + b2 sin(λ) = 0. (75)

Function ψ2,n(x) satisfies 〈ψ2,n, ψ2,m〉 = δn,m.
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3. Let us consider the case αW 6= 0, αE = 0. We get the Dirichlet condition at the right
endpoint x = 1:

dψ

dx
− b1ψ|x=0 = 0, ψ|x=1 = 0, b1 ≥ 0. (76)

The function

ψ3,n(x) =
1
Rn

[
sin(λnx) +

λn

b1
cos(λnx)

]
(77)

is an eigenfunction of Sturm–Liouville Problems (63) and (76). Here

Rn =

√
1
2

(
1− sin(2λn)

2λn

)
+

1
2b1

(1− cos(2λn)) +
λ2

n

2b2
1

(
1 +

sin(2λn)

2λn

)
, (78)

and λn is the nth solution of the transcendental equation

λ cos(λ) + b1 sin(λ) = 0. (79)

Function ψ3,n(x) satisfies 〈ψ3,n, ψ3,m〉 = δn,m.

4. The case αW = 0, αE = 0 corresponds to the Dirichlet conditions at both endpoints of
the interval [0, 1]. The function

ψ4,n(x) =
√

2 sin nπx, n = 1, 2, . . . , (80)

also satisfies the property 〈ψ4,n, ψ4,m〉 = δn,m.

5. Finally, let us consider the following case αW , αE, βE 6= 0, βW = 0. Using Equation (65),
the boundary conditions can be expressed as

dψ

dx
= 0,

dψ

dx
+ b2ψ|x=1 = 0, b1, b2 ≥ 0. (81)

Thus, we get the Neumann condition at the left-hand side endpoint. The function

ψ5,n(x) =
1
Rn

cos(λnx), (82)

satisfies 〈ψ5,n, ψ5,m〉 = δn,m. Here

Rn =

√√√√1
2

(
1 +

b2

λ2
n + b2

2

)
, (83)

and λn is the nth solution of the transcendental equation

λ sin(λ) = b2 cos(λ). (84)

4.2. (2 + 1) and (3 + 1)-Dimensional Problems

We use the products ψi1,n1(x)ψi2,n2(y) and ψi1,n1(x)ψi2,n2(y)ψi3,n3(z) as the basis function
for solving (2+ 1) and (3+ 1)-dimensional problems. Here, the first index i1, i2, i3 = 1, 2, 3, 4, 5
indicates the type of the basis function as described in the last subsection; the second index
n1, n2, n3 indicates the harmonic number. These functions satisfy the equations:

∇2
x,yψi1,n1(x)ψi2,n2(y) = −

(
λ2

i1,n1
+ λ2

i2,n2

)
ψi1,n1(x)ψi2,n2(y), (85)

∇2
x,y,zψi1,n1(x)ψi2,n2(y)ψi3,n3(z) = −

(
λ2

i1,n1
+ λ2

i2,n2
+ λ2

i3,n3

)
ψi1,n1(x)ψi2,n2(y)ψi3,n3(z). (86)
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Below they are used in the Fourier transformation of governing Equation (59).

5. The Solution Procedure

In this section, we demonstrate the solution procedure for the proposed method
for the multi-dimensional fractional equations by utilizing the analytic function vg and
the orthogonal basis derived in the last section. At first, we discuss the solution for the
one-dimensional problem with a single harmonic.

5.1. (1 + 1) Problem with a Single Spatial Harmonic

Now, for the (1 + 1)-dimensional TFPDE with a specific source term,

Lt[w] = Mt

[
∂2w
∂x2

]
+ θn(t)ψn(x), (87)

ψn(x) denotes the eigenfunctions given by Equations (68), (73), (77), (80), or (82). Suppose
that the equation is subjected to the BCs and ICs, which conform the chosen eigenfunction
ψn(x):

LW(x)[w]x=0 = 0, LE(x)[w]x=1 = 0, (88)

w(x, 0) = w0ψn(x),
∂w(x, 0)

∂t
= w1ψn(x), . . . ,

∂l−1w(x, 0)
∂tl−1 = wl−1ψn(x). (89)

We see the solution as
w(x, t) = wn(t)ψn(x). (90)

Then, we get the multi-term FODE

Lt[wn] = −λ2
n Mt[wn] + θn(t). (91)

Using Equation (2), we rewrite the equation in the expanded form

D(µ)
t [wn] = −

K

∑
k=1

bk(t)D(µk)
t [wn] + θn(t), (92)

where bk(t) = ak(t), k = 1, . . . , I, bk(t) = λ2
nak(t), k = I + 1, . . . , K, and µ ∈ (l − 1, l],

0 ≤ µk < µ. The considered initial conditions from Equation (89) are as follows:

wn(0) = w0,
dwn(0)

dt
= w1, . . . ,

dl−1wn(0)
dtl−1 = wl−1. (93)

Supposing that the right-hand side of Equation (92) can be approximated by the linear
combination of ϕ, as shown below,

−
K

∑
k=1

bk(t)D(µk)
t [wn] + θn(t) =

∞

∑
m=1

qm ϕm(t), (94)

where the ϕ is the chosen basis and qm are unknown coefficients to be determined. In this
way, Equation (92) is transformed into

D(µ)
t [wn(t)] =

∞

∑
m=1

qm ϕm(t), (95)

where ϕm(t) and φm(t) holds

D(µ)
t [φm(t)] = ϕm(t). (96)
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It is easy to verify that the Müntz polynomial basis (MPB) proposed in [46,50–53]
meets the requirement given in Equation (96). The explicit expression of such functions is
as follows:

ϕm(t) = tδm , δm = σ(m− 1), (97)

where σ is an auxiliary variable within (0, 1], and m is a positive integer. From the
preceding numerical examples in [44], we set σ = 0.25 for this paper.

It follows that the function

φm(t) =
Γ(δm + 1)

Γ(δm + µ + 1)
tδm+µ (98)

satisfies the following equality:

D(µ)[φm(t)] = ϕm(t). (99)

As far as l − 1 < µ ≤ l, the function φm(t) satisfies zero ICs:

φ
(i)
m (0) = 0, i = 0, 1, . . . , l − 1. (100)

From Equations (97), (99), and (100) it can be seen that the series

wh,n(t, q) =
∞

∑
m=1

qmφm(t) (101)

satisfies Equation (95) with any {qm}∞
m=1 ≡ q.

Let us define the following approximation:

wp,n(t) = w0 + w1t + · · ·+ wl−1
tl−1

(l − 1)!
=

l−1

∑
i=0

wi
i!

ti. (102)

The function wp,n(t) satisfies IC Equation (93). In this way, the following approximation

wn(t, q) = wp,n(t) + wh,n(t, q) = wp,n(t) +
∞

∑
m=1

qmφm(t) (103)

satisfies Equations (95) and (93) with any {qm}∞
m=1. Additionally, the unknown weighted

parameter qm is determined by backward substituting the wn(t, q) into Equation (94):

∞

∑
m=1

qm

[
ϕm(t) +

K

∑
k=1

bk(t)D(µk)
t [φm(t)]

]
= θn(t)−

K

∑
k=1

bk(t)D(µk)
t
[
wp(t)

]
≡ Fn(t), (104)

where we denote

D(µk)
t [φm(t)] =

Γ(δm + 1)D(µk)
t
[
tδm+µ

]
Γ(δm + µ + 1)

=
Γ(δm + 1)Γ(δm + µ + 1)tδm+µ−µk

Γ(δm + µ + 1)Γ(δm + µ + 1− µk)
=

Γ(δm + 1)tδm+µ−µk

Γ(δm + µ + 1− µk)
, (105)

D(µk)
t
[
wp(t)

]
=

l−1

∑
i=1

wi
i!

D(µk)
t

[
ti
]
=

l−1

∑
i=1

wiΓ(i + 1)ti−µk

i!Γ(i + 1− µk)
=

l−1

∑
i≥µk

witi−µk

Γ(i + 1− µk)
. (106)

We consider the truncated series of Equation (103),

wn(t, M, q) = wp,n(t) +
M

∑
m=1

qmφm(t), (107)
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which also satisfies the modified Equation (95):

D(µ)[wn(t, M, q)] =
M

∑
m=1

qm ϕm(t). (108)

The unknown parameters q1, . . . , qM should satisfy the truncated version of Equation (104),

M

∑
m=1

qm

[
ϕm(t) +

K

∑
k=1

bk(t)D(µk)
t [φm(t)]

]
= Fn(t), (109)

by the collocation method as follows:

M

∑
m=1

qm

[
ϕm
(
tj
)
+

K

∑
k=1

bk
(
tj
)

D(µk)
t
[
φm(tj)

]]
= Fn

(
tj
)
, (110)

where
tj = 0.5T[1 + cos(π(2j− 1)/2Nc)] ∈ [0, T], j = 1, 2, . . . Nc ≥ M, (111)

are the Gauss–Chebyshev (GC) collocation points on the time interval [0, T]. It is important
to note that in the framework of the presented method, the Fn(t) are required at several
time steps tj given in Equation (111) only. As it follows from Equation (104), the same is true
for time function θn(t). As a result, the Fourier expansion of the f1(x, t) of Equation (10)
also should be performed at the same time moments tj only.

5.2. (1 + 1)-Dimensional Problems of the General Case

Consider the following equation:

Lt[u] = Mt

[
∂2u
∂x2

]
+ f (x, t), x ∈ [0, 1], t ∈ [0, T]. (112)

The substitution
u = vg + w, (113)

with vg(x, t), gives us

Lt[w] = Mt

[
∂2w
∂x2

]
+ f1(x, t), (114)

LW(x)[w]x=0 = 0, LE(x)[w]x=1 = 0, (115)

and IC
∂iw(x, 0)

∂ti = ui(x)−
∂ivg(x, 0)

∂it
= wi(x), i = 0, . . . , l − 1. (116)

Here,

f1(x, t) = f (x, t)− Lt
[
vg(x, t)

]
+ Mt

[
∂2vg(x, t)

∂x2

]
. (117)

We seek the solution of the problem in Equations (114)–(116) using the following linear
combination,

wN(x, t) =
N

∑
n=1

wn(t)ψn(x), (118)

where ψn(x) denotes one of the eigenfunctions given by Equations (68), (73), (77), (80), and (82).
Substituting Equation (118) into Equation (114), we have

Lt[wn] = −λ2
n Mt[wn] + θn(t), n = 1, . . . , N, (119)
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where

θn(t) =
∫ 1

0
f1(x, t)ψn(x)dx. (120)

Further, wn holds

diwn(0)
dti =

∫ 1

0
wi(x)ψn(x)dx = wi,n, i = 0, . . . , l − 1, (121)

which follows from Equation (116). The solution of wn can be given by

wn(t, M, qn) = wp,n(t) +
M

∑
m=1

qn,mφm(t), qn = {qn,m}M
m=1. (122)

Therefore, the solution uappro(x, t) to the origin problem is given by

uappro = vg(x, t) +
N

∑
n=1

wp,n(t)ψn(x) +
M

∑
m=1

Qm(x)φm(t), (123)

where the Qm(x) is given by

Qm(x) =
N

∑
n=1

qn,mψn(x). (124)

5.3. (2 + 1)-Dimensional Problems

Consider the following (2 + 1)-dimensional problem:

Lt[u] = Mt

[
∇2u

]
+ f (x, y, t), (x, y) ∈ [0, 1]2, t ∈ [0, T]. (125)

The substitution
u = vg + w, (126)

with vg(x, y, t) given by Equation (40) gives us

Lt[w] = Mt

[
∇2w

]
+ f1(x, y, t), (127)

and the homogeneous BCs

LW(x)[w]x=0 = 0, LE(x)[w]x=1 = 0, LS(y)[u]y=0 = 0, LN(y)[u]y=1 = 0, (128)

and ICs
∂iw(x, y, 0)

∂ti = ui(x, y)−
∂ivg(x, y, 0)

∂ti = wi(x, y), i = 0, . . . , l − 1. (129)

The approximate solution to Problems (127)–(129) is approximated as follows:

wN(x, t) =
N

∑
n1,n2=1

wn1,n2(t)ψn1,n2(x1, x2) =
N

∑
n=1

wn(t)ψn(x). (130)

Here, ψn1,n2(x1, x2) = ψn(x) = ψn1(x1)ψn2(x2) is the product of the eigenfunctions
given by Equations (68), (73), (77), (80), or (82), and we use the following short notations:
n =(n1, n2), x =(x1, x2) = (x, y).

Substituting wN(x, t) in (127), we have

Lt[wn(t)] = −
(

λ2
n1
+ λ2

n2

)
Mt[wn(t)] + θn(t), t ∈ [0, T], (131)
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where

θn(t) =
∫ 1

0

∫ 1

0
f1(x1, x2, t)ψn1,n2(x1, x2)dx1dx2. (132)

The harmonic wn(t) = wn1,n2(t) satisfies

∂iw0,n(0)
∂ti = wi,n =

∫ 1

0

∫ 1

0
wi(x1, x2)ψn1,n2(x1, x2)dx1dx2, i = 0, 1, . . . , l − 1, (133)

which follows from Equation (129). The approximate solution

wn(t, M, qn) = wp,n(t) +
M

∑
m=1

qn,mφm(t), qn = {qn,m}M
m=1 = {qn1,n2,m}M

m=1, (134)

can be obtained obviously for each harmonic. Then, the uN, M(x, t) can be approximated
as follows:

uN, M(x, t) = vg(x, t) +
N

∑
n1,n2=1

wM,n1,n2(t)ψn1,n2(x1, x2)

= vg(x, t) +
N

∑
n1,n2=1

wp,n1,n2(t)ψn1,n2(x1, x2) +
M

∑
m=1

Qm(x)φm(t), (135)

where

Qm(x) =
N

∑
n1,n2=1

qn1,n2,mψn1,n2(x1, x2). (136)

5.4. (3 + 1)-Dimensional Problems

Now let us move to the (3 + 1)-dimensional problems

Lt[u] = Mt

[
∇2u

]
+ f , (x, y, z) ∈ [0, 1]3, t ∈ [0, T]. (137)

Using the substitution
u = vg + w, (138)

with vg given by Equation (58), we have

Lt[w] = Mt

[
∇2w

]
+ f1(x, y, z, t), (139)

subjected to

LW(x)[w]x=0 = 0, LE(x)[w]x=1 = 0, LS(y)[u]y=0 = 0, LN(y)[u]y=1 = 0,

LB(z)[u]z=0 = 0, LT(z)[u]z=1 = 0, (140)

and IC

∂iw(x, y, z, 0)
∂ti = ui(x, y, z)−

∂ivg(x, y, z, 0)
∂ti = wi(x, y, z), i = 0, . . . , l − 1, (141)

in which
f1 = f − Lt

[
vg
]
+ Mt

[
∇2vg

]
. (142)
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With the same technology, the approximated solution of wN(x, t) can be expressed in
the following functional form,

wN(x, t) =
N

∑
n=1

wn(t)ψn(x), (143)

where n = (n1, n2, n3), x =(x, y, z)=(x1, x2, x3), ψn(x) = ψn1,n2,n3(x1, x2, x3) is the product
of the eigenfunctions ψn1(x)ψn2(y)ψn3(z) given by Equations (68), (73), (77), (80), or (82).

Substituting wN(x, t) in Equation (127), we have

Lt[wn(t)] = −
(

λ2
n1
+ λ2

n2
+ λ2

n3

)
Mt[wn(t)] + θn(t), t ∈ [0, T], (144)

where

θn(t) =
∫ 1

0

∫ 1

0

∫ 1

0
f1(x, t)ψn1,n2,n3(x)dx. (145)

It is important to note that in the context of the present method, the Fourier expansion
of the source term f1(x, t) over the eigenfunction basis should be performed at several
fixed time moments tj only. This follows from the algorithm of the backward substitution
technique (see Equations (104) and (121)).

The harmonic wn(t) = wn1,n2,n3(t) satisfies

∂iw0,n(0)
∂ti = wi,n =

∫ 1

0

∫ 1

0

∫ 1

0
wi(x)ψn(x)dx, i = 0, . . . , l − 1. (146)

Then, the solution is approximated as

uN, M(x, t) = vg +
N

∑
n=(1,1,1)

wM,n(t)ψn(x)

= vg +
N

∑
n=(1,1,1)

wp,n(t)ψn(x) +
M

∑
m=1

Qm(x)φm(t), (147)

where

Qm(x) =
N

∑
nn=(1,1,1)

qn,mψn(x). (148)

6. Numerical Examples

In this section, the feasibility of the proposed method is experimentally verified.
The maximum absolute error (MAE) and the EH1(t) error containing the derivatives were
used as numerical criteria, as shown below:

Emax(t) = max
1≤i≤Nt

|uN,M(xi, t)− uex(xi, t)|, (149)

EH1(t) =

√√√√ 1
Nt

N

∑
i=1

[
(uN,M(xi, t)− uex(xi, t))2 +

(
∂uN,M

∂t
(xi, t)− ∂uex

∂t
(xi, t)

)2
]

, (150)

where uN,M(xi, t) indicates the approximate solutions obtained by the presented analytical–
numerical method for the compared solution uex(xi, t), and Nt is the total number of
test nodes.

For the 1D problems, we used the number of test nodes Nt = 4N, where N is the
number of spatial harmonics; i.e., we use 4 testing nodes per harmonic. For the 2D examples,
the errors were carried using the Nt = 4000 test nodes distributed in the solution domain.
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For the 3D problem, we have transformed it into the FODE analytically so that we only
have to check the solution accuracy in the time domain.

As for the total number of collocation nodes, we have to illustrate that, in this paper,
the derivation of vg can be done analytically. Therefore, we do not have to place nodes
on the boundary. Using the approximate solution in the form of the Fourier series over
the eigenfunction, we transform the TFPDE into the set of the FODEs for each of the
Fourier harmonics. Therefore, we do not have to place collocation nodes inside the domain.
The collocation nodes are placed in the time domain only.

The collocation points tj, j = 1, 2, . . . , Nc, in the time interval [0, T] are used to form
the collocation system for solving each FODE. In all the examples, we use the number
of collocation nodes Nc = 2M in the time domain, where M is the number of the Müntz
polynomials that are used in the approximate solution of the FODEs. The parameter M
defines the accuracy of the approximation in time.

6.1. (1 + 1)-Dimensional Problem
6.1.1. Example 1

For the first example, the following time fractional cable equation is studied under the
Dirichlet boundary condition

∂u(x, t)
∂t

= D(1−γ1)
t

[
∂2u
∂x2 (x, t)

]
− D(1−γ2)

t [u(x, t)] + f (x, t), x ∈ (0, 1), t ∈ (0, 1), (151)

u(x, 0) = 0, u(0, t) = 0, u(1, t) = 0, (152)

where the source term f (x, t) can be computed by substituting the analytic solution u(x, t)

u(x, t) = t2 sin πx, (153)

into the governing equation, which yields

f (x, t) = 2
(

t +
π2t1+γ1

Γ(2 + γ1)
+

t1+γ2

Γ(2 + γ2)

)
sin πx = F(t) sin πx. (154)

Thus, the problem considered is a special 1D case with a single spatial harmonic,
which was considered in Section 4.1. As it is shown there, the problem can be reduced to a
single FODE,

dw(t)
dt

= −π2D(1−γ1)
t [w(t)]− D(1−γ2)

t [w(t)] + F(t), (155)

for the sole harmonic.
To illustrate the effects of the error in M, Table 1 shows the behavior of the max-

imum absolute error with respect to M for the approximation of the source terms in
Equations (97), (98), and (107). The approximate solution is sought as a truncated series
Equation (107) over the function φm(t): D(µ)[φm(t)] = ϕm(t) and so belongs to the linear

span S(µ, σ, M) = Span
(

1, tµ+σ(m−1)
)M

m=1
. In the case considered, µ = 1 and S(1, σ, M) =

Span
(

1, t1+σ(m−1)
)M

m=1
. For σ = 0.25, S(1, 0.25, M) = Span

(
1, t, t1.25, . . . , t1+0.25(M−1)

)
.

Therefore, as it comes from Equation (153), the exact solution w(t) = t2 belongs to
S(1, 0.25, M) for M ≥ 5. The data in Table 1 demonstrate that, for this particular case,
the results of the proposed analytical–numerical method converge to the exact solution for
the parameter M ≥ 5 and reach the computer rounding errors. Let us consider the case
σ = 0.5. Here, w(t) = t2 belongs to S(1, 0.5, M) for M ≥ 3. The data in Table 1 illustrate
this situation.
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Table 1. The MAE versus the M at t = 1 for different σ.

M 1 2 3 4 5 6 10

σ = 0.25 1.19 × 10−2 1.93 × 10−3 1.97 × 10−4 3.73 × 10−5 1.22 × 10−16 1.22 × 10−16 -
σ = 0.50 1.19 × 10−2 1.47 × 10−3 1.22 × 10−16 1.22 × 10−16 - - -
σ = 0.33 1.19 × 10−2 1.83 × 10−3 1.21 × 10−4 9.35 × 10−7 5.44 × 10−8 6.38 × 10−9 3.12 × 10−1

It is easy to verify that for σ = 0.33 (the bottom row of the table), there is no such
M that the exact solution w(t) belongs to S(1, 0.33, M). As a result, for σ = 0.33, the
error decreases gradually with the growth of M, while for σ = 0.25 and σ = 0.50, it
decreases sharply when the exact solution belongs to the corresponding range S(α, σ, M).
The calculations have been performed for (γ1 = 0.5, γ2 = 0.5), (γ1 = 0.3, γ2 = 0.9), and
(γ1 = 0.7, γ2 = 0.6) which have produced the same results. Thus, if the parameters σ of the
Müntz polynomial basis are chosen in such a way that exact solution belongs to S(µ, σ, M),
then the present method provides the exact solution up to the rounding errors of the
computer. This problem has been considered by Yang, Jiang, and Zhang in [54] using the
spectral Legendre–Tau method. The most accurate result that has been achieved there has
the error Emax = 9.3019 × 10−6 when 13 Legendre’s polynomials were used for the spatial
and temporal approximations.

6.1.2. Example 2

Let us consider the following problem that has been studied using the time-space
spectral tau method in [54]:

∂u(x, t)
∂t

= D(1−γ1)
t

[
∂2u
∂x2 (x, t)

]
− D(1−γ2)

t [u(x, t)] + f (x, t), (156)

subjected to the following conditions:

u(0, t)− ∂u(0, t)
∂x

= −πt2+γ1 , (157)

u(1, t) +
∂u(1, t)

∂x
= −πt2+γ1 + 2et1+γ2 . (158)

The BCs, the source term, and the IC can be computed from the corresponding
exact solution:

u(x, t) = t2+γ1 sin πx + t1+γ2 ex. (159)

In order to show the effects of N and M on the accuracy, Table 2 displays the MAE,
elapsed computational time, and the order of convergence with respect to parameter N:

CON =
log(Emax(N)/Emax(2N))

log 2
, (160)

for M = 7 and M = 15 with σ = 0.25, γ1 = 0.6, and γ2 = 0.9. From this table, it is clearly
seen that, for the case M = 7, the error decreases shapely with the increase of parameter
N up to the value N = 128. For larger N > 128, the results of the proposed method do
not change, and the solution accuracy remains at 10−7. In the case of M = 15, the error
decreases monotonically over the whole range of N, and the final accuracy comes to 10−11.
The order of convergence is three. Table 2 tabulates the solutions given in [54] by the usage
of the spectral Legendre–Tau method for comparison. The data correspond to the case
where 13 Legendre’s polynomials are used for the spatial and temporal approximations.
From the comparison, it can be seen obviously that the proposed analytical–numerical
method leads to a better solution even for small values of M and N from the point of view
of standard accuracy.
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Table 2. The MAE, CON , and the elapsed time versus the N using M = 7 (left) and M = 15 (right).

M = 7 M = 15

N Emax CON CPU, s Emax CON CPU, s

2 9.37 × 10−2 - 0.02 9.37 × 10−2 - 0.11
4 7.31 × 10−3 3.68 0.07 7.31 × 10−3 3.68 0.17
8 6.81 × 10−4 3.42 0.16 6.81 × 10−4 3.42 0.33

16 7.30 × 10−5 3.22 0.36 7.22× 10−5 3.24 0.66
32 9.09 × 10−6 3.01 0.61 8.30 × 10−6 3.12 1.0
64 1.78 × 10−6 2.35 0.98 9.94 × 10−7 3.06 1.9

128 9.97 × 10−7 0.84 1.84 1.22 × 10−7 3.03 4.1
256 9.94 × 10−7 0.04 3.18 1.51 × 10−8 3.01 9.0
512 9.94 × 10−7 «1 6.5 1.89 × 10−9 2.99 19
1024 9.94 × 10−7 «1 13 2.57 × 10−10 2.88 44
2048 9.94 × 10−7 «1 24 5.36 × 10−11 2.26 74

[54], Table 2 , Emax = 3.2279 × 10−5

Table 3 displays the MAE and convergence order with respect to the parameter M for
the fixed values N = 32, 128, 512. Here the convergence order is defined as:

COM =
log(Emax(M1)/Emax(M2))

log(M2/M1)
. (161)

When M is small enough, it defines the accuracy of the approximate solution for
all values of N. For N = 32, the accuracy remains the same for the growth of M > 8.
On the other hand, when N = 512, the calculated error decreases with the increase of
M in the whole range 2 ≤ M ≤ 12. This means that 512 Fourier’s harmonics provide
an accurate approximation and the main error here is caused by the solving of FODEs.
From the last row of this table, it can be seen evidently that the proposed method has high
rates of convergence for the MAE, which provides reasonably accurate approximations
for the unknown variables. It should be noted here that, with the increasing of M and N,
the CO becomes flat, which means that the errors do not change for very large M or N.
The proposed algorithm converges to the stable results.

Table 3. The MAE and COM versus the M with the fixed number of harmonics N.

N = 32 N = 128 N = 512

M Emax COM Emax COM Emax COM

2 1.87 × 10−1 - 1.87 × 10−1 - 1.87 × 10−1 -
3 4.02 × 10−2 3.79 4.02 × 10−2 3.79 4.02 × 10−2 3.79
4 6.69 × 10−3 6.23 6.69 × 10−3 6.23 6.69 × 10−3 6.23
5 6.66 × 10−4 10.3 6.66 × 10−4 10.3 6.66 × 10−4 10.3
6 1.82 × 10−5 19.7 1.24 × 10−5 21.8 1.24 × 10−5 21.8
7 9.09 × 10−6 4.5 9.97 × 10−7 16.4 9.97 × 10−7 16.4
8 8.33 × 10−6 0.66 1.51 × 10−7 14.1 3.72 × 10−8 24.6
9 8.30 × 10−6 «1 1.27 × 10−7 1.47 7.42 ×10−9 13.7

10 8.30 × 10−6 «1 1.23 × 10−7 0.08 3.22 × 10−9 7.92
11 8.30 × 10−6 «1 1.22 × 10−7 «1 2.33 × 10−9 3.39
12 8.30 × 10−6 «1 1.22 × 10−7 «1 1.96 × 10−9 0.63

In Figure 1, the observed behavior of the error is shown in more detail. Let us consider
the left-hand side of Figure 1. The graphics log(Emax(N)) have the same origin for all
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fixed M. With the growth of N, the curves log(Emax(N)) change shape depending on the
fixed value of M.
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Figure 1. The MAE with respect to the parameters M and N.

6.1.3. Example 3

The third example solved here is the high order TFPDE

D(α)
t [u(x, t)] +

sin(t)
1 + t

D(α1)
t [u(x, t)] +

cos(t)
1 + t

D(α2)
t [u(x, t)] + log(1 + t)u(x, t)

=
sinh(t)

1 + t
D(α3)

t

[
∂2u
∂x2 (x, t)

]
+

cosh(t)
1 + t

D(α4)
t

[
∂2u
∂x2 (x, t)

]
+
(

1 + t2
)∂2u

∂x2 (x, t) + f (x, t), (162)

where α =
√

21, α1 = π, α2 =
√

5, α3 =
√

3, α4=
√

2. As far as 4 < α =
√

21 < 5, the
TFPDE needs the following five ICs:

∂iu
∂ti (x, t = 0) = ui(x), i = 0, 1, 2, 3, 4. (163)

The equation is subjected to the BC

∂u
∂x

(x = 0, t)− π2u(x = 0, t) = gW(t),
∂u
∂x

(x = 1, t) + e2u(x = 1, t) = gE(t), (164)

where the functions f (x, t), ui(x), gW(t), gE(t) can be easily computed from the following
exact solution

u(x, t) = cos(t)[cos(x) + cosh(x)]. (165)

Table 4 presents the maximum absolute errors of the solution and its first derivative in
time with the increase in N for M = 16 and M = 24. In the case when M = 24, the errors
decrease sharply for 100 ≤ N ≤ 2000. For M = 16, the errors are the same for N > 500.
In Figure 2, this behavior of the error is shown in more detail.
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Table 4. The MAE of the u and ∂u/∂t versus N using M = 16 (left) and 24 (right).

M = 16 M = 24

N Emax(u) Emax(∂u/∂t) EH1 Emax(u) Emax(∂u/∂t) EH1

100 3.53 × 10−8 5.51 × 10−8 8.43 × 10−9 3.53 × 10−8 5.51 × 10−8 8.42 × 10−9

200 4.36 × 10−9 6.92 × 10−9 8.16 × 10−10 4.39 × 10−9 6.84 × 10−9 7.33 × 10−10

300 1.27 × 10−9 2.10 × 10−9 3.93 × 10−10 1.30 × 10−9 2.02 × 10−9 1.76 × 10−10

400 5.21 × 10−10 9.31 × 10−10 3.56 × 10−10 5.47 × 10−10 8.51 × 10−10 6.42 × 10−11

500 2.54 × 10−10 5.15 × 10−10 3.51 × 10−10 2.80 × 10−10 4.36 × 10−10 2.94 × 10−11

1000 5.80 × 10−11 1.94 × 10−10 3.50 × 10−10 3.49 × 10−11 5.44 × 10−11 2.59 × 10−12

2000 5.80 × 10−11 1.94 × 10−10 3.50 × 10−10 4.35 × 10−12 6.81 × 10−12 2.65 × 10−13
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Figure 2. The MAE with respect to the parameters M and N.

6.2. (2 + 1)-Dimensional Problems
6.2.1. Example 4

Let us consider the following two-dimensional multi-term time-fractional mixed sub-
diffusion and diffusion-wave equation defined in the unit square

D(α)
t [u(x, y, t)] +

∂u
∂t

(x, y, t) + D(α1)
t [u(x, y, t)] + u(x, y, t)

= ∇2u(x, y, t) + D(α2)
t

[
∇2u(x, y, t)

]
+ f (x, y, t), (x, y) ∈ [0, 1]2, (166)

with the exact solution

u(x, y, t) =
(

1 + t3
)

sin(πx) sin(πy) ≡ w(t)ψ1,1(x, y), (167)

for the case α = 1.6, α1 = 0.7, and α2 = 0.3.
The initial and Dirichlet boundary conditions of function f (x, y, t) conform the exact

solution. Thus, we get the TFPDE with a single spatial harmonic corresponding to the
eigenfunction ψ1,1(x, y) = 2 sin(πx) sin(πy). As it is shown above, the problem can be
reduced to the single FODE

D(α)
t [w(t)] +

dw(t)
dt

+ D(α1)
t [w(t)] + w(t)

= −2π2w(t)− 2π2D(α2)
t [w(t)] + F(t), (168)

with initial conditions w(0) = w0, dw(0)/dt = w1.
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Table 5 shows the behavior of the MAE versus the M in ϕm(t) = tδm , δm = σ(m− 1). As
shown in the previous section (see Equations (97), (98) and (107)), the approximate solution

w(t, M) belongs to the linear span S(α, σ, M) = Span
(

1, t, tα+σ(m−1)
)M

m=1
. It is easy to check

that for α = 1.6, σ = 0.25, there is no such M that the exact w(t) (see Equation (167)) belongs
to S(α, σ, M). On the other hand, w(t) ∈ S(1.6, 0.35, M ≥ 5) and w(t) ∈ S(1.6, 0.7, M ≥ 3).
The data placed in Table 5 illustrate this situation. For σ = 0.25, the error decreases
step-by-step with the growth of M, while it decreases sharply for σ = 0.35 and σ = 0.7
when the exact solution belongs to the corresponding manifold S(α, σ, M). Feng, Liu, and
Turner have considered this problem [32] and constructed two finite element schemes for
its numerical solution. Ezz-Eldien et al. [55] have studied this problem by the use of the
combination of the shifted Legendre polynomials with the time-space spectral collocation
method. The comparison of the two methods presented in Table 4 of [55] shows that most
accurate result that has been achieved there has the error Emax = 1.407× 10−3 for the first
technique and Emax = 1.807× 10−6 for the second one.

Table 5. The MAE and the computational time versus the M at t = 1.

M 1 2 3 4 5 6 10 15

σ = 0.25 4.3 × 10−1 4.8 × 10−2 1.1 × 10−2 1.7 × 10−3 8.5 × 10−5 2.2 × 10−6 8.1 × 10−11 5.4 × 10−13

σ = 0.35 4.3 × 10−1 3.6 × 10−2 5.2 × 10−3 4.9 × 10−4 1.8 × 10−15 1.1 × 10−15 - -
σ = 0.70 4.3 × 10−1 1.8 × 10−2 1.1 × 10−15 2.0 × 10−15 - - - -

6.2.2. Example 5

In this example, the problem solved here is to show the applicability of the pro-
posed algorithm for the multi-term time-fractional diffusion-wave equation in the unit
square [0, 1]2 [56]

D(α)
t [u] +

∂u
∂t

+ D(α1)
t [u] + u = ∇2u + f (x, y, t). (169)

The initial conditions, the Dirichlet BC, and the source term f correspond to the exact solution

u(x, y, t) = t2 sin(1− x)(ex − 1) sin(1− y)(ey − 1). (170)

The data shown in Table 6 are obtained using α = 1.3, α1 = 0.3, σ = 0.25, and the
numbers of the Müntz polynomials are M = 5 and M = 10. The same problem was
considered by Shen, Liu, and Anh in [56] using an implicit difference method. From this
table, it is clearly stated that our new approach is generally more accurate than others, even
with a small number of N and M.

Table 6. The MAE and the elapsed time versus the N at t = 1 using M = 5 (left) and 10 (right).

M = 5 M = 10

N Emax(u) Emax(∂u/∂t) CPU, s Emax(u) Emax(∂u/∂t) CPU, s

100 1.443 × 10−6 3.105 × 10−6 9 1.452 × 10−6 2.903 × 10−6 14
200 2.018 × 10−7 1.553 × 10−6 23 2.100 × 10−7 4.200 × 10−7 35
300 1.203 × 10−7 1.522 × 10−6 56 6.445 × 10−8 1.289 × 10−7 97
400 1.231 × 10−7 1.514 × 10−6 89 2.756 × 10−8 5.510 × 10−8 154
500 1.241 × 10−7 1.511 × 10−6 153 1.420 × 10−8 2.839 × 10−8 260
600 1.245 × 10−7 1.510 × 10−6 204 8.247 × 10−9 1.649 × 10−8 352

[56], Table 1, Emax(u) = 6.145893072032060 × 10−6
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6.3. (3 + 1)-Dimensional Problems
Example 6

Let us consider the following time-fractional telegraph equation in three dimensions

D(α+1)
t [u] + D(α)

t [u] + u = ∇2u + f (x, y, z, t), 0 ≤ t ≤ 1, (171)

in the domain (x, y, z) ∈ [0, π]3 with zero Dirichlet boundary conditions and the source
term corresponding to the exact solution

u(x, y, z, t) =
tα+2

Γ(α + 3)
sin 2x sin 2y sin 2z. (172)

Using the transform (x, y, z)→ (πx, πy, πz), the equation is transformed into

D(α+1)
t [u] + D(α)

t [u] + u =
1

π2∇
2u + f (x, y, z, t), (173)

with the solution

u(x, y, z, t) =
tα+2

Γ(α + 3)
sin 2πx sin 2πy sin 2πz. (174)

Thus, we get a single spatial harmonic TFPDE. Substituting

u(x, y, z, t) = w(t) sin 2πx sin 2πy sin 2πz, (175)

we get the FODE
D(α+1)

t [w] + D(α)
t [w] + 13w = F(t), 0 ≤ t ≤ 1, (176)

with the source term and ICs corresponding to the exact solution

w(t) =
tα+2

Γ(α + 3)
. (177)

Table 7 shows the behavior of the absolute errors with the growth of M for two cases:
σ = 0.23 and σ = 0.25. The results tabulated in the table are obtained by using α = 0.9.
As shown above (see Equations (97), (98) and (107)), the approximate solution w(t, M)

belongs to the linear span S(α, σ, M) = Span
(

1, t, tα+σ(m−1)
)M

m=1
. It is easy to check that

for σ = 0.23 there is no such M that the exact solution w(t) belongs to S(α, σ, M). On the
other hand, w(t) ∈ S(α, 0.25, M ≥ 5). Indeed, α + 0.25× (5− 1) = α + 2. The data placed
in the table illustrate this situation. For σ = 0.23, the error decreases step-by-step with the
growth of M, while it decreases sharply for σ = 0.25 when the exact solution belongs to the
corresponding manifold S(α, σ, M). Yang et al. have considered this problem in [57] using
an ADI finite difference scheme. The most accurate result shown in Table 2 of the reference
has the error 1.1243× 10−3.

Table 7. The MAE versus M at t = 1 for different σ.

M 1 2 3 4 5 6 10 15

σ = 0.23 4.6 × 10−2 2.4 × 10−2 3.4 × 10−3 1.2 × 10−4 1.6 × 10−6 1.2 × 10−7 2.4 × 10−10 3.9 × 10−12

σ = 0.25 4.6 × 10−2 2.3 × 10−2 3.0 × 10−3 8.2 × 10−5 1.1 × 10−17 2.8 × 10−17 - -

7. Conclusions

In the present work, an accurate method that can reach the computer rounding errors
has been proposed for solving multi-term time-fractional equations. Let us note that the
proposed analytical–numerical method collides with two key issues. The first one is the
method to handle non-homogeneous time-dependent boundary conditions, which is critical
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to the derivation of vg. The second problem is the method to handle the non-homogeneous
time-dependent source term of the equation. The derived function vg solves the first
problem cardinally. This article presents the analytical function vg exactly satisfying the
boundary conditions. Let us note that this function is not unique because one can locally
change it inside the cube. The algorithm can give the function in the explicit analytical
form with the help of math software packages like Maple or Mathematica if needed.
The method of the Laplace transform and the Green function method are traditionally used
for solving the second one. The BSM technique can also handle the non-homogeneous
time-dependent source term. As mentioned above, in the solution procedure of the present
method, one gets the system of the equation for each Fourier harmonic. The FODEs were
solved independently with the help of Müntz polynomial bases. Additionally, the Fourier
expansion of the source term over the eigenfunction basis should be performed at several
fixed time moments tj only. The number of these points is proportional to M. The value of
M is not too large. As the numerical experiment shows, even M = 10 for Müntz’s basis
functions are enough for a rather precise approximate solution of the (3 + 1) multi-term
FPDE of the high order. And the convergence order with respect to the M and N is larger
than 3. Generally speaking, M > 10 and N > 100 are sufficient to provide accurate results
for the tested problems.

In this paper, the method is demonstrated by solving an important class of fractional
problems described in the Introduction. This technique can also be extended onto iter-
ative quasi-linear PDEs and onto the problems in other orthogonal coordinate systems.
The main drawback of this work is that the derivation of vg is only applicable for regular
domains. Actually, numerical methods can be used for this purpose. This is the subject of
further study.

Author Contributions: Conceptualization, J.L. (Ji Lin), S.R. and J.L. (Jun Lu); methodology, Y.Z.;
writing—original draft preparation, S.R.; writing—review and editing, J.L. (Ji Lin) and Y.S.; visualiza-
tion, J.L. (Ji Lin); funding acquisition, J.L. (Jun Lu). All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (No. 2021YFB2600704), the National Natural Science Foundation of China (Nos. 12072103,
52171272), and the Significant Science and Technology Project of the Ministry of Water Resources of
China (No. SKS-2022112).

Data Availability Statement: No data were analyzed or generated during the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000.
2. Molz, F.-J.; Liu, H.-H.; Szulga, J. Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review,

presentation of fundamental properties, and extensions. Water Resour. Res. 1997, 33, 2273–2286. [CrossRef]
3. Singh, J.; Kumar, D.; Baleanu, D. On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-

Leffler type kernel. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 103113. [CrossRef]
4. Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999.
5. Langlands, T.-A.-M.; Henry, B.I.; Wearne, S.L. Fractional cable equation models for anomalous electrodiffusion in nerve cells:

Finite domain solutions. Siam J. Appl. Math. 2011, 71, 1168–1203. [CrossRef]
6. Chen, Y.; Chen, C.-M. Novel numerical method of the fractional cable equation. J. Appl. Math. Comput. 2020, 62, 663–683.

[CrossRef]
7. Dehghan, M.; Shafieeabyaneh, N.; Abbaszadeh, M. Application of spectral element method for solving Sobolev equations with

error estimation. Appl. Numer. Math. 2020, 158, 439–462. [CrossRef]
8. Zhao, J.; Fang, Z.; Li, H.; Liu, Y. A Crank–Nicolson Finite Volume Element Method for Time Fractional Sobolev Equations on

Triangular Grids. Mathematics 2020, 8, 1591. [CrossRef]
9. Lin, J.; Zhang, Y.-H.; Reutskiy, S. A semi-analytical method for 1D, 2D and 3D time fractional second order dual-phase-lag model

of the heat transfer. Alex. Eng. J. 2021, 60, 5879–5896. [CrossRef]
10. Sun, H.-G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.-Q. A new collection of real world applications of fractional calculus in

science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [CrossRef]

http://doi.org/10.1029/97WR01982
http://dx.doi.org/10.1063/1.4995032
http://dx.doi.org/10.1137/090775920
http://dx.doi.org/10.1007/s12190-019-01302-w
http://dx.doi.org/10.1016/j.apnum.2020.08.010
http://dx.doi.org/10.3390/math8091591
http://dx.doi.org/10.1016/j.aej.2021.03.071
http://dx.doi.org/10.1016/j.cnsns.2018.04.019


Mathematics 2023, 11, 929 25 of 26

11. Liu, Y.; Zheng, L.; Zhang, X. Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative. Comput.
Math. Appl. 2011, 61, 443–450. [CrossRef]

12. Ming, C.; Liu, F.-W.; Zheng, L.; Turner, I.; Anh, V. Analytical solutions of multi-term time fractional differential equations and
application to unsteady flows of generalized viscoelastic fluid. Comput. Math. Appl. 2016, 72, 2084–2097. [CrossRef]

13. Ding, X.-L.; Nieto, J.-J. Analytical solutions for multi-term time-space fractional partial differential equations with nonlocal
damping terms. Fract. Calc. Appl. Anal. 2018, 21, 312–335.

14. Ding, X.-L.; Jiang, Y.-J. Analytical solutions for multi-term time-space coupling fractional delay partial differential equations with
mixed boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 2018, 65, 231–247. [CrossRef]

15. Jong, S.-G.; Choe, H.-C.; Ri, Y.-D. A new approach for an analytical solution for a system of multi-term linear fractional differential
equations. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 955–964. [CrossRef]

16. Jiang, H.; Liu, F.; Turner, I.; Burrage, K. Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations
in a finite domain. Comput. Math. Appl. 2012, 64, 3377–3388. [CrossRef]

17. Zeli, V.; Zorica, D. Analytical and numerical treatment of the heat conduction equation obtained via time-fractional distributed-
order heat conduction law. Phys. Stat. Appl. 2018, 492, 2316–2335. [CrossRef]

18. Ama, E.-S.; El-Kalla, I.-L.; Ziada, E. Analytical and numerical solutions of multi-term nonlinear fractional orders differential
equations. J. Appl. Math. Comput. 2010, 60, 788–797.

19. Liu, D.; He, W. Numerical simulation analysis mathematics of fluid mechanics for semiconductor circuit breaker. Appl. Math.
Nonlinear Sci. 2021, 7, 331–342. [CrossRef]

20. Yang, Y. Application of numerical method of functional differential equations in fair value of financial accounting. Appl. Math.
Nonlinear Sci. 2022, 7, 533–540. [CrossRef]

21. Liu, Q.; Dai, B.; Katib, I.; Alhamami, M.-A. Financial accounting measurement model based on numerical analysis of rigid normal
differential equation and rigid generalised functional equation. Appl. Math. Nonlinear Sci. 2022, 7, 541–548. [CrossRef]

22. Xu, L.; Aouad, M. Application of Lane-Emden differential equation numerical method in fair value analysis of financial accounting.
Appl. Math. Nonlinear Sci. 2021, 7, 669–676. [CrossRef]

23. Yan, L.; Sabir, Z.; Ilhan, E.; Gao, W. Design of a computational heuristic to solve the nonlinear Liénard differential model:
Nonlinear Liénard differential model. CMES-Comput. Model. Eng. Sci. 2023, 136, 201–221.

24. Fardi, M.; Zaky, M.-A.; Hendy, A.-S. Nonuniform difference schemes for multi-term and distributed-order fractional parabolic
equations with fractional Laplacian. Math. Comput. Simul. 2023, 206, 614–635. [CrossRef]

25. Mohammadi, S.; Ghasemi, M.; Fardi, M. A fast Fourier spectral exponential time-differencing method for solving the time-
fractional mobile–immobile advection–dispersion equation. Comput. Appl. Math. 2022, 41, 264. [CrossRef]

26. Fardi, M.; Khan, Y. A fast difference scheme on a graded mesh for time-fractional and space distributed-order diffusion equation
with nonsmooth data. Int. J. Mod. Phys. B 2022, 36, 2250076. [CrossRef]

27. Fardi, M.; Alidousti, J. A Legendre spectral-finite difference method for Caputo–Fabrizio time-fractional distributed-order
diffusion equation. Math. Sci. 2022, 16, 417–430. [CrossRef]

28. Fardi, M.; Ghasemi, M. A numerical solution strategy based on error analysis for time-fractional mobile/immobile transport
model. Soft Comput. 2021, 25, 11307–11331. [CrossRef]

29. Fardi, M.; Khan, Y. A novel finite difference-spectral method for fractal mobile/immobiletransport model based on Ca-
puto–Fabrizio derivative. Chaos Solitons Fractals 2021, 143, 110573. [CrossRef]

30. Dehghan, M.; Safarpoor, M.; Abbaszadeh, M. Two high-order numerical algorithms for solving the multi-term time fractional
diffusion-wave equations. J. Comput. Appl. Math. 2015, 290, 174–195. [CrossRef]

31. Jin, B.; Lazarov, R.; Liu, Y.; Zhou, Z. The Galerkin finite element method for a multi-term time-fractional diffusion equations. J.
Comput. Phys. 2015, 281, 825–843. [CrossRef]

32. Feng, L.-B.; Liu, F.-W.; Turner, I. Finite difference/finite element method for a novel 2D multi-term time-fractional mixed
sub-diffusion and diffusion-wave equation on convex domains. Commun. Nonlinear Sci. Numer. Simul. 2019, 70, 354–371.
[CrossRef]

33. Yin, B.-L.; Liu, Y.; Li, H.; Zeng, F.-H. A class of efficient time-stepping methods for multi-term time-fractional reaction-diffusion-
wave equations. Appl. Numer. Math. 2021, 165, 56–82. [CrossRef]

34. Zeng, F.; Zhang, Z.; Karniadakis, G.E. Second-order numerical methods for multi-term fractional differential equations: Smooth
and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 2017, 327, 478–502. [CrossRef]

35. Zheng, M.; Liu, F.; Anh, V.; Turner, I. A high-order spectral method for the multi-term time-fractional diffusion equations. Appl.
Math. Model. 2016, 40, 4970–4985. [CrossRef]

36. Rashidinia, J.; Mohmedi, E. Approximate solution of the multi-term time fractional diffusion and diffusion-wave equations.
Comput. Math. Appl. 2020, 39, 216. [CrossRef]

37. Soltani, J.-A.; Derakhshan, M.-H.; Marasi, H.-R. An efficient hybrid numerical method for multi-term time fractional partial
differential equations in fluid mechanics with convergence and error analysis. Commun. Nonlinear Sci. Numer. 2022, 114, 106620.

38. Alsuyuti, M.-M.; Doha, E.-H.; Ezz-Eldien, S.-S. Galerkin operational approach for multi-dimensions fractional differential
equations. Commun. Nonlinear Sci. Numer. 2022, 114, 106608. [CrossRef]

39. Fardi, M. A kernel-based pseudo-spectral method for multi-term and distributed order time-fractional diffusion equations. Numer.
Methods Partial. Differ. Equations 2022. [CrossRef]

http://dx.doi.org/10.1016/j.camwa.2010.11.021
http://dx.doi.org/10.1016/j.camwa.2016.08.012
http://dx.doi.org/10.1016/j.cnsns.2018.05.022
http://dx.doi.org/10.1007/s40995-021-01099-z
http://dx.doi.org/10.1016/j.camwa.2012.02.042
http://dx.doi.org/10.1016/j.physa.2017.11.150
http://dx.doi.org/10.2478/amns.2021.2.00024
http://dx.doi.org/10.2478/amns.2021.1.00096
http://dx.doi.org/10.2478/amns.2021.1.00065
http://dx.doi.org/10.2478/amns.2021.1.00094
http://dx.doi.org/10.1016/j.matcom.2022.12.009
http://dx.doi.org/10.1007/s40314-022-01970-8
http://dx.doi.org/10.1142/S021797922250076X
http://dx.doi.org/10.1007/s40096-021-00430-4
http://dx.doi.org/10.1007/s00500-021-05914-y
http://dx.doi.org/10.1016/j.chaos.2020.110573
http://dx.doi.org/10.1016/j.cam.2015.04.037
http://dx.doi.org/10.1016/j.jcp.2014.10.051
http://dx.doi.org/10.1016/j.cnsns.2018.10.016
http://dx.doi.org/10.1016/j.apnum.2021.02.007
http://dx.doi.org/10.1016/j.cma.2017.08.029
http://dx.doi.org/10.1016/j.apm.2015.12.011
http://dx.doi.org/10.1007/s40314-020-01241-4
http://dx.doi.org/10.1016/j.cnsns.2022.106608
http://dx.doi.org/10.1002/num.22981


Mathematics 2023, 11, 929 26 of 26

40. Fardi, M.; Al-Omari, S.-K.-Q.; Araci, S. A pseudo-spectral method based on reproducing kernel for solving the time-fractional
diffusion-wave equation. Adv. Contin. Discret. Model. 2022, 2022, 54. [CrossRef]

41. Carslaw, H.-S.; Jaeger, J.-C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1959.
42. Alquran, M.; Ali, M.; Alsukhour, M.; Jaradat, I. Promoted residual power series technique with Laplace transform to solve some

time-fractional problems arising in physics. Results Phys. 2020, 19, 103667. [CrossRef]
43. Kamran, K.; Shah, Z.; Kumam, P.; Alreshidi, N.-A. A Meshless Method Based on the Laplace Transform for the 2D Multi-Term

Time Fractional Partial Integro-Differential Equation. Mathematics 2020, 8, 1972. [CrossRef]
44. Reutskiy, S.-Y.; Fu, Z.-J. A semi-analytic method for fractional-order ordinary differential equations: Testing results. Fract. Calc.

Appl. Anal. 2018, 21, 1598–1618. [CrossRef]
45. Hong, Y.-X.; Lin, J.; Chen, W. A typical backward substitution method for the simulation of Helmholtz problems in arbitrary 2D

domains. Eng. Anal. Bound. Elem. 2018, 93, 167–176. [CrossRef]
46. Safari, F.; Azarsa, P. Backward substitution method based on Müntz polynomials for solving the nonlinear space fractional partial

differential equations. Math. Methods Appl. Sci. 2020, 43, 847–864. [CrossRef]
47. Zhang, Y.; Rabczuk, T.; Lu, J.; Lin, S.; Lin, J. Space-time backward substitution method for nonlinear transient heat conduction

problems in functionally graded materials. Comput. Math. Appl. 2022, 124, 98–110. [CrossRef]
48. Lin, J.; Xu, Y.; Zhang, Y. Simulation of linear and nonlinear advection–diffusion–reaction problems by a novel localized scheme.

Appl. Math. Lett. 2020, 99, 106005. [CrossRef]
49. Lin, J.; Xu, Y.; Reutskiy, S.; Lu, J. A novel Fourier-based meshless method for (3 + 1)-dimensional fractional partial differential

equation with general time-dependent boundary conditions. Appl. Math. Lett. 2023, 135, 108441. [CrossRef]
50. Esmaeili, S.; Shamsi, M.; Luchko, Y. Numerical solution of fractional differential equations with a collocation method based on

Mü ntz polynomials. Comput. Math. Appl. 2011, 62, 918–929. [CrossRef]
51. Mokhtary, P.; Ghoreishi, F.; Srivastava, H.M. The Mü ntz-Legendre Tau method for fractional differential equations. Appl. Math.

Model. 2016, 40, 671–684. [CrossRef]
52. Bahmanpour, M.; Tavassoli-Kajani, M.; Maleki, M. A Müntz wavelets collocation method for solving fractional differential

equations. Comput. Math. Appl. 2018, 37, 5514–5526. [CrossRef]
53. Maleknejad, K.; Rashidinia, J.; Eftekhari, T. Numerical solutions of distributed order fractional differential equations in the time

domain using the Müntz–Legendre wavelets approach. Numer. Methods Partial. Differ. Equations 2021, 37, 707–731. [CrossRef]
54. Yang, X.; Jiang, X.Y.; Zhang, H. A time–space spectral tau method for the time fractional cable equation and its inverse problem.

Appl. Numer. Math. 2018, 130, 95–111. [CrossRef]
55. Ezz-Eldien, S.-S.; Doha, E.-H.; Wang, Y.; Cai, W. A numerical treatment of the two-dimensional multi-term time-fractional mixed

sub-diffusion and diffusion-wave equation. Commun. Nonlinear Sci. Numer. Simul. 2020, 91, 105445. [CrossRef]
56. Shen, S.; Liu, F.-W.; Anh, V.-V. The analytical solution and numerical solutions for a two-dimensional multi-term time fractional

diffusion and diffusion-wave equation. J. Comput. Appl. Math. 2019, 345, 515–534. [CrossRef]
57. Yang, X.-H.; Qiu, W.-L.; Zhang, H.-X.; Tang, L. An efficient alternating direction implicit finite difference scheme for the

three-dimensional time-fractional telegraph equation. Comput. Math. Appl. 2021, 102, 233–247. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13662-022-03726-4
http://dx.doi.org/10.1016/j.rinp.2020.103667
http://dx.doi.org/10.3390/math8111972
http://dx.doi.org/10.1515/fca-2018-0084
http://dx.doi.org/10.1016/j.enganabound.2018.05.004
http://dx.doi.org/10.1002/mma.5963
http://dx.doi.org/10.1016/j.camwa.2022.08.026
http://dx.doi.org/10.1016/j.aml.2019.106005
http://dx.doi.org/10.1016/j.aml.2022.108441
http://dx.doi.org/10.1016/j.camwa.2011.04.023
http://dx.doi.org/10.1016/j.apm.2015.06.014
http://dx.doi.org/10.1007/s40314-018-0636-0
http://dx.doi.org/10.1002/num.22548
http://dx.doi.org/10.1016/j.apnum.2018.03.016
http://dx.doi.org/10.1016/j.cnsns.2020.105445
http://dx.doi.org/10.1016/j.cam.2018.05.020
http://dx.doi.org/10.1016/j.camwa.2021.10.021

	Introduction
	Preliminaries
	The Algorithm for Computing vg( x,t) 
	(1 + 1)-Dimensional Problems
	(2 + 1)-Dimensional Problems
	(3 + 1)-Dimensional Problems

	Orthogonal Basis for the Fourier Expansion
	(1 + 1)-Dimensional Problems
	(2 + 1) and (3 + 1)-Dimensional Problems

	The Solution Procedure
	(1 + 1) Problem with a Single Spatial Harmonic
	(1 + 1)-Dimensional Problems of the General Case
	(2 + 1)-Dimensional Problems
	(3 + 1)-Dimensional Problems

	Numerical Examples
	(1 + 1)-Dimensional Problem
	Example 1
	Example 2
	Example 3

	(2 + 1)-Dimensional Problems
	Example 4
	Example 5

	(3 + 1)-Dimensional Problems

	Conclusions
	References

