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Abstract: This paper presents the uniform concentration inequality for the stochastic integral of
marked point processes. We developed a new chaining method to obtain the results. Our main
result is presented under an entropy condition for partitioning the index set of the integrands. Our
result is an improvement of the work of van de Geer on exponential inequalities for martingales
in 1995. As applications of the main result, we also obtained the uniform concentration inequality
of functional indexed empirical processes and the Kakutani–Hellinger distance of the maximum
likelihood estimator.
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1. Introduction

Concentration inequalities play essential roles in probability and statistics. For a long
time, many authors have studied concentration inequalities. The reader may refer to classic
books by Boucheron et al. [1], Bercu et al. [2], and so on. In particular, there has been a
renewed interest in uniform concentration inequalities in the last three decades. Uniform
concentration inequalities are significant for statistical learning and related fields. Some
classical ideas and results can be found in the work by Bartlett and Mendelson [3,4].

A collection of random variables {ξt}t∈T , where t belongs to a certain index set T, can
be regarded as a stochastic process. The study of uniform concentration inequalities is
focused on the supremum of specific stochastic processes. Some significant theorems on
the supremum of stochastic processes are presented in the work by Talagrand [5]. However,
most of the results in this work are on the expectation of the supremum. Therefore, the tail
probability is another crucial problem in studying the supremum of stochastic processes. In
this paper, we studied the uniform concentration inequality of the stochastic integral of the
marked point process. Specifically, we want to find the upper bound of the tail probability
of the supremum of a class of martingales.

Before our work, most results of uniform concentration inequalities are on the tail
inequalities for the suprema of empirical processes, or more precisely, for empirical process
indices by functions. As far as we know, one of the most important and earliest results
of uniform concentration inequality is Talagrand’s seminal work [6]. Inspired by Tala-
grand’s work, exponential inequalities for bounded empirical processes were obtained
by Massart [7] and by Klein and Rio [8]. The derivation of these results relies on the
entropy method, which provides an alternative approach. Furthermore, exponential tail
bounds for unbounded functional indexed empirical processes are given by Adamczak
in [9] and by Lederer and van de Geer in [10]. Recently, Chen and Wu obtained the uniform
concentration inequality for empirical processes of linear time series in [11].

The deviation of uniform concentration inequalities usually relies on the chaining
method and some metrics in the index set. The fundamental idea of chaining is to replace
the index set with a sequence of finite approximations. Thus, the upper bound of the tail
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probability of suprema is determined by the sizes of finite approximations and the distance
between approximations. In addition, the choice of the metric in the index can impact
the final result. We developed a new approach to drive uniform concentration inequality
(independent of metrics). In this paper, we obtained the upper bound of the tail probability
of the stochastic integral of the marked point process. On the one hand, the stochastic
integral of marked point processes is an essential example of purely discontinuous local
martingales, which play important roles in mathematical finance and stochastic analysis.
On the other hand, the stochastic integral of marked point processes is a generalization
of functional indexed empirical processes. We present a new inequality of the functional
indexed empirical processes in Section 4 as a corollary of our main result.

The rest of the paper is organized as follows. Section 2 provides some mathematical
materials and methods, which can be used in the presentation and the proof of our main
result. Next, we make some necessary assumptions and then state our main result in
Section 3. The proof of the main result is also given in Section 3, which consists of several
lemmas and propositions. Next, some applications will be shown in Section 4. Finally, the
conclusion and suggestions for future research are presented in Section 5. Throughout this
paper, we will use c1, c2, · · · to denote some universal positive constants, which may differ
from section to section.

2. Mathematical Materials and Methods

In this section, we provide some mathematical materials and methods, which can be
used in the presentation and the proof of our main result.

Let (Ω,F , (Ft)t≥0, P) be a stochastic basis. A stochastic process M = (Mt)t≥0 is called
a purely discontinuous local martingale if M0 = 0 and M is orthogonal to all continuous
local martingales. The reader may refer to the classic book by Jacod and Shiryayev [12] for
more information. Stochastic integrals of marked point processes are essential examples of
purely discontinuous local martingales.

We shall restrict ourselves to the integer-valued random measure µ on R+×R induced
by a R+ ×R-valued marked point process. In this paper, let (Tk, Zk), k ≥ 1, be a marked
point process, and define

µ(dt, dx) = ∑
k≥1

1{Tk<∞}ε(Tk ,Zk)
(dt, dx), (1)

where ε(Tk ,Zk)
is the Dirac measure at point (Tk, Zk), 1{Tk<∞} is the indicator function of

the set {Tk < ∞}. Then µ(ω; [0, t]×R) < ∞ for all (ω, t) ∈ Ω×R. Let Ω̃ = Ω×R+ ×R,
P̃ = P ⊗B, where B is a Borel σ-field on R and P a σ-field generated by all left continuous
adapted processes on Ω×R+. The predictable function is a P̃-measurable function on
Ω̃. Let ν be the unique predictable compensator of µ (up to a P-null set). Namely, ν is a
predictable random measure, such that for any predictable function W, W ∗ µ−W ∗ ν is a
local martingale, where W ∗ µ is defined by

W ∗ µt =


∫ t

0

∫
R W(s, x)µ(ds, dx), if

∫ t
0

∫
R |W(s, x)|µ(ds, dx) < ∞,

+∞ otherwise.

Note the ν admits the disintegration

ν(dt, dx) = dAtK(ω, t; dx), (2)

where K(·, ·) is a transition kernel from (Ω×R+,P) into (R,B), and A = (At)t≥0 is an
increasing càdlág predictable process. For µ in (1), which is defined through the marked
point process, ν admits

ν(dt, dx) = ∑
n≥1

1
Gn([t, ∞]×R)1{t≤Tn+1}Gn(dt, dx),
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where Gn(ω, ds, dx) is a regular version of the conditional distribution of (Tn+1, Zn+1) with
respect to σ{T1, Z1, · · · , Tn, Zn}. In particular, if Fn(dt) = Gn(dt×R), the point process
N = ∑n≥1 1[Tn ,∞) has the compensator Ct = ν([0, t]×R), which satisfies

Ct = ∑
n≥1

∫ Tn+1∧t

0

1
Fn([s, ∞])

Fn(ds).

Throughout the whole paper, we assume that A = (At)t≥0 is a continuous process.
Next, let us consider the uniform concentration inequality for a family of stochastic

integrals of predictable processes with respect to the marked point process. Let G be an
index set andW = {Wg : g ∈ G} a family of predictable functions on Ω×R+ ×R. Fix
a T > 0, denote Xg = Wg ∗ (µ− ν)T . In this paper, we will study the tail probability of
supg∈G |Xg|. For simplicity, we assume supg∈G |Xg| is measurable.

Some authors have already studied the uniform concentration inequality for supg∈G |Xg|.
van de Geer first gave a inequality for supg∈G |Xg| in [13]. In [13], µ is assumed as a counting
process, which is a simple example of the marked point process. van de Geer introduced a
metric d0 inW = {Wg : g ∈ G}:

d0(g1, g2) =

√
1
2
||(eWg1 − eWg2 )2 ∗ νT ||∞

where || · ||∞ stands for the norm of L∞. Given δ > 0, let {[Wg
j

L
, Wg

j
U
]}m

j=1 ⊆ W ×W be a
collection of pairs such that for each g ∈ G there exists a j = j(g) ∈ {1, 2, · · · , m} such that:

Wg
j

L ≤Wg ≤Wg
j

U
, d (Wg

j
L
, Wg

j
U
) ≤ δ. Let N̂(δ) be the smallest value of m for which such a

set {[Wg
j

L
, Wg

j
U
]}m

j=1 exists. van de Geer [13] obtained the following result.

Theorem 1. SupposeW = {Wg : g ∈ G} is a family of bounded predictable functions on Ω×R+×
R. For all g ∈ G, there exist constants c1, c2, c3, c4, such that Wg ≥ c1, and AT ≤ c2,

εv2

c3
≥
∫ v

εv2/c4∧ v
8

√
log(1 + N̂(δ))dδ

where d0(Wg, 0) ≤ v and 0 ≤ ε ≤ 1. Then

P
(

sup
g∈G
|Xg| ≥ εv2)

)
≤ c5 exp(− ε2v2

c6
). (3)

c5 and c6 are constants.

An extension of [13] can be found in work conducted by Le Guével [14]. Wang, Lin, and
Su [15] extended van de Geer’s result to a more general case. The generic chaining method
from Talagrand [5] is employed in [15]. SupposeW = {Wg : g ∈ G} is a family of bounded
predictable functions on Ω×R+ ×R. Two metrics are defined in [15] as follows:

d1(g1, g2) = ||Ξ(Wg1 −Wg2)T ||∞, (4)

d2(g1, g2) =
√
||C(Wg1 −Wg2)T ||∞ (5)

where Ξ(W)T = max{0, W} ∗ νT .
For a given metric d on G, an increasing sequence (An)n≥1 of partitions of G is called an

admissible sequence if ]An ≤ 22n
. Denote by An(g) the unique element of (An) containing

g, and denote by Υd(An(g)) the diameter of An(g) under d. In addition, let
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γα(G, d) = inf sup
g∈G

∑
n≥0

2n/αΥd(An(g)), (6)

where the infimum takes over all admissible sequences. Wang, Lin, and Su [15] obtained
the following result.

Theorem 2. Suppose W = {Wg : g ∈ G} is a family of bounded predictable functions on
Ω×R+ ×R and a g0 ∈ G. Then

P
(

sup
g∈G
|Xg − Xg0 | ≥ c7u(γ0(G, d2) + γ1(G, d1))

)
≤ c8 exp(−u

2
). (7)

where u > 0, c7, and c8 are constants.

The main contribution of this paper involves extending Theorem 1 and 2 to a sharper
case. In (7), γ2(G, d2) and γ1(G, d1) are difficult to compute. In this paper, we will present
our result in terms of an entropy condition for partitioning the index set of the integrands,
and we find a new approach to drive the uniform concentration inequality independent of
the metrics in the proof.

3. Main Result and Its Proof

In this section, the main result and its proof are presented. To state our main result,
we need some more notations and make some technical assumptions.

Recall that G is an index set,W = {Wg : g ∈ G} a family of predictable functions on
Ω×R+ ×R. ∆Π a positive rational number. Π = {Π(ε)}ε∈(0,∆Π ], is called a decreasing
series of finite partitions of G if

(i) each Π(ε) = {G(ε; k) : 1 ≤ k ≤ NΠ(ε)} is a finite partition of G, namely

G =
NΠ(ε)⋃
k=1

G(ε; k);

(ii) NΠ(∆Π) = 1 and limε↓0 NΠ(ε) = ∞;
(iii) NΠ(ε) ≥ NΠ(ε′) as ε ≤ ε′.

Given a 0 < ε ≤ ∆Π, define

HΠ(ε) = log(1 + NΠ(ε)).

If (X ,A, λ) is a σ—finite measure space. For a given A—measurable function F, we
denote by [F]A,λ any A—measurable function Y such that:

(i) Y ≥ F holds identically;
(ii) for every A—measurable function Y̆, if Y̆ ≥ F holds λ—almost everywhere, then

Y̆ ≥ Y holds λ—almost everywhere.

Now, we turn to the context of marked point processes, which plays a key role in this
paper. The Doléans measure MP

ν on (Ω̃, P̃) is given by

MP
ν = P(dω)ν(ω; dt, dx).

The predictable envelope WofW = {Wg : g ∈ G} is defined by W = [supg∈G |Wg|]P̃ ,MP
ν

.
For any subset G ′ ⊂ G, define

W(G ′) = [ sup
g1,g2∈G ′

|Wg1 −Wg2 |]P̃ ,MP
ν

.

Now, we present the main result of this paper.
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Theorem 3. Suppose W = {Wg : g ∈ G} is a family of bounded predictable functions on
Ω×R+ ×R, and there exists a constant κ such that 0 < W ≤ κ. Furthermore,

ν([0, T]×R) = Oa.s.(bT).

bT is an increasing function on T. If there exists a decreasing series of finite partitions of G, such that

NΠ(ε) ≤ α exp{ β

ε2 },

for some constants α > 1, β > 0, and for some constants c9 and c10,

{
√

β log(
bT

b2
Tu
c9
∧ bT

4

) +
√

log α(bT −
b2

Tu
c9
∧ bT

4
)} ≤

b3/2
T u2

c10
,

Then for u ∈ (0, 1),

P
(

sup
g∈G
|Xg

T | ≥ b2
Tu)
)
≤ c11 exp(−

b2
Tu

c12
). (8)

where c11 and c12 are constants.

Remark 1. Nishiyama [16,17] obtained the weak convergence of the stochastic integral of marked
point processes under entropy conditions. His results can be regarded as the extension of some
classical results of weak convergence for the empirical process, which can be found in van der Vaart
and Wellner [18]. In this paper, the uniform concentration inequality of the stochastic integral of
the marked point process is derived under the entropy condition of partitioning.

Proof of the Theorem 3. For every integer i ≥ 0, choose an element gi,k from each partition
set G(2−ibT ; k) such that

{gi,k : 1 ≤ k ≤ NΠ(2−ibT)} ⊂ {gi+1,k : 1 ≤ k ≤ NΠ(2−i−1bT)}

Define for every g ∈ G, 
πig = gi,k,

Πig = G( bT

2i ; k),

for g ∈ G( bT
2i ; k). Furthermore, define

W(Πig) = [ sup
g,g′∈Πi g

|Wg −Wg′ |]P̃ ,MP
ν

.

Let l = min{i ≥ 1 : 2−i ≤ bTu
23 }, for i = 0, 1, · · · , l, write HT,i = HΠ( bT

2i ).
Set

ηi = max{
(∑i

k=0 HT,k)
1/2

27b1/2
T u

,

√
i
2i }

and ai =
23−2i

ηi+1u . Furthermore, for i = 0, 1, · · · , l, we define

Ai(g) = 1{W(Π0g)≤a0,··· ,W(Πi−1g)≤ai−1,W(Πi g)≤ai}.

For i = 1, · · · , l, we define

Bi(g) = 1{W(Π0g)≤a0,··· ,W(Πi−1g)≤ai−1,W(Πi g)>ai},
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and

B0(g) = 1{W(Π0g)>a0}.

We observe the identity

Wg −Wπ0g =
l

∑
i=0

(Wg −Wπi g)Bi(g) +
l

∑
i=1

(Wπi g −Wπi−1g)Ai(g)

+(Wg −Wπl g)Al(g).

Thus

P
(

sup
g∈G
|Xg

T | ≥ b2
Tu)
)

≤ P
(

sup
g∈G
|Wπ0g ∗ (µ− ν)T | ≥

b2
Tu
4

) + P
(

sup
g∈G
|

l

∑
i=0

(Wg −Wπi g)Bi(g) ∗ (µ− ν)T | ≥
b2

Tu
4

)

+P
(

sup
g∈G
|

l

∑
i=1

(Wπi g −Wπi−1g)Ai(g) ∗ (µ− ν)T | ≥
b2

Tu
4

)

+P
(

sup
g∈G
|(Wg −Wπl g)Al(g) ∗ (µ− ν)T | ≥

b2
Tu
4

)

=: PI + PI I + PI I I + PIV .

First, if there exists a constant κ, such that 0 < W ≤ κ, ν([0, T]×R) = Oa.s.(bT), for
x > 0, we have

P(|W ∗ (µ− ν)T |) ≥ x) ≤ exp{− x2

2(κx + κ2bT)
}

by Theorem 1.1 in Wang, Lin, and Su [15]. Thus, we have

PI ≤ NΠ(bT) exp{−
b3

Tu2

8κu + 32κ2 }

≤ exp{HT,0 −
b3

Tu2

8κbTu + 32κ2 } = exp{HT,0 −
b2

Tu
c10
}.

With a proper choice of c9,

3bT
4

H1/2
T,0 ≤

∫ bT

b2
T u
c9
∧ bT

4

√
HΠ(x)dx

≤
∫ bT

b2
T u
c9
∧ bT

4

√
log α + βx−2dx

≤ {
√

β log(
bT

b2
Tu
c9
∧ bT

4

) +
√

log α(bT −
b2

Tu
c9
∧ bT

4
)}

≤
b3/2

T u2

c10
,

thus,

PI ≤ exp{−
b2

Tu
c13
}.
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Now, we consider PI I .

[(Wg −Wπi g)Bi(g)]P̃ ,MP
ν
≤ ai−1,

implies

PI I ≤
l

∑
i=0

NΠ(
bT

2i ) exp{−
b3

Tu2

8ai−1bTu + 32a2
i−1
}.

Thanks to

l

∑
i=0

2−i H1/2
T,i ≤

∫ bT

bT
2l

√
HΠ(x)dx ≤

∫ bT

b2
T u
c9
∧ bT

4

√
HΠ(x)dx

≤ {
√

β log(
bT

b2
Tu
c9
∧ bT

4

) +
√

log α(bT −
b2

Tu
c9
∧ bT

4
)}

≤
b3/2

T u2

c10
,

and

l

∑
i=1

(
i

∑
k=0

HT,k)
1/2 ≤ 2l

l

∑
i=1

2−i(
i

∑
k=0

HT,k)
1/2

≤ 2l+1
l

∑
i=1

2−i H1/2
T,i ≤

√
bTu

c14
,

we have

PI I ≤
l

∑
i=0

exp{HT,i −
b2

Tuη2
i

c15
}

≤
l

∑
i=1

exp{
i

∑
k=0

HT,k −
b2

Tuη2
i

c15
} ≤

l

∑
i=1

exp{−
b2

Tuη2
i

c16
}

≤
l

∑
i=1

exp{−
b2

Tui
2ic16

} ≤
l

∑
i=1

exp{−
b2

Tui
c17
}

≤ c18 exp{−
b2

Tu
c19
}

For PI I I and PIV , denote

[(Wπi g −Wπi−1g)Ai(g)]P̃ ,MP
ν
≤ 2ai−1,

[(Wg −Wπl g)Al(g)]P̃ ,MP
ν
≤ al ,

we can obtain

PI I I + PIV ≤ c20 exp{−
b2

Tu
c21
}

by similar arguments.
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4. Applications

This section will first apply the previous result to functional index empirical processes.
Consider a discrete-time process (Yn)n≥0 on(Ω,F , (Fn)n≥0, P). Let Ψ be the space of
measurable functions in R. For a ψ ∈ Ψ, define

Xψ
n =

n

∑
k=1

(
ψ(Yk)− E(ψ(Yk)|Fk−1)

)
. (9)

Obviously, for each ψ, {Xψ
n }n≥0 is a discrete-time martingale. We can study the concentra-

tion inequality by considering Xψ
n as a stochastic integral of ψ with respect to a marked

point process. In fact, let ψ(k, x) = ψ(xk), then Xψ
n can be written as

Xψ
n = ψ ∗ (µ− ν)n, (10)

where
µ(dt, dx) = ∑

k≥1
ε(k,Yk)

(dt, dx),

ν is the compensator of µ. A simple computation shows

ψ ∗ ν(dt, dx)n =
n

∑
k=1

E[ψ(Yk)|Fk−1]. (11)

By Theorem 3.1 in Wang Lin and Su [15]

P(|Xψ
n | > x) ≤ exp{− x2

x + bn
}.

as a consequence of Theorem 3, we have

Theorem 4. Suppose Ψ = {ψ} is a family of bounded measurable functions on R, and |ψ| ≤ 1.
Furthermore,

n

∑
k=1

E[ψ(Yk)|Fk−1] = Oa.s.(bn).

bn is an increasing function on n. If there exists a decreasing series of finite partitions of Ψ, such that

NΠ(ε) ≤ α exp{ β

ε2 },

for some constants α > 1, β > 0, and for some constants c22 and c23,

{
√

β log(
bn

b2
nu

c23
∧ bn

4

) +
√

log α(bn −
b2

nu
c23
∧ bn

4
)} ≤ b3/2

n u2

c22
,

Then for u ∈ (0, 1),

P
(

sup
ψ∈Ψ
|Xψ

n | ≥ b2
nu)
)
≤ c24 exp(− b2

nu
c25

). (12)

where c24 and c25 are constants.

Furthermore, we consider the nonparametric maximum likelihood estimator below.
Let P = {Pθ , θ ∈ Θ} be a family of probability measures on (R,B). We assume that each Pθ

is absolutely continuous with respect to the Lebesgue measure, and we denote the density
function of Pθ by fθ , namely fθ = dPθ

dx , θ ∈ Θ.
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Now we are given a θ0 ∈ Θ with fθ0 > 0, and we want to make an estimate for θ0. Let
X1, X2, · · · be a sequence of i.i.d. observations from Pθ0 . Define the empirical distribution

Pn =
1
n

n

∑
k=1

δXk (13)

on the basis of the first n observations, where δx stands for delta measure.
The widely used maximum likelihood estimator θ̂n of θ0 is defined by∫

log( fθ̂n
)dPn = max

θ∈Θ

∫
log( fθ)dPn. (14)

The Kakutani–Hellinger distance is used to compute the distance between two prob-
ability measures. In particular, for any two probability measures P1 and P2 with density
functions f1 and f2 on (R,B), the Kakutani–Hellinger distance h( f1, f2) is defined by

h2( f1, f2) =
1
2

∫
R

(√
f1(x)−

√
f2(x)

)2dx. (15)

We shall give the rate of convergence for fθ̂n
to fθ0 by means of h2( fθ̂n

, fθ0) below.
Note

∫
R fθdx =

∫
R fθ0 dx, and log(1 + x) ≤ x for any x > −1,

0 ≤ 1
2

∫
R

log
fθ̂n

fθ0

dPn ≤
∫
R

(√ fθ̂n

fθ0

− 1
)

dPn

≤
∫
R

(√ fθ̂n

fθ0

− 1
)

d(Pn − Pθ0) +
∫
R

(√ fθ̂n

fθ0

− 1
)

dPθ0 −
1
2

∫
( fθ̂n
− fθ0)dx

=
∫
R

(√ fθ̂n

fθ0

− 1
)

d(Pn − Pθ0) +
∫
R

√
fθ̂n

fθ0 dx− 1
2

∫
R
( fθ̂n

+ fθ0)dx

=
∫
R

(√ fθ̂n

fθ0

− 1
)

d(Pn − Pθ0)− h2( fθ̂n
, fθ0). (16)

Then for any x > 0, we have

P(h2( fθ̂n
, fθ0) ≥ x) ≤ P(

∫
R

(√ fθ̂n

fθ0

− 1
)

d(Pn − Pθ0) ≥ x)

≤ P(sup
θ∈Θ

∫
R

(√ fθ

fθ0

− 1
)

d(Pn − Pθ0) ≥ x).

Let G = {gθ :=
√

fθ
fθ0
− 1, θ ∈ Θ}, and note gθ0 = 0. Since X1, X2, · · · , is a sequence

of i.i.d. samples from Pθ0 , then

∫
R

(√ fθ

fθ0

− 1
)

d(Pn − Pθ0) =
1
n

n

∑
k=1

(
gθ(Xk)− Egθ(Xk)

)
=:

1
n

Xgθ
n .

At last, we have the following result.



Mathematics 2023, 11, 881 10 of 11

Theorem 5. Suppose G = {gθ :=
√

fθ
fθ0
− 1, θ ∈ Θ} is a family of bounded measurable functions

on R, and |gθ | ≤ 1. Furthermore,

n

∑
k=1

E[gθ(Xk)] = O(bn),

bn is an increasing function on n. If there exists a decreasing series of finite partitions of Ψ, such that

NΠ(ε) ≤ α exp{ β

ε2 },

for some constants α > 1, β > 0, and for some constants c26 and c27,

{
√

β log(
bn

b2
nu

c27
∧ bn

4

) +
√

log α(bn −
b2

nu
c27
∧ bn

4
)} ≤ b3/2

n u2

c26
,

Then for u ∈ (0, 1),

P
(
h2( fθ̂n

, fθ0) ≥ nb2
nu)
)
≤ c28 exp(−nb2

nu
c29

). (17)

where c28 and c29 are constants.

Remark 2. The uniform concentration inequality of the functional index empirical processes and
the Kakutani–Hellinger distance of the maximum likelihood estimator were studied by Wang, Lin,
and Su [15]. We give our new inequalities for these two particular cases in Theorems 4 and 5.

5. Conclusions

This paper explores the uniform concentration inequality for the stochastic integral
of the marked point process. We can obtain an upper bound of tail probability for the
supremum of a class of purely discontinuous local martingales. In other words, our result
implies that the supremum of a class of stochastic integrals with respect to marked point
processes has a sharp bound in high probability. Our inequality is an extension of classical
results on uniform concentration inequalities for functional indexed empirical processes.
Furthermore, the deviation of our inequality is a new approach to drive the uniform
concentration inequality under an entropy condition for partitioning the index set. Thus,
our result is independent of metrics in the index set.

Several issues can be further explored. First, the assumption imposed on the entropy
can be relaxed to a more general case. Different entropy conditions can give other tail
bounds of the suprema of stochastic processes. Furthermore, it would be an interesting
future topic to extend the chaining method developed in this paper to obtain a concentration
around the mean for the maxima of the stochastic integral for the marked point process.
Such results in empirical processes have been studied by Klein and Rio [8] and by Lederer
and van de Geer [10]. It is also worthwhile to further explore the application of uniform
concentration inequalities in statistical learning.
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