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Abstract: Nodal shape functions and their gradients are vital in transferring physical information
within the material point method (MPM). Their continuity is related to numerical stability and
accuracy, and their support domain size affects computational efficiency. In this paper, a scheme
of aggregated and smoothed Bernstein functions is proposed to improve the MPM. In detail, the
Bernstein polynomials are smoothed with a convolution reformation to eliminate the cell crossing
error, and an aggregation strategy is implemented to cut down the node amount required for field
probing. Hierarchical MPM variants are obtained with choices of original Bernstein polynomials and
degrees of smoothing. Numerical examples show that mass, momentum, and energy conservations
are all well met, and no cell crossing noise exists. In addition, solution accuracy and numerical
stability are significantly improved in large deformation problems.

Keywords: material point method; shape functions; Bernstein polynomials; smoothing; aggregation;
spatial discretization
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1. Introduction

Physical problems can be distilled into partial/ordinary differential equations and
explored with numerical simulation methods. After decades of development, mesh-free
methods have become an inevitable part of simulation-based engineering science (SBES) [1]
because of the independence of mesh. For example, the smoothed particle hydrodynamics
(SPH) [2], the diffuse element method (DEM) [3], the element-free Galerkin (EFG) [4], and the
reproducing kernel particle method (RKPM) [5] are relatively prominent and popularly em-
ployed. However, these mesh-free methods are much less competitive than mesh-dependent
methods due to computationally expensive neighbor searching and field approximation.

To pursue efficiency and usability, Sulsky et al. proposed a hybrid particle/grid
method, called the material point method (MPM) [6–8], with inspiration from the particle-
in-cell method (PIC) [9] and the fluid-implicit-particle method (FLIP) [10]. The MPM
consists of a collection of Lagrangian particles and a Eulerian background grid. The
particles represent continuum bodies, each carrying material information, such as mass,
velocity, and stress. Unlike the SPH or the EFG, field approximation within the MPM is
designed independently of particles, thus avoiding neighbor searching. Instead, particle
information is first transferred to a Eulerian background grid, and then the grid temporally
pushes the motion evolvement forward with physical conservation laws. Later, updated
motion is projected back to the particles for evolving deformation. This design has proven
to be very effective and successful in solving complex engineering problems with large
deformations, multi-phase interactions, and history-dependent material behavior [11].
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As for the information transfer between particles and the grid, the piecewise-linear La-
grange basis with C0 continuity is used in the classic MPM. When particles cross grid nodes at
which derivatives are intermittent, stress oscillation occurs. This kind of noise is non-physical
but numerical, so it hampers the spatial convergence of MPM. Since the noticeof the cell crossing
error [12], extra attention has been paid to the transfer aspect, and several improvements were
proposed. For example, Bardenhagen et al. [13] proposed the generalized interpolation material
point method (GIMP), which adopts a general particle characteristic function for weak-form
discretization instead of the classic Dirac delta function. According to the update mode of
characteristic functions, the GIMP was further divided into the uniform GIMP (uGIMP) and
the contiguous particle GIMP (cpGIMP), followed by convected particle domain interpolation
(CPDI) [14]. Unlike the GIMP methods, Steffen et al. [15] retained the Dirac delta function but
replaced the piecewise-linear basis with non-negative quadratic B-spline shape functions, which
was called the BSMPM. This small change significantly reduces the numerical error. Because
higher-degree B-splines yield smoother field approximation, cubic and quadric B-spline for-
mations were later used to deal with high-demanding simulation. Furthermore, Hu et al. [16]
studied the moving least-squares approximation and proposed the MLSMPM. In addition,
much work has been done on the information transfer aspect of the MPM [17–20].

Although the abovementioned work enhanced the accuracy and stability of the MPM
to some extent, some numerical aspects were weakened simultaneously. On the one hand,
an enlarged support domain size is beneficial for field approximation but disadvantageous
for efficiency, e.g., the BSMPM variants. Specifically, the broader support domain causes
higher computational costs for particle-to-grid and grid-to-particle transfer, especially in three-
dimensional (3D) problems. This hinders the efficiency of large-scale simulations. A wider
stencil also diffuses subtle local effects, such as collision and contact, which are of concern in
mesoscale problems. On the other hand, shape functions with a small support domain tend to
face graver numerical fracture issues in significant deformation problems. For these reasons,
research is still needed to facilitate the MPM with more options for field approximation.

In this paper, a new shape function scheme for the MPM is proposed, which is
comprised of Bernstein functions, smoothing, and aggregation. In detail, the Bernstein
polynomials are smoothed with a convolution reformation to eliminate the cell crossing
error, and an aggregation strategy is implemented to cut down the node amount required
for field probing. With choices of original Bernstein polynomials and degrees of smoothing,
hierarchical MPM variants are obtained, which can be called the ‘ASBMPM’ based on the
acronyms of three key components.

The rest of this paper is organized as follows. The classic material point method
theory is briefly reviewed in Section 2. The basic requirements of shape functions are
introduced in Section 3.1, and the Bernstein polynomials, the newly proposed smoothing,
and the aggregation strategy are described in Sections 3.2–3.4. Explicit formulas of the
aggregated and smoothed Bernstein functions are further provided in Section 4. Numerical
validation and investigation with two classic problems are completed in Section 5. Finally,
the conclusion of this paper is given in Section 6.

2. The Material Point Method

The material point method (MPM) is a hybrid Lagrangian/Eulerian method [21].
Continuum bodies are discretized into Lagrangian particles, which carry mass, velocity,
stress, and other necessary physical state information. The Eulerian background grid covers
possible motion footprints of particles and temporally pushes forward the evolvement of
deformation with conservation laws.

For the deformation gradients (updating strain) being estimated on the background
grid, there is no need for a connected Lagrangian mesh as the finite element method (FEM).
In addition, the background grid acts as a middleware between particles, eliminating
particle searching and particle–particle interactions. Although not directly derived from
the mesh-free theory, the MPM falls within a general class of mesh-free methods, since it
has many similar aspects to other mesh-free methods [22].
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2.1. Governing Equations

The conservations of interest for mechanical problems are mass and momentum. Since
the updated Lagrangian framework is usually used to handle the physical system of MPM,
it is more convenient to demonstrate the conservation laws in the current configuration.

In this way, the conservation of mass and the conservation of momentum are given by:

Dρ(x, t)
Dt

+ ρ(x, t)∇·v(x, t) = 0 (1)

and

ρ(x, t)
Dv(x, t)

Dt
= ∇·σ(x, t) + ρ(x, t)b (2)

where D
Dt := ∂

∂t + v·∇ denotes the material derivative; ρ(x, t) is the mass density; b is the
specific external body force; σ(x, t) is the Cauchy stress.

In addition to the conservation laws, boundary conditions are indispensable for
physical problems. Let Ω denote the physical domain, Γu denote the prescribed velocity
boundary, and Γt denote the prescribed stress boundary. These two conditions are also
called Dirichlet and Neumann boundary conditions, respectively. They can be expressed as:

(n · σ)
∣∣Γt = t and v|Γu = v (3)

where n is the outward unit normal vector of the boundary surface Γt; t and v are prescribed
values of the velocity boundary and the stress boundary.

In addition, the initial conditions are given by:

σ(x, 0) = σ0 and v(x, 0) = v0 (4)

Furthermore, constitutive equations, which characterize the stress–strain relationship of
continuum materials, are also required. However, this is not the research focus of this paper.

2.2. Weak Form

The partial differential equations (PDEs) above are strong-form and thus hard to solve
directly. Fortunately, a weak form can be established by multiplying the PDEs with a test
function and integrating it over the domain. As the name implies, the weak form has
weaker consistency than the strong form but is easier to handle.

The test function tends to be the virtual velocity or the virtual displacement, which
appears as the principle of virtual work in mechanics. Let δv be the virtual velocity.
Multiplying Equation (2) with δv and integrating it over Ωt yields:∫

Ωt
ρa · δvdV =

∫
Ωt

ρ∇(σs) · δvdV +
∫

Ωt
ρb · δudV (5)

where σs := σ
ρ is the specific stress. Then, through Gauss’s divergence theorem [23],

it becomes:∫
Ωt

ρa · δvdV +
∫

Ωt
ρσs∇(δv)dV −

∫
Ωt

ρb · δvdV −
∫

Γt
ρts · δvdA = 0 (6)

where ts := t
ρ is the specific traction.

2.3. Spatial Discretization

As shown in Figure 1, the continuum material domain Ω with boundary Γ is dis-
cretized into a collection of particles. Each particle with an index p stands for a subdomain
Ωp, and carries corresponding local physical attributes, such as the mass mp, position xp,
velocity vp, acceleration ap, and so on.
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Unlike other mesh-free formulations, such as the SPH or the EFG, the field approximation
within the MPM is designed independently of particles, thus avoiding neighbor searching.
Instead, a Eulerian background grid is laid, covering all potential particle footprints. The grid
consists of nn nodes with shape functions SI associated with the node I. In this way, any
physical field Ψ at any position x can be approximated with:

Ψ(x) = ∑nn
I=1 Ψ(xI)SI(x) (7)

where Ψ(xI) denotes the nodal value of the physical field at the node I. With Equation (7),
displacement, velocity, and acceleration can be estimated as:

u(x) = ∑nn
I=1 uISI(x), v(x) = ∑nn

I=1 vISI(x), and a(x) = ∑nn
I=1 aISI(x) (8)

where the quantities with I as a subscript denote corresponding nodal values.
In the classic MPM, the Galerkin scheme is adopted, where the trial functions

(SI(I = 1, · · · , nn)) used for field approximation are also used in composing the test func-
tion. In Equation (6), the test function is the virtual velocity δv, so it can be approximated as:

δv(x) =
nn

∑
I=1

δvISI(x) (9)

where δvI is the virtual nodal velocity at the node I.
Substituting the approximations σ(x), v(x), a(x), and δv(x) into Equation (6) yields:

∫
Ωt

ρ[
nn

∑
J=1

aJSJ(x)] · [
nn

∑
I=1

δvISI(x)]dV +
∫

Ωt
ρσs[

nn

∑
I=1

δvI∇SI(x)]dV

−
∫

Ωt
ρb · [

nn

∑
I=1

δvISI(x)]dV −
∫

Γt
ρt̄s · [

nn

∑
I=1

δvISI(x)]dA = 0

(10)

Due to the arbitrariness of δvI , the following equation must be met for each node
I (I = 1, . . . , nn):

nn

∑
J=1

∫
Ωt

ρaJSJ(x) · SI(x)dV +
∫

Ωt
ρσs∇SI(x)dV −

∫
Ωt

ρb · SI(x)dV

−
∫

Γt
ρt̄s · SI(x)dA ≡ 0

(11)



Mathematics 2023, 11, 907 5 of 19

which can also be written in compact form:

nn

∑
J=1

mI J aJ = f ext
I + f int

I (12)

where mI J :=
∫

Ωt
ρ(x)SI(x)SJ(x)dV is also called the consistent mass, f ext

I :=
∫

Ωt
ρ(x)b(x)

SI(x)dV +
∫

Γt
ρ(x)tsSI(x)dA is the external nodal force, and f int

I := −
∫

Ωt
σ(x) · ∇SI(x)dV

is the internal nodal force.
Since the material properties are only recorded at the particles, the Dirac delta distri-

bution δ is used to represent the spatial occupation of particles within the classic MPM. In
this way, the density field of the total domain can be expressed as:

ρ(x) =
np

∑
p=1

mpδ
(
x− xp

)
(13)

where p is the particle index, np is the total number of particles, mp is the particle mass
with index p, and xp is the particle position with index p. Then, with the identity∫

f (x)δ
(

x− xp
)
= f

(
xp
)
, mI J , f ext

I , and f int
I are developed into:

mI J =
np

∑
p=1

mpSI
(
xp
)
SJ
(
xp
)

(14)

f ext
I =

np

∑
p=1

mpSI
(
xp
)
b
(
xp
)
+

np

∑
p=1

mpSI
(
xp
)
ts(xp

)
h

(15)

f int
I = −

np

∑
p=1

σp∇SI
(
xp
)
Vp (16)

where the boundary layer thickness h is introduced for dimensional consistency.

2.4. A Typical Explicit Workflow

Here is the typical update stress last (USL) formulation for the temporal advance-
ment [7]. For clarity, we use t to denote the current moment and t + ∆t for the future
moment. All physical quantities at the moment t are known, and those at the moment
t + ∆t are to be solved.

First, at the beginning of the time step, particle quantities are mapped to the back-
ground grid. In particular, particle mass and momentum are of prior interest, since
they lay at the core of motion. Using the partition of unity property of shape functions,
∑

np
p=1 SI(x) = 1, the particle momentum and mass are projected to the grid nodes with

the following:

(mv)t
I =

np

∑
p=1

SI

(
xt

p

)
(mv)t

p (17)

mt
I =

np

∑
p=1

SI

(
xt

p

)
mt

p (18)

Here, the mass is lumped for computational efficiency, with mI = ∑nn
J =1 mI J . Then, the

nodal velocity is available with vt
I =

(mv)t
I

mt
I

.
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Second, the nodal velocities and positions are updated, also conceptually called the
‘advection’. For simplicity, the explicit Symlemetic–Euler time discretization is used like
the original MPM, where the position is updated based on the updated velocity.

vt+∆t
I = vt

I + at
I∆t (19)

xt+∆t
I = xt

I + vt+∆t
I ∆t (20)

where at
I is the nodal acceleration obtained by solving Equation (12).

Third, the updated velocity is projected back to particles in the following way:

vt+∆t
p = ∑nn

I=1 vt+∆t
I SI

(
xt

p

)
(21)

xt+∆t
p = ∑nn

I=1 xt+∆t
I SI

(
xt

p

)
(22)

With future motion known, the particle stress can be updated. Here, the velocity
gradient L is needed and given by:

Lt+∆t
p = ∇vt+∆t

p = ∑nn
I=1 vt+∆t

I ∇SI

(
xt

p

)
(23)

which is requisite for the strain increment ∆ep := ∆t·sym
(

Lt+∆t
p

)
and the updated deforma-

tion gradient Ft+∆t
p =

(
Identity + ∆t·sym

(
Lt+∆t

p

))
Ft

p, where Identity denotes the identity
matrix, and sym(·) denotes the symmetrization operator. For the linear elastic isotropic
model, the particle stress can be computed as:

σt+∆t
p = λ·I·tr

(
sym

(
Ft+∆t

p

)
− I
)
+ 2·µ·

(
sym

(
Ft+∆t

p

)
− I
)

(24)

where tr(·) is the matrix trace operator; λ and µ are the lame parameters. Of course,
constitutive models with more complex behaviors, such as elastoplastic and viscoelasticity,
can also be implemented based on σt

p, Lt+∆t
p , etc.

Finally, at the end of the time step, the background grid is reset to its original unde-
formed configuration.

3. Improvement Strategy

In the discretization above, the shape functions of grid nodes and their gradients
play vital roles in transferring mass, internal forces, and external forces. In particular, the
estimation of internal force involves the first-order derivative.

The piecewise-linear Lagrange basis with C0 continuity obviously cannot provide
a smooth derivative, so in the classic MPM, internal nodal forces usually oscillate when
particles cross the discontinuity locations. Therefore, the GIMP, the BSMPM, the double
domain MPM (DDMPM) [24], and the MLSMPM were successively proposed to provide
continuous derivatives. These variants have been proven effective in eliminating numerical
noise and promoting stability. However, transfer stencils of the abovementioned MPM
variants are enlarged for higher smoothness, especially the currently popular BSMPM.
A wider stencil causes higher computational costs of particle-to-grid and grid-to-particle
mappings. In particular, the computational cost would be squared or cubed in 2D and 3D
cases because of the dyadic product. Even though the accuracy improvement with wide
stencil is limited, efficiency has been largely sacrificed.

We found that the hierarchy of Bernstein polynomials has excellent potential, e.g., the
partition of unity, to facilitate MPM with more field approximation options. The original
Bernstein polynomials are of high continuity, but when they are restricted to a finite element
mesh, the continuity at element edges is only C0 and thus not suitable for direct use in the
MPM. Therefore, we propose a set of transformations to implement better features. The
proposed transformations refer to smoothing and aggregation. For the former, the Bernstein
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polynomials from the Binomial theory are smoothed with a convolution reformation to
eliminate the cell crossing error. For the latter, a node aggregation strategy is implemented
to cut down the node demand.

Explicit formulas after transformations are provided in the next section for clarity.

3.1. Basic Requirements of Shape Functions

In some literature, a shape function is also called a weighting or interpolation function,
which is used to estimate unknown area based on the range of a discrete set of known
data points [25,26]. It is fundamental in numerical computation and analysis. Generally
speaking, it should satisfy the following properties [27]:

(1) The partition of unity (PU), ∑nn
I=1 SI(x) = 1 for all x.

(2) The compact support (CS), SI(x) 6= 0 for locations close enough to node I.
(3) The non-negativity (NN), SI(x) ≥ 0 for all x.

Within MPM, the PU property defines completeness and is required for representing
rigid motions and constant strains. The CS property can simplify spatial discretization and
facilitate efficiency. The NN property ensures positive nodal mass, so that the mass matrix
is allowed to be lumped to take the place of consistent mass.

3.2. Bernstein Polynomials

In the binomial theorem [28], a polynomial (x + y)n is able to be expanded into a sum
involving terms of the form axbyc, where the exponents b and c are non-negative integers
with b + c = n. The coefficient a is known as the binomial coefficient Cb

n := n!
b!(n−b)! .

When y is taken as 1− x, the partition of unity constantly forms regardless of the
exponent n. The related terms are known as the Bernstein polynomials:

Bi,n(x) = Ci
n(x)i(1− x)(n−i) (25)

where 0 ≤ i ≤ n . Once the x is restricted among the interval [0, 1], each term is non-negative.
In this way, the non-negativity can be completely guaranteed, which is also necessary. Since the
interval is finite, compact support is also ensured. Figure 2 shows cubic Bernstein polynomials,
which have four components.
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The studies of Bernstein polynomials in approximation and solving PDEs can be found
in [29–34].

3.3. Smooth Transform for Avoiding Cell Crossing Errors

The Bernstein polynomials with the partition of unity can serve as the base for field
approximation. For laying Bernstein polynomials, a grid with cells is required to cover
the target field. Each cell has edge nodes to connect neighbor cells. Besides edge nodes,
there are internal nodes in each cell. The number of internal nodes per cell is relative to
the order of polynomials. For instance, in 1D, quadratic Bernstein polynomials require one
internal node per cell, and cubic Bernstein polynomials require two internal nodes per cell.
Meanwhile, the number of shape functions equals the degree of polynomials, also called
the cell order.
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Here, the shape function at cell edges is denoted type I, and those at internal cellular
nodes are denoted typeII, type III, etc. by the position of nodes. The shape functions of type I
have the following form:

Btype I
I (x) =

{
(1− |r|)2 f or− 1 ≤ r ≤ 1

0 otherwise
(26)

where r = x− xI . Those of type k (2 ≤ k ≤ n, n is the order) have the following form:

Btype k
I (x) =

{
Ck−1

n (ξ)k−1(1− ξ)(n−k+1) f or 0 ≤ ξ ≤ 1

0 otherwise
(27)

where ξ = x− xI − k−1
n . B denotes the original Bernstein shape function.

From Equations (26) and (27), the Bernstein functions are smooth within the cell but
still C0 across the cell boundaries. The absence of smoothness at the boundaries makes
Bernstein functions unsuitable for the updated Lagrangian MPM.

In this paper, we adopted the following convolving method to enhance the smoothness
of the original Bernstein shape functions:

SBtype k
I (x) =

∫
< χ(ζ − x)Btype k

I (ζ)dζ∫
< χ(ζ)dζ

(28)

where χ(x)·
{

1
0
|x| ≤ 1/2

else
, and SB denotes a smoothed Bernstein shape function. < denotes

the whole real domain. Equation (28) improves the level of smoothness by one degree,
from C0 to C1. In this way, the smoothed Bernstein shape functions naturally eliminate cell
crossing errors [35].

Due to the smoothing effect of convolution, the support domain radius is also enlarged
by a half cell. Specifically, in 1D, the shape functions of type I cover three cells, and the shape
functions of other types cover two cells after applying Equation (28). Higher smoothness is
available through recursing Equation (28). At the same time, the support domain radius
will increase further.

The functions obtained from Equation (28) can be called the smoothed Bernstein shape
functions. The smoothed Bernstein shape functions still meet the partition of unity, compact
support, and non-negativity. This practically extends the usage of Bernstein functions from
the total Lagrangian MPM to the updated Lagrangian MPM.

3.4. Aggregation Transform for Reducing Node Amount

As mentioned above, the Bernstein polynomials require elemental internal nodes. The
smoothed ones do as well. Elemental internal nodes may improve field approximation and
further numerical precision. However, more nodes are less competitive for efficiency. For
example, when using quadratic Bernstein shape functions, each background cell requires 3,
9, and 27 nodes in 1D, 2D, and 3D cases, respectively. In contrast, the quadratic B-spline of
C1 smoothness needs only 2, 4, and 8 nodes.

Aimed at efficiency-focused simulation, we propose the following technique to aggre-
gate the shape functions at internal nodes to their nearest neighbor edge nodes.

ASBI(x) = SBType I
I (x) +

n

∑
k=2

ak

[
SBtype k

I+k−1

(
x− k− 1

n

)
+ SBtype k

I−k+1

(
x +

k− 1
n

)]
(29)

where ASB denotes an aggravated and smoothed Bernstein shape function. It should
be noted that for any internal node (k ≥ 2), the superscript type k must consist in the
subscript I + k − 1, since the formulations of smoothed Bernstein shape functions are
highly dependent on the node arrangements. The ak is a weight parameter related to the
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relative distance between the node I + k− 1 and node I. We recommend taking ak = 1
when k < n

2 , ak = 1
2 when k = n

2 , and ak = 0 when k > n
2 , so that spatial symmetry can

be met.
In essence, Equation (29) approximates the field probes of internal nodes with their

nearest neighbor edge nodes. This significantly cuts down the transferring expense between
particles and nodes. Specifically, with the aggregation strategy, the quadratic Bernstein
shape functions reduce node demand by 1, 5, and 19 in 1D, 2D, and 3D cases, respectively.

Here, we call the shape functions in Equation (29) the aggregated and smoothed
Bernstein shape functions. In this way, we obtained a new MPM variant called ASBMPM.
It should be noted that the ASB functions meet the partition of unity, compact support,
and non-negativity.

4. Formulation Summary

This section provides some of the formulations mentioned above explicitly to make
the conceptions easy to implement. However, for simplicity, only several typical ones are
listed. For remedy, a piece of Mathematica script (Figure 3) is given as a reference for
deriving a higher hierarchy.
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Figure 3. Mathematica script demo for deriving aggregated-smoothed Bernstein shape functions.

There are two independent configuration axes for the ASBMPM scheme, i.e., the
selection of the original Bernstein Shape functions and the level of convolving smoothing
recursion. To address the hierarchy unambiguously, we use Roman numerals (I, II, III, etc.)
to denote the degree of original Bernstein polynomials and ordinal descriptors (quadratic,
cubic, quartic, etc.) to indicate continuity level. For example, the ‘quadratic-III ASB’ refers
to the subtype developed from three-degree Bernstein Shape functions by aggregating and
once smoothing.

Table 1 shows the formulas of the quadratic and cubic ASBs of subtypes from I to VII,
and they are depicted in Figure 4. In particular, the subtype I is identical to the hierarchy
of B-spline shape functions, which can be explained by the convolutive generation of
B-spline shape functions [36]. From this point, the relation that the ASBMPM is a superset
of BSMPM is self-evident. This implies certain rationality of ASBMPM, since BSMPM has
proved to be reliable.

The expressions in Table 1 are univariate. For 2D and 3D problems, the shape func-
tions can be obtained via the tensor-product in all directions, S2D

I = SI(x)SI(y) and
S3D

I = SI(x)SI(y)SI(z), respectively. Due to the multicell dependency, a structured mesh is
required in ASBMPM variants.
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Table 1. Formulas of the aggregated-smoothed Bernstein shape functions.

Original
Bernstein

Degree

Continuity after Aggregation and Smoothing

Quadratic (after Once Smoothing) Cubic (after Twice Smoothing)

I


3
4 − r2 0 ≤ r < 1

2
1
8 (3− 2r)2 1

2 ≤ r < 3
2

0 otherwise


1
6
(
3(r− 2)r2 + 4

)
0 ≤ r < 1

− 1
6 (r− 2)3 1 ≤ r < 2

0 otherwise

II same as above same as above

III


r4 − 3r2

2 + 13
16 0 ≤ r < 1

2
− 1

32 (2r− 3)3(2r + 1) 1
2 ≤ r < 3

2
0 otherwise


1

20
(
−6r5 + 15r4 − 20r2 + 14

)
0 ≤ r < 1

1
20 (r− 2)4(2r + 1) 1 ≤ r < 2

0 otherwise

IV same as above same as above

V


1

32
(
−64r6 + 80r4 − 60r2 + 27

)
0 ≤ r < 1

2
1

64 (3− 2r)4(4r2 + 1
) 1

2 ≤ r < 3
2

0 otherwise


3r7

7 −
3r6

2 + 3r5

2 − r2 + 5
7 0 ≤ r < 1

− 1
14 (r− 2)5(r(2r− 1) + 1) 1 ≤ r < 2

0 otherwise

VI same as above same as above

VII


5r8 − 7r6 + 35r4

8 −
35r2

16 + 221
256 0 ≤ r < 1

2
− 1

512 (2r− 3)5(2r(10r(2r− 1) + 7) + 1) 1
2 ≤ r < 3

2
0 otherwise


− 5r9

6 + 15r8

4 − 6r7 + 7r6

2 − r2 + 13
18 0 ≤ r < 1

1
36 (r− 2)6(r(5r(2r− 3) + 12)− 2) 1 ≤ r < 2

0 otherwise

where r = |x−xI |
h .
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Quadratic B-spline and cubic B-spline are exactly the lowest-level cases of the ASB hierarchy.

5. Numerical Validation

Two example problems are considered to demonstrate the performance of the AS-
BMPM. Both examples are conducted with the Symplicit Euler time integration, and the
modified update stress later (MUSL) mode is adopted to avoid the small mass issue [7].
Several popular MPM variants are taken for comparison, including the traditional MPM,
BSMPM variants (quadratic, cubic, and quartic), and GIMPs (uGIMP and cpGIMP).

5.1. Axial Vibration of a 1D Continuum Bar

In this section, ASBMPM variants will be examined through a one-dimensional bar
vibration problem, which is a classic baseline for validating any MPM variants [27]. In
this analytical case (Figure 5), one end of an elastic bar is fixed (at x = 0 m), and the other
end is free (x = L = 25 m, L is the length of the bar). The Young’s modulus of this bar is
E = 100Pa, and its density ρ = 1 kg/m3.
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Given initial conditions as u(x, 0) = 0 and v(x, 0) = v0sin(βnx), the natural mode n is
excited. With the separation of variables [12], the exact position and velocity solutions can
be obtained as a reference:

u(x, t) =
v0

ωn
sinωtsinβnx (30)

v(v, t) = v0cosωtsinβnx (31)

where v0 is the initial velocity amplitude, βn = 2n−1
2

π
L , and ωn = βn

√
E
ρ . For comparison

between the continuous analytic solutions and the discrete MPM simulation results, the
following mass-weighted solutions are used to benchmark MPM particles:

upiece(t) =
∫ Lupper

Llower

ρ(x)u(x, t)dx/
∫ Lupper

Llower

ρ(x)dx (32)

vpiece(t) =
∫ Lupper

Llower

ρ(x)v(x, t)dx/
∫ Lupper

Llower

ρ(x)dx (33)

where Lupper and Llower denote the piece range. For a particle p with position xp and size lp,

Lupper = xp +
lp
2 , and Lower = xp −

lp
2 . For the whole bar, Lupper = L, and Llower = 0.

In this paper, the vibration mode one is excited (n = 1), and the timestep meets both
the Courant–Friedrichs–Lewy condition ( v∆t

h ≤ 1) [37] and the dilatational wave speed

limit (
√

λ+2µ
ρ ≤ h

∆t ), where h denotes the cell size.

5.1.1. Resistance to Cell Crossing Errors

The cell crossing error issue is a gross defect in the MPM variants with the original
Bernstein functions [27]. Under a small enough velocity amplitude, the free end particle
moves within one single cell so that no cell crossing occurs. However, when the velocity
amplitude increases, the free-end particle can cross the cell boundary. We propose the
following criteria based on Equation (30) to determine the critical initial velocity amplitude
to induce cell crossing events:

v0

ωn
sin
(

βn

(
L− 1

2
h

nppc

))
≥ 1

2
h

nppc
(34)

where nppc denotes the number of particles per cell.
In this part, the cell size h is uniformly one unit throughout, and each cell seeds

two particles. In this way, the critical initial velocity amplitude is around 0.157 m/s.
Therefore, we take v0 = 0.1 m/s to establish the control group with small displacements
and v0 = 0.75 m/s to induce extreme cell crossing events. The time step size for this
simulation is ∆t = 0.01 s (10% of the Courant–Friedrichs–Lewy limit).

Small Displacement Case (v0 = 0.1 m/s, Duration = 50 s)

Figure 6 gives the vibration results of the particle at the free end under v0 = 0.1 m/s.
As the Figure 6a,b shows, the displacement and velocity series are periodic with a period
of 10 s all along, which is consistent with the analytical solution. From Figure 6c,d, the
relative errors against the analytic solution are also periodic, but amplitudes are gradually
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increasing. The increasing trend of relative errors is due to the cumulative effect of explicit
time stepping. In the case of small displacement, the initial velocity v0 = 0.1 m/s is too
small to induce any cell crossing, so all eleven MPM variants (even the traditional MPM) are
below 5% in terms of relative errors. In the ASBMPM hierarchy, variants of higher-degree
continuity perform better than those of lower-degree continuity. In particular, the ASBMPM
variants score better than the BSMPM variants.
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free end. As shown in Figure 7, when using the traditional MPM, the velocity error surges 

Figure 6. D continuum bar vibration results (the free-end particle) for variations of the MPM
algorithm under the initial velocity amplitude v0 = 0.1 m/s: (a) the displacement, (b) the relative
error of displacement against the analytic solution, (c) the velocity, and (d) the relative error of velocity
against the analytic solution.

Large Displacement Case (v0 = 0.75 m/s, Duration = 50 s)

According to Equation (34), we increase v0 to displaces particles more and induce
cell-crossing events. Under v0 = 0.75 m/s, the traditional MPM is likely to experience the
cell crossing error at around 2 s. Figure 7 depicts the vibration results of the particle at the
free end. As shown in Figure 7, when using the traditional MPM, the velocity error surges
rapidly between 2 s and 2.5 s just at the moment when the particle crosses the cell edge.
On the contrary, other MPM variants undergo this period as analytically expected, which
convincingly demonstrates the ability of ASBMPM to avoid cell crossing errors. Like the
results in the case of small displacement, the ASBMPM variants of higher-degree continuity
perform better than those of lower-degree continuity in the ASBMPM hierarchy.
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5.1.2. Reduction of Numerical Fracture

The so-called numerical fracture refers to the non-physical separation of edge particles
under significant tension. Since particles interact through the background grid in MPM,
the numerical fracture issue is related to the support domain size of a shape function. If the
support domain radius is small, edge particles can only be attached under slight tension.
On the contrary, even large deformations are less likely to result in particle escaping. We
propose the following criteria based on Equation (30) to determine the critical initial velocity
amplitude to induce numerical fracture events:
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2
h
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))]
≥ 2R (35)

where R denotes the support domain radius. For piecewise linear, R = 1.0; for quadratic
Bspline and ASB, R = 1.5; for cubic Bspline and ASB, R = 2.0.

According to Equation (35), once the critical initial velocity amplitude is increased to
3.0 m/s, no MPM variants can survive numerical fracture events. Therefore, we let v0 = 1.0,
1.5, 2.0, 2.5, and 3.0 m/s to study the numerical fracture issue under different shape
functions. Figure 8 shows the displacement errors of MPM variants under v0 = 1.0 m/s
and 2.0 m/s. The displacement error series are also periodic.

Figure 9 shows the maximum durations for MPM variants to maintain 1D continuum
bar vibration within a 5% error. In the case of v0 = 1.0 m/s, the critical support domain
radius is 0.75 times the cell size so that all MPM variants can avoid numerical fracture
events. When v0 increases to 2.0 m/s, the critical support domain radius is 1.54 times
the cell size, which is just over the support domain radiuses of uGIMP and all quadratic
MPM variants, 1.5. Therefore, quadratic MPM variants fail to maintain an error within
5% successively.
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5% error.

The case of v0 = 2.5 m/s in Figure 9 is able to explain the performance of MPM
variants to resist numerical fracture. Specifically, any quadratic ASBMPM variants reach
a 5.0% error threshold much later than the quadratic BSMPM, and any cubic ASBMPM
variants perform more robustly than the cubic BSMPM. This indicates that ASBMPM
variants can perform better than a BSMPM of the same support domain radius as for the
numerical fracture issue. Notably, one quadratic ASBMPM variant (Quadratic-V) almost
caught up with the accuracy of the cubic BSMPM, even though the support domain of the
former is smaller.

5.1.3. Spatial Convergence

The accuracy of the MPM largely depends on spatial and temporal discretization,
where the former is improved in this paper. In this section, we estimated spatial errors
with the cell size of 1 m, 2−1 m, 2−2 m, 2−3 m, and 2−4 m. To meet the dilatational wave
speed limit at any selected cell size, a relatively small timestep, 0.001 s, is taken. v0 is set to
0.1 m/s, and other settings remain unchanged.
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The following error norm can measure spatial accuracy:

e = max
0≤tn≤t f

√√√√√∑
np
p=1 Vtn

p
∣∣up(tn)− ua

(
xp, tn

)∣∣2
∑

np
p=1 Vtn

p
∣∣ua
(
xp, tn

)∣∣2 (36)

where up(tn) is the numerical displacement at particle p, ua(tn) is the exact displacement
at particle p, np is the total number of particles, and t f is the chosen duration.

The errors from Equation (36) and their corresponding cell sizes are plotted on
a log-log scale, and convergence curves for the MPM variants are obtained. Figure 10
confirms that ASBMPM variants (including the BSMPM variants) are of the expected
second-order convergence rate when the grid sizing is coarse.
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5.2. Impact of Two 2D Elastic Disks

In this section, the ASBMPM variants will be examined through a 2D collision of two
elastic disks (Figure 11), initially presented in Sulsky’s first MPM literature [6]. The two 2D
elastic disks are under plain strain conditions and move in opposite directions toward
each other. They are going to collide and rebound, during which energy conservation can
be checked.
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The computational domain is a square of side length as 1 m, which is discretized into
20 × 20 uniform cells. Each cell seeds four particles for meshing two disks with radius
r = 0.2 m. The physical properties of these two disks are: E = 1000 Pa, υ = 0.3, and
ρ = 1000 kg/m3. The time step size taken for this problem is ∆t = 0.001 s (10% of the
Courant–Friedrichs–Lewy limit).
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5.2.1. System Energy Conversation

Figure 12 shows energy recovery results under ASBMPM, BSMPM, and GIMP variants.
There are three typical stages. Before contact (t ≤ 1.25 s), all energy is kinetic. During
impact 1.25 s ≤ t ≤ 2.50 s, kinetic energy slumps to an extremely low level and recovers.
The series of strain energy is opposite to that of kinetic energy. The strain energy reaches its
maximum value at t ≈ 1.9 s, when disk deformation developed the most. After the impact
stage, disks leave each other, and a little stress oscillates in the disks. As shown in Figure 12,
cubic MPM variants enter the collision stage earlier than quadratic MPM variants but exit
later, which is closely related to the support domain size of shape functions.
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5.2.2. Contact Feature

Figure 13 depicts deformation distributions at t = 2.0 s. Although no explicit contact
law is taken, no-slippery contact is naturally met in all the ASBMPM variants, like the other
state-of-art MPM variants. The deformation distributions under the quadratic ASBMPM
variants are very close to those of quadratic BSMPM variants, as are the cubic variants. The
deformation distribution in the compressed area seems smoother under cubic variants than
under quadratic variants, which also relates to the support domain size. Figure 14 gives
the deformation results after impact disks. There are heavier oscillations in disks under
cubic variants, which is consistent with the results of system energy in Figure 12.
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Figure 13. Impact comparison of 2D disks’ collision problem under different MPM shape functions:
(a) cubic B-spline, (b) cubic-III ASB, (c) quadratic B-spline, (d) quadratic-III ASB, (e) quadratic-V ASB,
(f) quadratic-VII ASB, (g) cpGIMP, (h) uGIMP. The moment t = 2.0 s when disks deform the most is
chosen. Each particle is colored according to the volume ratio J to reflect deformation distribution.
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6. Conclusions

In this paper, a scheme of aggregated and smoothed Bernstein functions is proposed
to improve the accuracy and efficiency of the material point method (MPM). The newly
proposed scheme is composed of three aspects, i.e., Bernstein functions, smoothing, and
aggregation. With choices of original Bernstein functions and degrees of smoothing, hierar-
chical ASBMPM variants are obtained.

In detail, the basic requirements for a proper shape function are reviewed and distilled
first. Then, the Bernstein polynomials are smoothed with a convolution reformation to
eliminate the cell crossing error. Afterward, an aggregation strategy is implemented to
cut down the node amount required for field probing. Among these three aspects, the
aggregation strategy is the core contribution of this paper. This design approximates the
field probes of internal nodes with their nearest neighbor edge nodes, so it significantly
reduces the transfer expense between particles and nodes.

Two classic problems are used to validate typical ASBMPM variants. In the axial
vibrations of a 1D continuum bar, ASBMPM variants perform better than BSMPM variants
under identical conditions. Notably, one quadratic ASBMPM variant can almost catch up
with the accuracy of the cubic BSMPM, even though the support domain of the former is
smaller. In the impact of two 2D elastic disks, expected energy evolution is well respected,
and reasonable contact features are also observed.

In short, this paper provides a new perspective on function approximation and spatial
discretization for the MPM. We believe it is fully compatible with classic MPM frameworks
and codes. Implementing ASBMPM variants based on the current MPM libraries requires
very few modifications. In addition, since properties such as compact support, the partition
of unity, and non-negativity are all well met, the newly proposed shape functions can also
be applied to other usages involving function approximation.

Author Contributions: Conceptualization, Z.Z., T.B. and J.G.; Formal analysis, Z.Z.; Funding ac-
quisition, T.B.; Investigation, Z.Z.; Methodology, Z.Z.; Project administration, T.B.; Software, Z.Z.;
Supervision, T.B.; Validation, Z.Z., X.Z., J.G., Y.H. and J.Z.; Visualization, Z.Z., X.Z., J.G., Y.H. and J.Z.;
Writing—original draft, Z.Z.; Writing—review and editing, T.B. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China, Grant Number: 2018YFC1508603, the National Natural Science Foundation of China, Grant
Number: 51739003.

Data Availability Statement: Data, models, or code generated during the study are available from
the corresponding author by request.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 907 18 of 19

References
1. Reed, D.; Bajcsy, R.; Fernandez, M.; Griffiths, J.-M.; Mott, R.; Dongarra, J.; Johnson, C.; Inouye, A.; Miner, W.; Matzke, M.; et al.

Computational Science: Ensuring America’s Competitiveness; President’s Information Technology Advisory Committee: Arlington,
VA, USA, 2005.

2. Gingold, R.A.; Monaghan, J.J. Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars. Mon. Not. R.
Astron. Soc. 1977, 181, 375–389. [CrossRef]

3. Nayroles, B.; Touzot, G.; Villon, P. Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements. Comput.
Mech. 1992, 10, 307–318. [CrossRef]

4. Belytschko, T.; Lu, Y.Y.; Gu, L. Element-Free Galerkin Methods. Int. J. Numer. Methods Eng. 1994, 37, 229–256. [CrossRef]
5. Liu, W.K.; Jun, S.; Zhang, Y.F. Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 1995, 20, 1081–1106. [CrossRef]
6. Sulsky, D.; Chen, Z.; Schreyer, H.L. A Particle Method for History-Dependent Materials. Comput. Methods Appl. Mech. Eng. 1994,

118, 179–196. [CrossRef]
7. Sulsky, D.; Zhou, S.-J.; Schreyer, H.L. Application of a Particle-in-Cell Method to Solid Mechanics. Comput. Phys. Commun. 1995,

87, 236–252. [CrossRef]
8. Sulsky, D.; Schreyer, H.L. Axisymmetric Form of the Material Point Method with Applications to Upsetting and Taylor Impact

Problems. Comput. Methods Appl. Mech. Eng. 1996, 139, 409–429. [CrossRef]
9. Harlow, F.H.; Welch, J.E. Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface.

Phys. Fluids 1965, 8, 2182. [CrossRef]
10. Brackbill, J.U.; Ruppel, H.M. FLIP: A Method for Adaptively Zoned, Particle-in-Cell Calculations of Fluid Flows in Two Dimen-

sions. J. Comput. Phys. 1986, 65, 314–343. [CrossRef]
11. Sołowski, W.T.; Berzins, M.; Coombs, W.M.; Guilkey, J.E.; Möller, M.; Tran, Q.A.; Adibaskoro, T.; Seyedan, S.; Tielen, R.; Soga,

K. Material Point Method: Overview and Challenges Ahead. In Advances in Applied Mechanics; Elsevier: Amsterdam, The
Netherlands, 2021; Volume 54, pp. 113–204. ISBN 978-0-323-88519-5.

12. Bardenhagen, S.G. Energy Conservation Error in the Material Point Method for Solid Mechanics. J. Comput. Phys. 2002, 180,
383–403. [CrossRef]

13. Bardenhagen, S.G.; Kober, E.M. The Generalized Interpolation Material Point Method. Cmes-Comput. Model. Eng. Sci. 2004, 5,
477–495. [CrossRef]

14. Sadeghirad, A.; Brannon, R.M.; Burghardt, J. A Convected Particle Domain Interpolation Technique to Extend Applicability of the
Material Point Method for Problems Involving Massive Deformations. Int. J. Numer. Methods Eng. 2011, 86, 1435–1456. [CrossRef]

15. Steffen, M.; Kirby, R.M.; Berzins, M. Analysis and Reduction of Quadrature Errors in the Material Point Method (MPM). Int. J.
Numer. Methods Eng. 2008, 76, 922–948. [CrossRef]

16. Hu, Y.; Fang, Y.; Ge, Z.; Qu, Z.; Zhu, Y.; Pradhana, A.; Jiang, C. A Moving Least Squares Material Point Method with Displacement
Discontinuity and Two-Way Rigid Body Coupling. ACM Trans. Graph. 2018, 37, 1–14. [CrossRef]

17. Song, J.-U.; Kim, H.-G. An Improved Material Point Method Using Moving Least Square Shape Functions. Comput. Part. Mech.
2020, 8, 751–766. [CrossRef]

18. de Koster, P.; Tielen, R.; Wobbes, E.; Möller, M. Extension of B-Spline Material Point Method for Unstructured Triangular Grids
Using Powell–Sabin Splines. Comp. Part. Mech. 2021, 8, 273–288. [CrossRef]

19. Gao, M.; Tampubolon, A.P.; Jiang, C.; Sifakis, E. An Adaptive Generalized Interpolation Material Point Method for Simulating
Elastoplastic Materials. ACM Trans. Graph. 2017, 36, 1–12. [CrossRef]

20. Yamaguchi, Y.; Moriguchi, S.; Terada, K. Extended B-spline-based Implicit Material Point Method. Int. J. Numer. Methods Eng.
2021, 122, 1746–1769. [CrossRef]

21. Zhang, X. The Material Point Method; Elsevier and Tsinghua University Press Computational Mechanics Series; Elsevier/AP:
Amsterdam, The Netherlands; Boston, MA, USA, 2017; ISBN 978-0-12-407716-4.

22. An Introduction to Meshfree Methods and Their Programming; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-1-4020-3228-8.
23. Katz, V.J. The History of Stokes’ Theorem. Math. Mag. 1979, 52, 146–156. [CrossRef]
24. Zhang, D.Z.; Ma, X.; Giguere, P.T. Material Point Method Enhanced by Modified Gradient of Shape Function. J. Comput. Phys.

2011, 230, 6379–6398. [CrossRef]
25. Sheppard, W.F.; Chisholm, H. Interpolation. In Encyclopædia Britannica; Cambridge University Press: Cambridge, UK, 1911;

Volume 14, pp. 706–710.
26. Davis, P.J. Interpolation and Approximation; Courier Corporation: Chelmsford, MA, USA, 1975.
27. de Vaucorbeil, A.; Nguyen, V.P.; Sinaie, S.; Wu, J.Y. Material Point Method after 25 Years: Theory, Implementation, and

Applications. Adv. Appl. Mech. 2020, 53, 185–398.
28. Coolidge, J.L. The Story of the Binomial Theorem. Am. Math. Mon. 1949, 56, 147–157. [CrossRef]
29. Hamadneh, T.; Merker, J.; Schimmel, W.; Schuldt, G. Simplicial Bernstein Form and Positivity Certificates for Solutions Obtained

in a Stationary Digital Twin by Bernstein Bubnov-Galerkin Method. In Proceedings of the 2022 5th International Conference on
Mathematics and Statistics, Paris, France, 17–19 June 2022; ACM: New York, NY, USA, 2022; pp. 41–46.

30. Doha, E.H.; Bhrawy, A.H.; Saker, M.A. On the Derivatives of Bernstein Polynomials: An Application for the Solution of High
Even-Order Differential Equations. Bound. Value Probl. 2011, 2011, 829543. [CrossRef]

http://doi.org/10.1093/mnras/181.3.375
http://doi.org/10.1007/BF00364252
http://doi.org/10.1002/nme.1620370205
http://doi.org/10.1002/fld.1650200824
http://doi.org/10.1016/0045-7825(94)90112-0
http://doi.org/10.1016/0010-4655(94)00170-7
http://doi.org/10.1016/S0045-7825(96)01091-2
http://doi.org/10.1063/1.1761178
http://doi.org/10.1016/0021-9991(86)90211-1
http://doi.org/10.1006/jcph.2002.7103
http://doi.org/10.1016/j.chaos.2003.09.013
http://doi.org/10.1002/nme.3110
http://doi.org/10.1002/nme.2360
http://doi.org/10.1145/3197517.3201293
http://doi.org/10.1007/s40571-020-00368-9
http://doi.org/10.1007/s40571-020-00328-3
http://doi.org/10.1145/3130800.3130879
http://doi.org/10.1002/nme.6598
http://doi.org/10.1080/0025570X.1979.11976770
http://doi.org/10.1016/j.jcp.2011.04.032
http://doi.org/10.1080/00029890.1949.11999350
http://doi.org/10.1155/2011/829543


Mathematics 2023, 11, 907 19 of 19

31. El-Amrani, M.; El-Kacimi, A.; Khouya, B.; Seaid, M. Bernstein-Bézier Galerkin-Characteristics Finite Element Method for
Convection-Diffusion Problems. J. Sci. Comput. 2022, 92, 58. [CrossRef]

32. El-Amrani, M.; El Kacimi, A.; Khouya, B.; Seaid, M. A Bernstein–Bézier Lagrange–Galerkin Method for Three-Dimensional
Advection-Dominated Problems. Comput. Methods Appl. Mech. Eng. 2023, 403, 115758. [CrossRef]

33. Farouki, R.T.; Rajan, V.T. Algorithms for Polynomials in Bernstein Form. Comput. Aided Geom. Des. 1988, 5, 1–26. [CrossRef]
34. Lohmann, C.; Kuzmin, D.; Shadid, J.N.; Mabuza, S. Flux-Corrected Transport Algorithms for Continuous Galerkin Methods

Based on High Order Bernstein Finite Elements. J. Comput. Phys. 2017, 344, 151–186. [CrossRef]
35. Wilson, P.; Wuechner, R.; Fernando, D. Distillation of the Material Point Method Cell Crossing Error Leading to a Novel

Quadrature-Based C-0 Remedy. Int. J. Numer. Methods Eng. 2021, 122, 1513–1537. [CrossRef]
36. Steffen, M.; Wallstedt, P.C.; Guilkey, J.E.; Kirby, R.M.; Berzins, M. Examination and Analysis of Implementation Choices within

the Material Point Method (MPM). Cmes-Comput. Model. Eng. Sci. 2008, 31, 107–127.
37. Kubrusly, C.S.; de Moura, C.A.; Lax, L.C. (Eds.) The Courant-Friedrichs-Lewy (CFL) Condition: 80 Years after Its Discovery;

Birkhauser/Springer: New York, NY, USA, 2013; ISBN 978-0-8176-8393-1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s10915-022-01888-7
http://doi.org/10.1016/j.cma.2022.115758
http://doi.org/10.1016/0167-8396(88)90016-7
http://doi.org/10.1016/j.jcp.2017.04.059
http://doi.org/10.1002/nme.6588

	Introduction 
	The Material Point Method 
	Governing Equations 
	Weak Form 
	Spatial Discretization 
	A Typical Explicit Workflow 

	Improvement Strategy 
	Basic Requirements of Shape Functions 
	Bernstein Polynomials 
	Smooth Transform for Avoiding Cell Crossing Errors 
	Aggregation Transform for Reducing Node Amount 

	Formulation Summary 
	Numerical Validation 
	Axial Vibration of a 1D Continuum Bar 
	Resistance to Cell Crossing Errors 
	Reduction of Numerical Fracture 
	Spatial Convergence 

	Impact of Two 2D Elastic Disks 
	System Energy Conversation 
	Contact Feature 


	Conclusions 
	References

