
Citation: Efremova, L.S. Introduction

to Completely Geometrically

Integrable Maps in High Dimensions.

Mathematics 2023, 11, 926. https://

doi.org/10.3390/math11040926

Academic Editor: Marek Lampart

Received: 28 January 2023

Revised: 8 February 2023

Accepted: 9 February 2023

Published: 12 February 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Introduction to Completely Geometrically Integrable Maps in
High Dimensions
Lyudmila S. Efremova 1,2

1 Institute of Information Technologies, Mathematics and Mechanics, Nizhny Novgorod State University,
Gagarin Ave, Nizhny Novgorod 603022, Nizhny Novgorod, Russia

2 Department of General Mathematics, Moscow Institute of Physics and Technologies, Institutskii per,
Dolgoprudny 141701, Moscow Region, Russia

Abstract: We introduce here the concept of completely geometrically integrable self-maps of n-
dimensional (n ≥ 2) cells, cylinders and tori. This concept is the extension of the geometric integrabil-
ity concept previously introduced for the self-maps of a rectangle in the plane. We formulate and
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1. Introduction

The theory of dynamical systems with continuous and discrete time gives powerful
tools for the study of real phenomena [1–3]. The integrability problem is very much in
demand in these investigations. There is a vast bibliography on integrable dynamical sys-
tems both with continuous (see, e.g., [4–10]) and discrete time (see, e.g., [11–17]). Originally,
the concept of the integrability of dynamical systems with discrete time was introduced
for systems obtained by the discretization of known differential equations [11,12,16,17].
However, there are discrete dynamical systems that do not belong to this class. We consider
these systems.

This work is the direct continuation of the previous papers [18–22], where different
aspects of the geometric integrability of self-maps of a compact rectangle in the plane or a
two-dimensional cylinder are considered.

Formulate the definition of a geometrically integrable map on an invariant subset of
two-dimensional cell, cylinder and torus (one can find the definition of a geometrically
integrable map on an invariant subset of a compact plane rectangle and cylinder in the
papers [18–22], respectively).

Let M = M1 × M2 be a two-dimensional cell, cylinder or torus. Here, M1, M2 are
closed intervals or circles.

Definition 1. A map F : M→ M is said to be geometrically integrable on a nonempty F-invariant
set A(F) ⊆ M if there exists a self-map ψ of an arc J ⊆ M1 and ψ-invariant set B(ψ) ⊆ J such
that the restriction F|A(F) is semiconjugate with the restriction ψ|B(ψ) by means of a continuous
surjection H : A(F)→ B(ψ), i.e., the following equality holds:

H ◦ F|A(F) = ψ|B(ψ) ◦ H. (1)

The map ψ|B(ψ) is said to be the quotient of F|A(F).
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Remark 1. Maps F and ψ in Definition 1 can be continuous or discontinuous. Moreover, in [23],
Definition 1 is extended on the case of some multifunctions with noncompact domains in the
plane R2.

Formulate the geometric and analytic criteria (Theorem 1 and Theorem 2, respectively)
of the geometric integrability for self-maps of two-dimensional cells, cylinders and tori
(cf. [21,22]).

For this goal, we need the concept of a local lamination (which generalises the concepts
of a lamination and a foliation) and its support (for definitions, see Section 3 and the
paper [24] (Ch.1, § 1.2)). We also use natural projections pr1 : M→ M1 and pr2 : M→ M2.

Theorem 1. Let F : M→ M, A(F) be a nonempty closed F-invariant subset of M (A(F) ⊆ M)
satisfying

pr2(A(F)) = M2. (2)

Let J ⊆ M1 be an arc, ψ be a self-map of J and B(ψ) be a closed ψ-invariant subset of J.
Then, F|A(F) is the geometrically integrable map with the quotient ψ|B(ψ) by means of a

continuous surjection H : A(F) → B(ψ) such that for every y ∈ M2, the map H is an injection
on x, if and only if A(F) is the support of a continuous invariant lamination for A(F) 6= M (of a
continuous invariant foliation for A(F) = M) with fibres {γx′}x′∈B(ψ) that are pairwise disjoint
graphs of continuous functions x = xx′(y) for every y ∈ M2. Moreover, the inclusion

F(γx′) ⊆ γψ(x′) (3)

holds (Formula (3) demonstrates the property of invariance of a local lamination).

The dynamical system Ψ : M→ M is said to be a skew product if

Ψ(x, y) = (ψ(x), gx(y)), for all (x; y) ∈ M. (4)

Here, we set gx(y) = g(x, y).
The following Theorem 2 can be considered as the claim about the rectification of

fibres of a local invariant lamination.

Theorem 2. Let F : M→ M, A(F) be a nonempty closed F-invariant subset of M satisfying the
equality (2). Let J ⊆ M1 be an arc, ψ be a self-map of J, and B(ψ) be a closed ψ-invariant subset
of J.

Then, F|A(F) is the geometrically integrable map with the quotient ψ|B(ψ) by means of a
continuous surjection H : A(F)→ B(ψ) such that for every y ∈ I2, the map H is an injection on
x, if and only if there is a homeomorphism H̃ that maps the set A(F) on the set B(ψ)×M2 and
reduces the restriction F|A(F) to the skew product Ψ|B(ψ)×M2

satisfying the equality

Ψ|B(ψ)×M2
(u, v) = (ψ|B(ψ)(u), gx′(v)), x′ = pr1 ◦ H̃−1(u, v). (5)

Here, H̃−1 : B(ψ)×M2 → A(F) is the inverse homeomorphism for H̃,

and H̃(x, y) = (H(x, y), y), for all (x, y) ∈ A(F). (6)

Detailed proofs of the above Theorems 1 and 2 for self-maps of a plane rectangle are
given in the paper [21].

Note that a skew product with a two-dimensional phase space is the geometrically
integrable map on the whole phase space under the natural projection pr1. At the same
time, there are examples of the geometrically integrable maps on the proper invariant
subsets of two-dimensional phase spaces (see, e.g., [18,20,21]).

This paper is organised as follows. In Section 2, we describe skew products, introduce
the concept of completely geometrically integrable maps in high dimensions and consider
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the main properties of these maps. In Section 3, we prove the geometric criterion for the
complete geometric integrability of maps in high dimensions. In Section 4, we prove the
analytic criterion for the complete geometric integrability of maps in high dimensions, and
as a corollary of this criterion, we obtain the generalisation of the famous Sharkovsky’s
theorem for the set of periods of periodic points of the completely geometrically integrable
maps on multidimensional cells.

2. Skew Products and Preliminary Properties of Completely Geometrically Integrable
Maps in High Dimensions

We give here the description of skew products in high dimensions, following the
paper [25].

Let Mn =
n
∏
i=1

Mi, where Mi is a closed interval or a circle for i = 1, 2, . . . , n, and n ≥ 2.

Consider a map Ψ : Mn → Mn satisfying

Ψ(x1, x2, . . . , xn) = (ψ1(x1), ψ2, x1(x2), . . . , ψn, x1, ..., xn−1(xn)), (7)

where (x1, x2, . . . , xn) ∈ Mn, and

ψj, x1, ..., xj−1(xj) = ψj(x1, . . . , xj−1, xj) (2 ≤ j ≤ n). (8)

Map (7) is said to be a skew product with the phase space Mn.
We set

M̂j−1 =
j−1

∏
i=1

Mi, ψ̂j−1 = (ψ1, ψ2, x1 , . . . , ψj−1, x1, ..., xj−2).

x̂j−1 = (x1, x2, . . . , xj−1), (x1, x2, . . . , xj) = (x̂j−1, xj).

As follows from equalities (7) and (8), a map ψ̂j, where 2 ≤ j ≤ n− 1, n ≥ 3, is also a skew
product with the phase space M̂j.

We agree that the map ψ̂n−1 : M̂n−1 → M̂n−1 (n ≥ 2) is the quotient map (quotient) of
the skew product (7), and for every x̂n−1 ∈ M̂n−1, the map ψn, x̂n−1

: Mn → Mn is the fibre
map over a point x̂n−1.

Let prx̂j−1
: M̂j → M̂j−1 be the natural projection. Here, 2 ≤ j ≤ n, M̂n = Mn. Then,

the following equality is correct:

prx̂n−1
◦Ψ = ψ̂n−1 ◦ prx̂n−1

. (9)

The equality (9) means that the skew product Ψ is semiconjugate with its quotient ψ̂n−1.
By (7), we have for every k ≥ 2:

Ψk(x̂n−1, xn) = (ψ̂k
n−1(x̂n−1), ψn, x̂n−1, k(xn)), (10)

where
ψn, x̂n−1, k(xn) = ψn, ψ̂k−1

n−1(x̂n−1)
◦ . . . ◦ ψn, x̂n−1

(xn).

Introduce the concept of the completely geometrically integrable map with the phase
space of a high dimension.

Definition 2. A map F : Mn → Mn (n ≥ 2) satisfying

F(x1, x2, . . . , xn) = (F1(x1, x2 . . . , xn), . . . , Fn(x1, x2 . . . , xn)) (11)

is said to be geometrically integrable on a nonempty F-invariant set An(F) ⊆ Mn if there exists
a map ψ̂n−1 : M̂n−1 → M̂n−1 and ψ̂n−1-invariant set An−1(ψ̂n−1) ⊆ M̂n−1 such that F|An(F)
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is semiconjugate with ψ̂n−1|An−1(ψ̂n−1)
by means of a continuous surjection Hn : An(F) →

An−1(ψ̂n−1), i.e., the following equality holds:

Hn ◦ F|An(F) = ψ̂n−1|An−1(ψ̂n−1)
◦ Hn. (12)

The map ψ̂n−1|An−1(ψ̂n−1)
is said to be the (first) quotient of F|An(F).

Let, moreover, each j-th quotient ψ̂n−j |An−j(ψ̂n−j)
(1 ≤ j ≤ n− 2, n ≥ 3) of the map F|An(F) be

geometrically integrable on the nonempty ψn−j-invariant set An−j(ψ̂n−j) by means of a continuous
surjection Hn−j : An−j(ψ̂n−j)→ An−j−1(ψ̂n−j−1) with its (first) quotient ψ̂n−j−1|An−j−1(ψ̂n−j−1)

,

which is said to be the (j + 1)-st quotient of F|An(F). Here, ψ̂n−j−1 : M̂n−j−1 → M̂n−j−1, and the
set An−j−1(ψ̂n−j−1) ⊆ M̂n−j−1 is ψ̂n−j−1-invariant and nonempty.

Then, the map F|An(F) is said to be completely geometrically integrable on the set An(F).

Remark 2. The concept of the geometrically integrable map on a nonempty invariant subset of
a two-dimensional cell, cylinder or torus coincides with the concept of its complete geometric
integrability.

Remark 3. As it follows from equalities (7)–(9), a skew product Ψ : Mn → Mn (n ≥ 2) is a
completely geometrically integrable map (on the phase space Mn) with j-th quotient ψ̂n−j : M̂n−j →
M̂n−j for 1 ≤ j ≤ n− 1.

As it follows from Definitions 1 and 2, a topological conjugacy keeps the geometric
integrability property of a map.

Lemma 1. Let F : Mn → Mn (n ≥ 2) be a geometrically integrable map on a nonempty F-
invariant set An(F) ⊆ Mn with the quotient ψ̂n−1|An−1(ψ̂n−1)

. Here ψn−1 : M̂n−1 → M̂n−1, and
An−1(ψ̂n−1) is a ψ̂n−1-invariant nonempty set. Let a map F∗ : Mn

∗ → Mn
∗ have a nonempty F∗-

invariant set An
∗(F∗) ⊆ Mn

∗ so that F∗|An∗(F∗) is topologically conjugate to F|An(F). Then, F∗|An∗(F∗)

is the geometrically integrable map with the same quotient ψ̂n−1|An−1(ψ̂n−1)
.

In fact, let H∗ : An
∗(F∗)→ An(F) be a homeomorphism that conjugates F∗|An∗(F∗) and

F|An(F). Then, the equality holds

F|An(F) = H∗ ◦ F∗|An∗(F∗) ◦ H−1
∗ ,

where H−1
∗ : An(F)→ An

∗(F∗) is the inverse homeomorphism for H∗.
Use the geometric integrability property of F|An(F) (as can be seen in equalities (1) and

(12)). Then, we have

Hn ◦ F|An(F) = Hn ◦ H∗ ◦ F∗|An∗(F∗) ◦ H−1
∗ = ψ̂n−1|An−1(ψ̂n−1)

◦ Hn.

This implies correctness of the equality

Hn ◦ H∗ ◦ F∗|An∗(F∗) = ψ̂n−1|An−1(ψ̂n−1)
◦ Hn ◦ H∗,

where (Hn ◦ H∗) : A∗(Fn
∗ )→ An−1(ψ̂n−1) is a continuous surjection. Therefore, F∗|An∗(F∗) is

the geometrically integrable map with the quotient ψ̂n−1|An−1(ψ̂n−1)
.

By Definitions 1 and 2, a topological conjugacy of maps in M̂n−1 keeps the property of
a map in dimension (n− 1) of being the quotient of a geometrically integrable map with
n-dimensional phase space Mn.

Lemma 2. Let F : Mn → Mn (n ≥ 2) be a geometrically integrable map on a nonempty F-
invariant set An(F) ⊆ Mn (under the continuous surjection Hn) with the quotient ψ̂n−1|An−1(ψ̂n−1)

.
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Here, ψ̂n−1 is a self-map of M̂n−1 and An−1(ψ̂n−1) ⊆ M̂n−1 is a ψ̂n−1-invariant nonempty set. Let
ψ̂∗, (n−1) be a self-map of M̂n−1, and An−1

∗ (ψ̂∗, (n−1)) ⊆ M̂n−1 be a ψ̂∗, (n−1)-invariant nonempty
set. Let, moreover, ψ̂∗, (n−1) |An−1

∗ (ψ̂∗, (n−1))
be topologically conjugate with ψ̂n−1|An−1(ψ̂n−1)

under a

conjugating homeomorphism h∗ : An−1
∗ (ψ̂∗, (n−1))→ An−1(ψ̂n−1). Then, ψ̂∗, (n−1) |An−1

∗ (ψ̂∗, (n−1))

is the quotient of F|An(F) with respect to the continuous surjection (h−1
∗ ◦ Hn) : An(F) →

An−1
∗ (ψ̂∗, (n−1)), where h−1

∗ : An−1(ψ̂n−1) → An−1
∗ (ψ̂∗, (n−1)) is the inverse homeomorphism

for h∗.

In fact, the following equality is valid:

ψ̂n−1|An−1(ψ̂n−1)
= h∗ ◦ ψ̂∗, (n−1) |An−1

∗ (ψ̂∗, (n−1))
◦ h−1
∗ .

Hence,

h−1
∗ ◦ Hn ◦ F|An(F) = h−1

∗ ◦ ψ̂n−1|An−1(ψ̂n−1)
◦ Hn = ψ̂∗, (n−1) |An−1

∗ (ψ̂∗, (n−1))
◦ h−1
∗ ◦ Hn.

Here, (h−1
∗ ◦ Hn) : An(F)→ An−1

∗ (ψ̂∗, (n−1)) is the continuous surjection. This means that
ψ̂∗, (n−1) |An−1

∗ (ψ̂∗, (n−1))
is the quotient of F|An(F) with respect to the continuous surjection

h−1
∗ ◦ Hn.

Using Lemmas 1 and 2, we obtain the following claim.

Corollary 1. Let F : Mn → Mn (n ≥ 2) be a completely geometrically integrable map on
a nonempty F-invariant set An(F) ⊆ Mn. Let a map F∗ : Mn

∗ → Mn
∗ on the F∗-invariant

set An
∗(F∗) ⊆ M̂n

∗ be topologically conjugate with F|An(F). Then, F∗|An∗(F∗) is the completely
geometrically integrable map.

3. The Geometric Criterion for the Complete Geometric Integrability in
High Dimensions

Give the definition of a local lamination (as can be seen in [24], Ch.1, § 1.2) for a
manifold Mn, n ≥ 2. Below, by a C0-diffeomorphism, we mean a homeomorphism.

We say that the Cr-smooth (for r ≥ 1) or continuous (C0) d-dimensional (1 ≤ d ≤
n − 1) manifold Lα is a submanifold of the manifold Mn if Lα ⊂ Mn and this inclusion is
Cr-regular embedding.

Definition 3. Let A be a subset of Mn satisfying A =
⋃
α

Lα, where α belongs to an index set;

Cr-submanifolds {Lα}α of dimension d are pairwise disjoint. The family of submanifolds {Lα}α is
said to be d-dimensional Cr-local lamination without singularities if for every point x ∈ A there
exist a neighbourhood U(x) ⊂ Mn and a Cr-diffeomorphism χ : U(x)→ Rn (Rn is n-dimensional
Euclidean space) such that every connected component of the intersection U(x)

⋂
Lα (if it is not

empty) is mapping by means of the Cr-diffeomorphism χ into a d-dimensional hyperplane such that

χ|U(x)
⋂

Lα
: U(x)

⋂
Lα → χ(U(x)

⋂
Lα)

is a Cr-diffeomorphism on the image.
The set A satisfying the above equality is said to be a support of the local lamination L(A) and

submanifolds Lα are said to be fibres. If A is a closed set, A 6= Mn, then we refer to d-dimensional
Cr-lamination; if A = Mn, then we refer to d-dimensional Cr-foliation.

Prove the geometric criterion of the complete geometric integrability of a map. This
result is based on the proof of the existence of one-dimensional continuous local laminations
in invariant subsets of the spaces Mn, M̂n−1, . . . , M̂2. We use further natural projections
prj : M̂j → Mj, 2 ≤ j ≤ n.
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Theorem 3. Let F : Mn → Mn (n ≥ 2), An(F) be a nonempty closed F-invariant subset of
Mn satisfying

prn(An(F)) = Mn. (13)

Let ψ̂n−j (1 ≤ j ≤ n− 1) be a self-map of M̂n−j and An−j(ψ̂n−j) be a closed ψ̂n−j-invariant subset
of M̂n−j satisfying

prn−j(An−j(ψ̂n−j)) = Mn−j. (14)

Then, F|An(F) is the completely geometrically integrable map with sequential quotients
ψ̂n−j |An−j(ψ̂n−j)

by means of continuous surjections Hn : An(F) → An−1(ψ̂n−1) and Hn−j :

An−j(ψ̂n−j)→ An−j−1(ψ̂n−j−1) for n ≥ 3, 1 ≤ j ≤ n− 2, satisfying:
Hn is a one-to-one map on x̂n−1 for every xn ∈ Mn, and Hn−j is a one-to-one map on x̂n−j−1

for every xn−j ∈ Mn−j, if and only if every set An(F) and An−j(ψ̂n−j) for the above j is the
support of a continuous invariant local lamination with fibres {γx̂′n−1

: x̂′n−1 ∈ An−1(ψ̂n−1)}
and {γx̂′n−j−1

: x̂′n−j−1 ∈ An−j−1(ψ̂n−j−1)}, respectively, which are pairwise disjoint graphs of

continuous functions x̂n−1 = x̂x̂′n−1
(xn) for every xn ∈ Mn and x̂n−j−1 = x̂x̂′n−j−1

(xn−j) for every
xn−j ∈ Mn−j, respectively.

Proof. 1. Let F|An(F) be the completely geometrically integrable map with sequential
quotients ψ̂n−j |An−j(ψ̂n−j)

by means of continuous surjections Hn : An(F) → An−1(ψ̂n−1)

and Hn−j : An−j(ψ̂n−j)→ An−j−1(ψ̂n−j−1) for n ≥ 3, 1 ≤ j ≤ n− 2.
Then, for every x̂′n−1 ∈ An−1(ψ̂n−1), there is a point (x̂n−1, xn) ∈ An(F) satisfying

Hn(x̂n−1, xn) = x̂′n−1; (15)

and for every x̂′n−j−1 ∈ An−j−1(ψ̂n−j−1), there is a point (x̂n−j−1, xn−j) ∈ An−j(ψ̂n−j)

satisfying
Hn−j(x̂n−j−1, xn−j) = x̂′n−j−1. (16)

Since Hn is a one-to-one map on x̂n−1 for every xn ∈ Mn, and Hn−j is a one-to-one map on
x̂n−j−1 for every xn−j ∈ Mn−j, then, first, there are neighbourhoods

Un(x̂n−1, xn) = Ûn−1(x̂n−1)×Un(xn)

of a point (x̂n−1, xn) ∈ An(F) and the unique continuous local implicit function

x̂loc
n−1 = x̂loc

x̂′n−1
(xn), where x̂loc

x̂′n−1
: Un(xn)→ Ûn−1(x̂n−1),

which is the solution of Equation (15); and, second, there are neighbourhoods

Un−j(x̂n−j−1, xn−j) = Ûn−j−1,(x̂n−j−1)×Un−j(xn−j)

of points (x̂n−j−1, xn−j) ∈ An−j(ψ̂n−j), and for every 1 ≤ j ≤ n− 2, n ≥ 3, the unique
continuous local implicit function

x̂loc
n−j−1 = x̂loc

x̂′n−j−1
(xn−j), where x̂loc

x̂′n−j−1
: Un−j(xn−j)→ Ûn−j−1(x̂n−j−1),

is the solution of Equation (16). Moreover, the following inclusions hold for graphs γloc
x̂′n−1

and γloc
x̂′n−j−1

of functions x̂loc
n−1 and x̂loc

n−j−1, respectively:

γloc
x̂′n−1
⊂ An(F), γloc

x̂′n−j−1
⊂ An−j(ψ̂n−j).
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Since every set An(F) and An−j(ψ̂n−j) is a compact, then in a finite number of steps we
will construct continuous (global) implicit functions

x̂n−1 = x̂x̂′n−1
(xn) and x̂n−j−1 = x̂x̂′n−j−1

(xn−j),

where by equalities (13) and (14), we have:

x̂x̂′n−1
: Mn → An−1(ψ̂n−1), and x̂x̂′n−j−1

: Mn−j → An−j−1(ψ̂n−j−1).

Moreover, x̂x̂′n−1
is the solution of Equation (15) on Mn, and x̂x̂′n−j−1

is the solution of

Equation (16) on Mn−j. Denote by γx̂′n−1
the graph of the implicit function x̂x̂′n−1

and by
γx̂′n−j−1

, the graph of the implicit function x̂x̂′n−j−1
.

2. Since the map Hn is one-to-one on x̂n−1 for every xn ∈ Mn, then by the above

γx̂′n−1

⋂
γx̂′′n−1

= ∅ for x̂′n−1 6= x̂′′n−1. (17)

Since maps Hn−j are one-to-one on x̂n−j−1 for every xn−j ∈ Mn−j, then we have

γx̂′n−j−1

⋂
γx̂′′n−j−1

= ∅, for x̂′n−j−1 6= x̂′′n−j−1. (18)

In the previous item 1, it was proven that⋃
x̂′n−1∈An−1(ψ̂n−1)

γx̂′n−1
⊂ An(F);

⋃
x̂′n−j−1∈An−j−1(ψ̂n−j−1)

γx̂′n−j−1
⊂ An−j(ψ̂n−j).

Since all maps Hn : An(F) → An−1(ψ̂n−1) and Hn−j : An−j(ψ̂n−j) → An−j−1(ψ̂n−j−1)
are continuous surjections then, first, for every point (x̂n−1, xn) ∈ An(F), there is a
unique point x̂′n−1 ∈ An−1(ψ̂n−1) such that (x̂n−1, xn) ∈ γx̂′n−1

(see Formula (17)), and,

second, for every point (x̂n−j−1, xn−j) ∈ An−j(ψ̂n−j), there exists a unique point x̂′n−j−1 ∈
An−j−1(ψ̂n−j−1) satisfying (x̂n−j−1, xn−j) ∈ γx̂′n−j−1

(see Formula (18)). These properties

mean that the following inclusions hold:

An(F) ⊂
⋃

x̂′n−1∈An−1(ψ̂n−1)

γx̂′n−1
; An−j(ψ̂n−j) ⊂

⋃
x̂′n−j−1∈An−j−1(ψ̂n−j−1)

γx̂′n−j−1
.

Hence, the equalities are correct:

An(F) =
⋃

x̂′n−1∈An−1(ψ̂n−1)

γx̂′n−1
; (19)

An−j(ψ̂n−j) =
⋃

x̂′n−j−1∈An−j−1.(ψ̂n−j−1)

γx̂′n−j−1
. (20)

Equalities (19) and (20) means that the sets An(F) and An−j(ψ̂n−j) are the supports of
local laminations L(F) and L(ψ̂n−j) with fibres {γx̂′n−1

: x̂′n−1 ∈ An−1(ψ̂n−1)} and {γx̂′n−j−1
:

x̂′n−j−1 ∈ An−j−1(ψ̂n−j−1)}, respectively, (see Definition 3).
3. Prove the invariance of the constructed above local laminations. For certainty, we

will carry out the reasoning for the local lamination with fibres

{γx̂′n−1
: x̂′n−1 ∈ An−1(ψ̂n−1)}.

In fact, the invariance of this local lamination means that the following property holds:
for every x̂′n−1 ∈ An−1(ψ̂n−1), there exists x̂′′n−1 ∈ An−1(ψ̂n−1) such that the inclusion
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F(γx̂′n−1
) ⊂ γx̂′′n−1

holds. Suppose the contrary. Then, there is a fibre γx̂′n−1
and points

(x̂1
n−1, x1

n), (x̂2
n−1, x2

n) ∈ γx̂′n−1
satisfying

F(x̂1
n−1, x1

n) ∈ γx̂′′n−1
, F(x̂2

n−1, x2
n) ∈ γx̂′′′n−1

for some x̂′′n−1, x̂′′′n−1 ∈ An−1(ψ̂n−1), where x̂′′n−1 6= x̂′′′n−1. Using the equality (12), we obtain
the inclusion

{x̂′′n−1, x̂′′′n−1} ⊂ Hn ◦ F|An(F)(γx̂′n−1
) =

= ψ̂n−1|An−1(ψ̂n−1)
◦ Hn(γx̂′n−1

) = ψ̂n−1|An−1(ψ̂n−1
)(x̂′n−1).

This is impossible because ψ̂n−1|An−1(ψ̂n−1)
is a single-valued map. Therefore, the real

lamination L(F) with fibres {γx̂′n−1
: x̂′n−1 ∈ An−1(ψ̂n−1)} for An(F) 6= M or the foliation

for An(F) = M is F-invariant. The proof of the invariance of local laminations L(ψ̂n−j)
for 1 ≤ j ≤ n − 2, n ≥ 3, is analogous to the proof given in this item for the local
lamination L(F).

4. Prove the continuity of local laminations L(F) and L(ψ̂n−j). For certainty, give the
proof for the local lamination L(F). In fact, take a convergent sequence {(x̂m

n−1, xm
n )}m≥1 ⊂

An(F). Let (x̂0
n−1, x0

n) be its limit. Since An(F) is a compact set, then (x̂0
n−1, x0

n) ∈ An(F).
Use the equality (19). Then, there are fibres {γx̂1,m

n−1
}m≥1 and γx̂′n−1

such that (x̂m
n−1, xm

n ) ∈
γx̂1, m

n−1
for every m ≥ 1, and (x̂0

n−1, x0
n) ∈ γx̂′n−1

, i.e.,

x̂x̂1, m
n−1

(xm
n ) = x̂m

n−1, x̂x̂′n−1
(x0

n) = x̂0
n−1.

Thus, the following equality holds:

lim
m→+∞

x̂x̂1,m
n−1

(xm
n ) = x̂x̂′n−1

(x0
n).

The last equality means that the sequence of continuous functions {xx̂1,m
n−1
}m≥1 continuously

converges. In the set of continuous functions (defined on the compact interval or the circle
Mn), the continuous convergence is equivalent to the uniform convergence (see [26], Ch.2,
§ 21, X). This means that L(F) is a continuous local lamination, and the set of its fibres
{γx̂′n−1

: x̂′n−1 ∈ An−1(ψ̂n−1)} is a compact in Mn. Analogous considerations prove the

continuity of invariant local laminations L(ψ̂n−j).
5. Let each set An(F) and An−j(ψ̂n−j) be the support of the continuous invariant

lamination L(F) and L(ψ̂n−j) for An(F) 6= Mn and An−j(ψ̂n−j) 6= M̂n−j, respectively, (of
the continuous invariant foliation L(F) and L(ψ̂n−j) for An(F) = Mn and An−j(ψ̂n−j) =

M̂n−j, respectively) with fibres

{γx̂′n−1
: x̂′n−1 ∈ An−1(ψ̂n−1)} (21)

and
{γx̂′n−j−1

: x̂′n−j−1 ∈ An−j−1(ψ̂n−j−1)} (22)

respectively, such that fibres (21) and (22) are pairwise disjoint graphs of continuous functions
{x̂x̂′n−1

(xn)} with the domain Mn and {x̂x̂′n−j−1
(xn−j)} with the domain Mn−j, respectively.

Prove the geometric integrability of the map F|An(F). In fact, let Hn, where Hn: An(F)→
An−1(ψ̂n−1), be the curvilinear projection satisfying the equality

Hn(γx̂′n−1
) = x̂′n−1. (23)

Then, by the above, Hn is the injective map with respect to x̂n−1 for every xn ∈ Mn.
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Note that continuity of the local lamination L(F) implies the continuity of Hn. In fact,
let (x̂n−1, xn) be a point of the set An(F). By the equality (19), An(F) is the perfect set, i.e.,
An(F) has no isolated points. Let {(x̂m

n−1, xm
n )}m≥1 ⊂ An(F) be a sequence, convergent to

a point (x̂n−1, xn). Using (19) we find fibres {γx̂1,m
n−1
}m≥1 and γx̂′n−1

satisfying (x̂m
n−1, xm

n ) ∈
γx̂1,m

n−1
for every m ≥ 1, and (x̂n−1, xn) ∈ γx̂′n−1

. Since the lamination (or the foliation) L(F)

is continuous, then using the equality (23), we obtain

lim
m→+∞

Hn(x̂m
n−1, xm

n ) = lim
m→+∞

x̂1,m
n−1 = x̂′n−1 = Hn(x̂n−1, xn).

This means that the map Hn : An(F)→ An−1(ψ̂n−1) is continuous.
Prove the equality (12). Let (x̂n−1, xn) ∈ An(F). Then, (x̂n−1, xn) ∈ γx̂′n−1

for some

x̂′n−1 ∈ An−1(ψ̂n−1). Denote by C(γψ̂(x̂′n−1)
) the subset of the fibre γψ̂(x̂′n−1)

satisfying
the equality

C(γψ̂(x̂′n−1)
) = F(γx̂′n−1

).

This equality holds by the invariance of the local lamination L(F). Then, we have

Hn ◦ F|An(F)(x̂n−1, xn) = Hn ◦ F|An(F)(γx̂′n−1
) = Hn(C(γψ̂(x̂′n−1)

)) =

= ψ̂(x̂′n−1) = ψ̂|An−1(ψ̂n−1)
◦ Hn(γx̂′n−1

) = ψ̂|An−1(ψ̂n−1)
◦ Hn(x̂n−1, xn).

Thus, the equality (12) holds, and the map F|An(F) is integrable with the first quotient
ψ̂n−1|An−1(ψ̂n−1)

. Analogously, the geometric integrability of maps ψ̂n−j |An−j(ψ̂n−j)
for n ≥ 3,

1 ≤ j ≤ n− 2 is proven. The proof of Theorem 3 is finished.

Remark 4. Nonlocal implicit functions are also used in the considerations of papers [20,21,27,28].

Remark 5. Theorem 3 generalises the geometric criteria of the integrability for maps in a plane
rectangle from papers [18,19,21] and the sufficient conditions of the partial integrability of maps in
the plane from [20] (compare with Theorem 1).

4. The Analytic Criterion for the Complete Geometric Integrability in High
Dimensions: Concluding Remarks

The main result of this part of the paper is the analytic criterion for the complete
geometric integrability of the self-maps of multidimensional cells, cylinders and tori. This
criterion is based on the possibility of reducing a map to a skew product.

Theorem 4. Let F : Mn → Mn (n ≥ 2), An(F) be a nonempty closed F-invariant subset of
Mn satisfying (13). Let ψ̂n−j (1 ≤ j ≤ n− 1) be a self-map of M̂n−j, An−j(ψ̂n−j) be a closed
ψ̂n−j-invariant subset of M̂n−j satisfying (14).

Then, F|An(F) is the completely geometrically integrable map with sequential quotients
ψ̂n−j |An−j(ψ̂n−j)

by means of continuous surjections Hn : An(F) → An−1(ψ̂n−1) and Hn−j :

An−j(ψ̂n−j)→ An−j−1(ψ̂n−j−1) for n ≥ 3, 1 ≤ j ≤ n− 2, satisfying:
Hn is a one-to-one map on x̂n−1 for every xn ∈ Mn, and Hn−j is a one-to-one map on x̂n−j−1

for every xn−j ∈ Mn−j, if and only if there are homeomorphisms H̃n : An(F)→ An−1(ψ̂n−1)×
Mn and H̃n−j : An−j(ψ̂n−j) → An−j−1(ψ̂n−j−1) × Mn−j for n ≥ 3, 1 ≤ j ≤ n − 2, which
reduce the restrictions FAn(F) and ψ̂n−j |An−j(ψ̂n−j)

, respectively, to skew products satisfying:

Ψn |An−1(ψ̂n−1)×Mn
(ûn−1, un) = (ψ̂n−1|An−1(ψ̂n−1)

(ûn−1), ψn, x̂′n−1
(un)), (24)
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where x̂′n−1 = prx̂n−1
◦ H̃−1

n (ûn−1, un), H̃−1
n : An−1(ψ̂n−1) × Mn → An(F) is the inverse

homeomorphism for H̃n;

Ψn−j |An−j−1(ψ̂n−j−1)×Mn−j
(ûn−j−1, un−j) =

(ψ̂n−j−1|An−j−1(ψ̂n−j−1)
(ûn−j−1), ψn−j, x̂′n−j−1

(un−j)),
(25)

where x̂′n−j−1 = prx̂n−j−1
◦ H̃−1

n−j(ûn−j−1, un−j), H̃−1
n−j : An−j−1(ψ̂n−j−1) × Mn−j → An−j

(ψ̂n−j).

Proof. 1. Suppose that F|An(F) is the completely geometrically integrable map with sequen-
tial quotients ψ̂n−j |An−j(ψ̂n−j)

by means of continuous surjections Hn : An(F)→ An−1(ψ̂n−1)

and Hn−j : An−j(ψ̂n−j)→ An−j−1(ψ̂n−j−1) for n ≥ 3, 1 ≤ j ≤ n− 2.
Set {

ûn−1 = Hn(x̂n−1, xn),
un = xn.

(26)

Denote by H̃n : An(F)→ An−1(ψ̂n−1)×Mn the map defined by Formula (26).
Set also that {

ûn−j = Hn−j(x̂n−j−1, xn−j),
un−j = xn−j.

(27)

Let H̃n−j : An−j(ψ̂n−j) → An−j−1(ψ̂n−j−1) × Mn−j be maps defined by Formula (27).
Consider for certainty the map given by Formula (26) (the proof for maps defined by
equalities (27) is analogous).

In fact, it is proven in Theorem 3 that An(F) is the support of the continuous invariant
lamination L(F) for An(F) 6= Mn (of the continuous invariant foliation for An(F) = Mn).
Moreover, Hn : An(F) → An−1(ψ̂n−1) is the continuous curvilinear projection that maps
every curvilinear fibre γx̂′n−1

∈ L(F) to the point x̂′n−1 ∈ An−1(ψ̂n−1). Then, the map

H̃n : An(F) → An−1(ψ̂n−1)×Mn defined by the equalities (26) is a continuous bijection.
Since, moreover, An(F) is the compact, and Mn is the Hausdorff space, then H̃n is a
homeomorphism [29] (ch. 2, §6, item 2).

By equalities (26), we obtain H̃n(γx̂′n−1
) = {x̂′n−1} ×Mn for every fibre γx̂′n−1

∈ L(F),

where x̂′n−1 ∈ An−1(ψ̂n−1). Hence, the homeomorphism H̃n rectifies the curvilinear fibres
of the local lamination L(F).

Let Ψn |An−1(ψ̂n−1)×Mn
be the map in the space of variables (ûn−1, un) that corresponds

to the map F|An(F) in the space of variables (x̂n−1, xn). Since H̃n is a homeomorphism then
Ψn |An−1(ψ̂n−1)×Mn

is topologically conjugate to F|An(F) by means of H̃n, that is

Ψn |An−1(ψ̂n−1)×Mn
= H̃n ◦ F|An(F) ◦ H̃−1

n . (28)

Obtain the coordinate presentation for Ψn |An−1(ψ̂n−1)×Mn
using (28). In fact, let (ûn−1, un)

be an arbitrary point of the set An−1(ψ̂n−1)×Mn. By Formula (26), the equality holds:

H̃−1
n (ûn−1, un) = (x̂′n−1, xn), where xn = un;

in addition, there exists ûn−1 ∈ An−1(ψ̂n−1), ûn−1 = x̂n−1, such that (x̂′n−1, xn) ∈ γx̂n−1
,

and x̂′n−1 is given by the formula

x̂′n−1 = prx̂n−1
◦ H̃−1

n (ûn−1, un). (29)

Let
F|An(F)(x̂n−1, xn) = ( f̂n−1(x̂n−1, xn), ψn, x̂n−1

(xn)). (30)
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Here
f̂n−1(x̂n−1, xn) = ( f1(x̂n−1, xn), f2(x̂n−1, xn), . . . , fn−1(x̂n−1, xn)).

Use equalities (28)–(30). Then, we obtain:

F|An(F)(x̂′n−1, xn) = ( f̂n−1(x̂′n−1, xn), ψn, x̂′n−1
(xn)).

By the invariance of the local lamination L(F), we have:

( f̂n−1(x̂′n−1, xn), ψn, x̂′n−1
(xn)) ∈ γψ̂n−1(x̂n−1)

.

Therefore, using (26) we obtain

H̃n( f̂n−1(x̂′n−1, xn), ψn, x̂′n−1
(xn)) =

= Ψn |An−1(ψ̂n−1)×Mn
( f̂n−1(x̂′n−1, xn), ψn, x̂′n−1

(xn)) =

= (ψ̂n−1|An−1(ψ̂n−1)
(x̂n−1), ψn, x̂′n−1

(xn)).

Change (x̂n−1, xn) on (ûn−1, un). Then, we finally obtain

Ψn |An−1(ψ̂n−1×Mn
(ûn−1, un) = (ψ̂n−1|An−1(ψ̂n−1)

(ûn−1), ψn, x̂′n−1
(un)),

where x̂′n−1 is given by (29). Thus, Formula (24) is proven. Analogously, Formula (25)
are proven.

2. Let homeomorphisms H̃n : An(F)→ An−1(ψ̂n−1)×Mn and H̃n−j : An−j(ψ̂n−j)→
An−j−1(ψ̂n−j−1) × Mn−j for n ≥ 3, 1 ≤ j ≤ n − 2, reduce restrictions F|An(F) and
ψ̂n−j |An−j(ψ̂n−j)

to skew products Ψn |An−1(ψ̂n−1)×Mn
(see Formula (24)) and

Ψn−j |An−j−1(ψ̂n−j−1)×Mn−j
(see Formula (25)), respectively. This means that, first, F|An(F)

and Ψn |An−1(ψ̂n−1)×Mn
are topologically conjugate under the conjugating homeomorphism

H̃n, and, second, each pair ψ̂n−j |An−j(ψ̂n−j)
and Ψn−j |An−j−1(ψ̂n−j−1)×Mn−j

consists of topologi-

cally conjugate maps under the conjugating homeomorp hism H̃n−j. Then, equalities hold:

F|An(F) = H̃−1
n ◦Ψn |An−1(ψ̂n−1)×Mn

◦ H̃n; (31)

ψ̂n−j |An−j(ψ̂n−j)
= H̃−1

n−j ◦Ψn−j |An−j−1(ψ̂n−j−1)×Mn−j
◦ H̃n−j. (32)

Homeomorphisms H̃n and H̃n−j are bijections of An(F) on An−1(ψ̂n−1)×Mn and An−j(ψ̂n−j)

on An−j−1(ψ̂n−j−1)×Mn−j, respectively. Then, sets An−1(ψ̂n−1)×Mn and An−j−1(ψ̂n−j−1)×
Mn−j are supports of the natural Ψn-invariant and Ψn−j-invariant local laminations, respec-
tively, with fibres {ûn−1} × Mn for every ûn−1 ∈ An−1(ψ̂n−1) and {ûn−j−1} × Mn−j for
every ûn−j−1 ∈ An−j−1(ψ̂n−j−1), respectively. Hence, H̃−1

n ({ûn−1}×Mn) for every ûn−1 ∈
An−1(ψ̂n−1) and H̃−1

n−j({ûn−j−1} ×Mn−j) for every ûn−j−1 ∈ An−j−1(ψ̂n−j−1) are curvilin-

ear fibres in An(F) and An−j(ψ̂n−j), respectively. Moreover, by equalities (26) and (31),
every fibre H̃−1

n ({ûn−1} ×Mn) is homeomorphic to Mn and satisfies the equality

prn(H̃−1
n ({ûn−1} ×Mn)) = Mn.

In addition, by equalities (27) and (32), every fibre H̃−1
n−j({ûn−j−1} ×Mn−j) is homeomor-

phic to Mn−j and satisfies the equality

prn−j(H̃−1
n−j({ûn−j−1} ×Mn−j)) = Mn−j.
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Therefore, H̃−1
n ({ûn−1} × Mn) and H̃−1

n−j({ûn−j−1} × Mn−j) are graphs of a continuous
functions x̂n−1 = x̂x̂′n−1

(xn) with the domain Mn and x̂n−j−1 = x̂x̂′n−j−1
(xn−j) with the

domain Mn−j, respectively. Denote these graphs by γx̂′n−1
and γx̂′n−j−1

respectively.

Since fibres {{ûn−1} × Mn}ûn−1∈An−1(ψ̂n−1)
are pairwise disjoint as well as fibres

{{ûn−j−1} × Mn−j}ûn−j−1∈An−j−1(ψ̂n−j−1)
then the same property is valid for curvilinear

fibres {γx̂′n−1
}x̂′n−1∈An−1(ψ̂n−1)

and {γx̂′n−j−1
}x̂′n−j−1∈An−j−1(ψ̂n−j−1)

respectively.

Maps H̃−1
n and H̃−1

n−j are bijections of An−1(ψ̂n−1)×Mn on An(F) and An−j−1(ψ̂n−j−1)×
Mn−j on An−j(ψ̂n−j), respectively. Applying the topological conjugacy of maps F|An(F) and
Ψn |An−1(ψ̂n−1)×Mn

(see equality (31)) as well as ψ̂n−j |An−j(ψ̂n−j)
and Ψn−j |An−j−1(ψ̂n−j−1)×Mn−j

(see equality (32)), we obtain that An(F) and An−j(ψ̂n−j) are supports of invariant local lami-
nations L(F) with fibres {γx̂′n−1

}x̂′n−1∈An−1(ψ̂n−1)
and L(ψ̂n−j) with fibres

{γx̂′n−j−1
}x̂′n−j−1∈An−j−1(ψ̂n−j−1)

, respectively.

Directly prove the correctness of the inclusions

F(γx̂′n−1
) ⊆ γψ̂n−1(x̂′n−1)

and ψ̂n−j(γx̂′n−j−1
) ⊆ γψ̂n−j−1(x̂′n−j−1)

. (33)

Note that the correctness of first inclusion in (33) immediately follows from equality (31).
In fact, let γx̂′n−1

, where x̂′n−1 ∈ An−1(ψ̂n−1), be a curvilinear fibre of L(F). Then, we have

F(γx̂′n−1
) = H̃−1

n ◦Ψn |An−1(ψ̂n−1)×Mn
◦ H̃n(γx̂′n−1

) =

= H̃−1
n ◦Ψn |An−1(ψ̂n−1)×Mn

({ûn−1} ×Mn) ⊆
⊆ H̃−1

n ({ψ̂n−1(ûn−1)} ×Mn) = γψ̂n−1(x̂′n−1)
.

Analogous considerations for sets ψ̂n−j(γx̂′n−j−1
), where x̂′n−j−1 ∈ An−j−1(ψ̂n−j−1), based

on equality (32), prove a second inclusion in Formula (33).
Thus, the inclusions (33) hold, and local laminations L(F) and L(ψ̂n−j) are invari-

ant. By Theorem 3, the map F is completely geometrically integrable on the set An(F)
with sequential quotients ψ̂n−j on the sets An−j(ψ̂n−j) for 1 ≤ j ≤ n − 1. Theorem 4
is proven.

Remark 6. Above Theorem 4 is the generalisation of the analytic criterion for the geometric
integrability from papers [19,21] on the case of maps with the phase spaces of high dimensions
(compare with Theorem 2).

The obtained results can be applied to the study of dynamical properties of completely
geometrically integrable maps. One of these applications deals with the description of the
periodic point periods of these maps (for a two-dimensional case, see [20,21,30]).

Paying tribute to the memory of Professor Sharkovsky, we describe here the peri-
ods of periodic points of continuous completely geometrically integrable self-maps of
n-dimensional cells.

Theorem 5. Let F : Mn → Mn be a continuous completely geometrically integrable map on
n-dimensional cell Mn (n ≥ 2) with sequential quotients ψ̂n−j : M̂n−j → M̂n−j (1 ≤ j ≤ n− 1)
by means of continuous surjections Hn : Mn → M̂n−1 and Hn−j : M̂n−j → M̂n−j−1 for n ≥ 3,
1 ≤ j ≤ n− 2 satisfying:

Hn is a one-to-one map on x̂n−1 for every xn ∈ Mn, and Hn−j is a one-to-one map on x̂n−j−1
for every xn−j ∈ Mn−j.



Mathematics 2023, 11, 926 13 of 14

Let F contain a periodic orbit of a (least) period m > 1. Then, it contains also periodic orbits of
every (least) period n, where n precedes m (n ≺ m) in the Sharkovsky’s order:

1 ≺ 2 ≺ 22 ≺ 23 ≺ . . . ≺ . . . ≺ 22 · 9 ≺ 22 · 7 ≺ 22 · 5 ≺ 22 · 3 ≺ . . .
≺ 2 · 9 ≺ 2 · 7 ≺ 2 · 5 ≺ 2 · 3 ≺ . . . ≺ 9 ≺ 7 ≺ 5 ≺ 3.

Proof. In fact, by Theorem 4, F satisfying the conditions of Theorem 5 is a completely
geometrically integrable map. Moreover, F is topologically conjugate to the skew product
Ψ given by Formula (7). Then, Ψ has a periodic orbit of period m > 1. Use the generalisation
of Sharkovsky Theorem for skew products on n-dimensional cells (n ≥ 2) from [31]. Then,
Ψ has periodic orbits of every period n, where n ≺ m in the Sharkovsky’s order. This means
that F possesses analogous properties.

Theorem 5 is proven.

Finishing the paper, we formulate the following unsolved problem.

Problem 1. Find sufficient conditions for the complete geometric integrability of a map

F(x̂n−1, xn) = (ψ1(x1) + µ1(x̂n−1, xn); ψ2, x1(x2) + µ2(x̂n−1, xn);
. . . , ψn−1, x̂n−2(xn−1) + µn−1(x̂n−1, xn); ψn, x̂n−1

(xn)

with the phase space Mn for n > 2.

This problem is solved for the maps of the above type with a compact plane rectangle
and a cylinder (see [20,22,28]).
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