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Abstract: Amplitude-versus-angle (AVA) inversion for pre-stack seismic data is a key technology
in oil and gas reservoir prediction. Conventional AVA inversion contains two main stages. Stage
one estimates the relative change rates of P-wave velocity, S-wave velocity and density, and stage
two obtains the P-wave velocity, S-wave velocity and density based on their relative change rates
through trace integration. An alternative way merges these two stages to estimate P-wave velocity,
S-wave velocity and density directly. This way is less sensitive to noise in seismic data compared to
conventional two-stage AVA inversion. However, the regularization for the direct AVA inversion is
more complex. To regularize this merged inverse problem, the L0-norm-gradient of P-wave velocity,
S-wave velocity and density was used. L0-norm-gradient regularization can provide inversion results
with blocky features to make formation interfaces and geological edges precise. Then, L0-norm-
gradient regularized AVA inversion was performed on the synthetic seismic traces. Next, a real
seismic data line that contains three partial angle stack profiles was used to test the practice application.
The inversion results from synthetic and real seismic data showed that L0-norm-gradient regularized
AVA inversion is an effective way to estimate P-wave velocity, S-wave velocity and density.

Keywords: pre-stack seismic data; AVA inversion; L0-norm-gradientregularization; reservoir prediction
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1. Introduction

In exploration geophysics, the subsurface distribution of P-wave velocity, S-wave
velocity and density of underground formation are frequently used to mark rock character-
istics and help stratigraphic analysis. Amplitude-versus-angle (AVA) inversion is a way to
estimate P-wave velocity, S-wave velocity and density from pre-stack seismic data. The
inverted P-wave velocity, S-wave velocity and density can be used in rock characterization,
stratigraphic correlation, lithology identification and further reservoir prediction, and many
other areas in the oil and gas industry.

Zoeppritz’s equations are the theoretical foundation of AVA inversion [1–3]. The
way to derive the exact analytic solution can be found in the literature [3]. However, the
exact solution of Zoeppritz’s equations is too complicated to apply in practice. First, the
analytical formulation of the exact solution is tedious, i.e., the analytic solution exists but is
too complicated to write it mathematically. Second, the computation cost is relatively high.
Numerically calculating the analytical solution is more computationally expensive than
finding the solution of the linear system under analysis. To simplify the solution, many
scholars derived different approximate expressions. For example, under the assumption of
small changes in elastic parameters, Aki and Richards derived the approximate expression
of the P-wave reflection coefficient with the relative variation rates of P-wave velocity, S-
wave velocity, and density [3]. Additionally, there are many other approximate expressions
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in terms of different parameters. For example, Li and Zhang used the P-σ-ρ approximate
expression to estimate Poisson’s ratio through AVA inversion (P is shorthand for P-wave
velocity, σ is Poisson’s ratio, and ρ is density) [4].

Extending the approximate expression or exact solution of the P-wave reflection
coefficient to M incident angles and N time samples at each common midpoint (CMP) and
combining the convolution model of seismic data, one can obtain the forward problem
of conventional AVA inversion, i.e., modeling seismic data according to given P-wave
velocity, S-wave velocity and density model. Hence, AVA inversion estimates the model
parameters of the subsurface from observed seismic data. However, it is not to say that the
works of AVA inversion are easy. First, pre-stack seismic data are band limited and contain
much noise. The forward operator of AVA inversion has a high condition number. All of
these reasons cause the ill-posedness of AVA inversion. Hence, some a priori constraints to
serve as the regularization term need to be introduced to obtain a stable and meaningful
inversion result [5,6]. Regularization can alleviate the ill-posedness of an inverse problem.

Regularization considers the properties of the forward operator from the mathematical
viewpoint [2]: Whether the numerical instability comes from the singularity and whether
the singular operator can be modified to stabilize the computation. The stability means that
a small variation in data causes a small perturbation in solution estimate and thus depends
on the property of the forward operator [7]. There are three types of dependencies: linear,
power law, and logarithmic [2]. With a linear dependency, it is a well-posed problem. For
logarithmic dependency, it is an ill-posed problem. In order to have a stable inversion,
at least an operator of power-law dependency, with an exponent less than 1, should be
employed. Unfortunately, the operators in seismic inversion problems, especially for AVA
inversion, are usually ill-posed with a logarithmic dependency [2].

The first used regularization method in geophysical inverse problems is Tikhonov
regularization, which is the L2-norm of the model parameter or its attributes [7,8]. From
the point of view of Bayesianism, the Tikhonov regularization corresponds to a priori
Gaussian distribution of model parameters. In many alternative options, sparse regular-
ization was very popular and frequently used to constrain AVA inversion to obtain sparse
relative variation rates, which can further obtain blocky inversion results. Downton and
Downton et al. performed AVA inversion regularized by three different sparse norms,
i.e., Lp-norm, Cauchy’s norm, and Huber’s norm [5,6]. Alemie and Sacchi used Trivari-
ate Cauchy probability distribution as the a priori constraint in three-term AVA inver-
sion [9]. Zhang and Dai adopted Cauchy’s regularization to constrain AVA inversion
and used a quasi-Newton algorithm to solve the objective function [10]. However, the
sparse constraints on the relative variation rates will suppress some small reflection events
overwhelmed by noise and cannot well estimate weak reflectors [11–14].

The existing AVA inversion methods usually involve two main stages. First, one can
invert pre-stack seismic data to obtain the relative change rates of P-wave velocity, S-wave
velocity and density; this is stage one. Next, the final P-wave velocity, S-wave velocity and
density can be estimated based on the inverted relative change rates under trace integration
transformation [10,15]; this is stage two.

The inversion methods with two stages have been used to solve most of the problems
in AVA inversion. However, some issues remain. The results of the trace integration are
sensitive to noise in the pre-stack seismic data and inaccuracies in the estimated relative
change rates from stage one [16,17]. To reduce the ill-posedness of AVA inversion, the
two-stage inverse problems can be merged into a single problem to estimate P-wave
velocity, S-wave velocity and density directly. It is similar to the merged seismic impedance
inversion methods proposed by the existing literature [17–21].

The merged inversion methods are less sensitive to noise compared to conventional
two-stage AVA inversion. However, the regularization for direct inversion is more complex.
In direct seismic impedance inversion, Gholami used total variation as the regularization
term in the direct impedance inversion objective function to obtain impedance with blocky
structures [17]. Hamid and Pidlisecky used a damped least-squares method to estimate the
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impedance model [18]. Yuan et al. used a transform-domain sparsity promotion method
to address the seismic impedance inversion [19]. Yang et al. and Dai et al. used L0-norm-
gradient as the regularization term in the direct impedance inversion and compared the
L0-norm-gradient regularized impedance inversion to the other existing inversion meth-
ods [20,21]. They pointed out the advantages of L0-norm-gradient regularization in seismic
impedance inversion. At first, L0-norm regularization is used to constrain the representa-
tion coefficients in the sparse signal representation and compressed sensing theory [22,23].
Xu et al. used the idea of the L0-norm-gradient for image smoothing [24]. Cheng et al.
extended Xu et al.’s work to preserve the image’s features in image processing [25].

In this paper, we applied the L0-norm-gradient of P-wave velocity, S-wave velocity and
density in direct AVA inversion to regularize the merged inverse problem. In AVA inversion,
L0-norm-gradient regularization can provide inversion results with blocky features to make
formation interfaces and geological edges precise. However, to adapt the specific feature of
AVA inversion, we modified the conventional form of L0-norm-gradient by introducing the
inverse of covariance matrix between P-wave velocity, S-wave velocity and density to serve
as a weighting matrix for model parameters to consider the statistical correlation between
them. To solve the L0-norm-gradient regularized AVA inversion, a split-Bregman-like
algorithm was used. Then, L0-norm-gradient regularized AVA inversion was performed
on the synthetic seismic traces. Next, a real seismic data line that contains three partial
angle stack profiles was used to test the practice application. The inversion results from
synthetic and real seismic data showed that L0-norm-gradient regularized AVA inversion
is an effective way to estimate P-wave velocity, S-wave velocity and density.

2. Methods
2.1. AVA Inversion for Pre-Stack Seismic Data

Here, we used the approximate expression of the P-wave reflection coefficient derived
by Aki and Richards with relative variation rates of P-wave velocity, S-wave velocity and
density to construct the objective function of AVA inversion. The Aki–Richards approxima-
tion can be expressed as [3]

Rpp(θ) ≈ a(θ)Rvp + b(θ, γ)Rvs + c(θ, γ)Rρ, (1)

where Rpp(θ) is the P-wave reflection coefficient at incident angle θ; a(θ) = sec2 θ; b(θ, γ) =

−8γ2 sin2 θ; c(θ, γ) = (1 − 4γ2 sin2 θ); γ is the ratio of background S-wave velocity to
P-wave velocity; and Rvp, Rvs and Rρ are the relative variation rates of P-wave velocity,
S-wave velocity and density, respectively.

We assumed that the pre-stack seismic data contains M incident angles and N time
samples at each CMP. Hence, Equation (1) can be extended to the following form [10]:

rpp = Ar, (2)

where rpp ∈ RMN is the vector of the P-wave reflection coefficient at M incident angles
and N time samples; r ∈ R3N is the vector of the relative variation rates of P-wave velocity,
S-wave velocity and density at N time samples; and A ∈ RMN×3N is the matrix which is
constituted by a(θ), b(θ) and c(θ) at M incident angles [10], i.e.,

rpp = [R1
pp(θ1), . . . , RN

pp(θ1), . . . , R1
pp(θM), . . . , RN

pp(θM)]
T

(3)

r = [R1
vp, . . . , RN

vp, R1
vs, . . . , RN

vs, R1
ρ, . . . , RN

ρ ]
T

(4)
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A =



a(θ1) b(θ1) c(θ1)
. . . . . . . . .

a(θ1) b(θ1) c(θ1)
. . . . . . . . .

a(θM) b(θM) c(θM)
. . . . . . . . .

a(θM) b(θM) c(θM)


(5)

In exploration geophysics, we think the observed seismic data are the convolution
result from the P-wave reflection coefficient and a source wavelet [26]. For calculation, the
convolution relationship is discretized as

d = Wrpp + n (6)

where d ∈ RMN is the vector of observed pre-stack seismic data at each CMP; n ∈ RMN is
the noise in observed seismic data; and W ∈ RMN×MN is the wavelet convolution matrix
for pre-stack seismic data, in which each column contains the wavelet properly padded
with zeros in order to express discrete convolution [2].

Hence, it is assumed that the observed data d are well described by the synthetic data
given by Wr and an additive noise n in this paper.

By combining Equations (2) and (6), one can obtain the forward equation for the
conventional two-stage AVA inversion, i.e.,

d = WAr + n = Φr + n, (7)

where Φ = WA∈ RMN×3N , which is the combined matrix of W and A and serves as the
forward operator of conventional AVA inversion.

Based on the least square inverse problem theory, the objective function of AVA
inversion can be written as

min f (r) =
∣∣∣∣∣∣Φr− d

∣∣∣∣∣∣22, (8)

where ||·||2 is the L2-norm of a vector.
However, the solution of seismic inversion is ill-posed. To alleviate the ill-posed

inverse problem, the most effective way is the regularization constraint [8]. In a seismic
inversion, sparse regularization is very popular and has frequently been used to constrain
AVA inversion to obtain sparse relative variation rates, which can further obtain blocky
inversion results. Here, we used L0-norm as the sparse regularization. Hence, the objective
function of AVA inversion with L0-nom sparse regularization is

min f (r) =
∣∣∣∣∣∣Φr− d

∣∣∣|22 + λ
∣∣∣∣∣∣r∣∣∣∣∣∣0, (9)

where ||·||0 is the so-called L0-norm of a vector, i.e., the number of no-zero elements in a
vector; λ is the regularization parameter of L0-nom sparse regularization. Equation (6) is
the so-called sparse spike seismic inversion [27].

After establishing the solution to Equation (6), i.e., the inverted relative variation
rates, the final P-wave velocity, S-wave velocity and density can be obtained through the
following trace integration transformation [10,15], i.e.,

vp(i) = vp(0) exp[2
i

∑
j=0

Rj
vp]

vs(i) = vs(0) exp[2
i

∑
j=0

Rj
vs]

ρ(i) = ρ(0) exp[2
i

∑
j=0

Rj
ρ]

, (10)
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where vp(i), vs(i) and ρ(i) are P-wave velocity, S-wave velocity and density at sample i,
respectively.

2.2. L0-Norm-Gradient Regularization

For continuous model parameters m(x), its L0-norm can be defined as the length of its
support set, i.e., [7]

||m||0 =|sptm|, (11)

where sptm is the support set of m(x).
Hence, the L0-norm can also be expressed as

||m||0 =
∫

x∈V
l[m(x)]dx, (12)

where

l(m) =

{
1 m 6= 0
0 m = 0

, (13)

From the above definition, for the discretized model parameters m, its L0-norm can be
expressed as [12]

||m||0= {the total number of i|m(i) 6= 0}, (14)

where m(i) is the element of m.
Based on the definition (11), the L0-norm-gradient of model parameters m(x) can be

defined as
||∇m||0 =|spt∇m|, (15)

For the special case of seismic inversion in one dimensional, such as seismic impedance
inversion trace by trace or AVA inversion performed CMP by CMP, the gradient of model
parameters is the partial derivative in a vertical direction, i.e.,

||∇m||0 =||∂zm||0, (16)

Hence, for the discretization one-dimensional case, the L0-norm-gradient can be
expressed as [20,21]

||∇m||0 =||Dm||0, (17)

where D is the first-order difference operator matrix.
From the definition of L0-norm-gradient, we can see that it measures the sparsity of

the model parameters’ gradient. Applying L0-norm-gradient as a regularization in seismic
inversion can provide inversion results with blocky features to make formation interfaces
and geological edges precise. In fact, the L0-norm gradient is the extension of the total
variation. L0-norm-gradient use L0-norm to replace L1-norm in the definition of the total
variation. Compared to other measures of sparsity, L0-norm is the most essential one.
It is because the other sparsity measures, such as L1-norm, Cauchy norm, Huber norm,
Lp-norm (0 < p < 1), and so forth, are relaxations of L0-norm to a varying degree [12].

2.3. AVA Inversion with L0-Norm-Gradient Regularization

In a seismic inversion, the definition of the relative change rate of P-wave velocity can
be expressed as [3]

Ri
vp ≈

∆vp(i)
2vp(i)

≈ 1
2

ln
vp(i + 1)

vp(i)
. (18)

Considering there are N time samples at each CMP, Equation (18) can be extended to
the following form:

Rvp = Du, (19)
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where Rvp∈ RN represents the vector of relative variation rates of P-wave velocity at N
samples, i.e.,

Rvp = [R1
vp, . . . , RN

vp]
T

, (20)

u∈ RN is the vector with the following elements:

u(i) = (1/2) ln
vp(i)
vp(0)

, (21)

Hence, u is the vector of logarithmic P-wave velocity.
Similarly, for the relative change rates of S-wave velocity and density, we have the

following equations: {
Rvs = Dv
Rρ = Dw

, (22)

where Rvs∈ RN and Rρ∈ RN represent the vector of relative variation rates of S-wave
velocity and density at N samples, and v∈ RN and w∈ RN are the vectors of logarithmic
S-wave velocity and density, respectively.

By combining Rvp, Rvs and Rρ, one can obtain r in Equation (2) and give the following
equation:

r = Dm. (23)

Now, m∈ R3N is the vector combined u, v and w, and D∈ R3N×3N represents a
combined difference matrix for u, v and w.

By combining Equations (7) and (23), one can obtain the following equation:

d = Gm + n, (24)

where G = ΦD∈ RMN×3N , which is the combined matrix of Φ and D.
In the above formula, Gm is the forward equation for the merged AVA inversion,

and m is the model parameters. Based on Equation (24), we can directly estimate P-wave
velocity, S-wave velocity and density.

Based on the objective function (9) for conventional AVA inversion, we can obtain the
objective function for direct AVA inversion in the following form:

min f (m) =
∣∣∣∣∣∣Gm− d

∣∣∣∣∣∣22 + λ
∣∣∣∣∣∣Dm

∣∣∣∣∣∣0, (25)

From the section on L0-norm-gradient regularization, we can see that Equation (25) is,
in fact, an inverse problem regularized by L0-norm-gradient.

In direct AVA inversion, the model parameters m contains logarithmic P-wave velocity,
logarithmic S-wave velocity and logarithmic density. Generally, there are correlations
between different parameters. In addition, the contributions from the relative change rates
of different parameters to the P-wave reflection coefficient are different. Compared to
the relative change rates of P-wave velocity and S-wave velocity, the contribution from
the relative change rate of density is very small [5]. Hence, the estimation of density is
extremely unstable. To deal with this issue in AVA inversion, we can introduce a weighting
matrix Wm∈ R3N×3N for model parameters.

Furthermore, the pre-stack seismic data originate from different incident angles with
different quality. For example, seismic data with large incident angles, which correspond
to far offset, suffer different degrees of distortion due to NMO stretching [28]. Hence, the
quality of seismic data with small incident angles is better compared to large incident
angles. To deal with this issue in AVA inversion, we can also introduce a weighting matrix
Wd∈ RMN×MN for seismic data.

By combining Wm and Wd, the objective function (25) can be updated as

min f (m) =
∣∣∣∣∣∣Wd(Gm− d)

∣∣∣∣∣∣22 + λ
∣∣∣∣∣∣DWmm

∣∣∣∣∣∣0, (26)
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In AVA inversion, Wm and Wd usually take the following forms [9]:{
Wm = C−1

m
Wd = C−1

d
, (27)

where Cm∈ R3N×3N and Cd∈ RMN×MN are the covariance matrix of model parameters and
seismic data, respectively.

The covariance matrix Cd can be obtained from the observed pre-stack seismic data
through statistical estimation. The covariance matrix Cm can be obtained from well log data
or by means of empirical petrophysical relationships between model parameters [5,6]. For
example, the Gardner formula represents the statistical relation between P-wave velocity
and density [29], the Castagna formula represents the statistical relation between P-wave
velocity and S-wave velocity [30], etc.

In fact, we can update the weighting matrix Wm at each iteration using inverted model
parameters from the last iteration. This is the so-called strategy of iterative re-weighting,
and AVA inversion becomes a nonlinear problem. However, the computational cost has
increased accordingly.

2.4. Split-Bregman-like Algorithm

We used a split-Bregman-like algorithm to solve the objective function (26). First,
introduce an auxiliary vector a∈ R3N ; hence, the objective function (26) can be re-written as

min f (m, a) =
∣∣∣∣∣∣Wd(Gm− d)

∣∣∣∣∣∣22 + λ
∣∣∣∣∣∣a∣∣∣∣∣∣0, s.t. a = DWmm, (28)

The above objective function can be written in Lagrangian form, i.e.,

min f (m, a) =
∣∣∣∣∣∣Wd(Gm− d)

∣∣∣∣∣∣22 + λ
∣∣∣∣∣∣a∣∣∣∣∣∣0 +βT(DWmm− a), (29)

where β ∈ R3N can be interpreted as a Lagrangian multiplier vector.
The Lagrangian imposes the strict constraint of equality, which is overkill [31]. In

practice, one only needs to use the so-called augmented Lagrangian form, where the
equality constraint is relaxed [31], i.e.,

min f (m, a) =
∣∣∣∣∣∣Wd(Gm− d)

∣∣∣∣∣∣22 + λ
∣∣∣∣∣∣a∣∣∣∣∣∣0 + β

∣∣∣∣∣∣DWmm− a
∣∣∣∣∣∣22. (30)

Now, β is an auxiliary parameter similar to the regularization parameter but to control
the similarity between the auxiliary vector a and DWmm.

From the theory of the split-Bregman algorithm, Equation (30) asymptotically con-
verges to Equation (29) as the auxiliary parameter β gradually increases [24,31,32]. There-
fore, the value of β is varied; usually, it is kept low initially, but as the solution converges,
its value is progressively increased.

The split-Bregman-like algorithm splits Equation (30) into two sub-problems and
then iteratively solves them to find the solution of the original objective function [31].
Specifically, Equation (30) is solved iteratively by alternatively minimizing a and m. In each
sub-problem, one variable is fixed with values obtained from the previous iteration.

Sub-problem 1: take a fixed and estimate m. The objective function for sub-problem 1
takes the following form:

min f (m) =
∣∣∣∣∣∣Wd(Gm− d)

∣∣∣∣∣∣22 + β
∣∣∣∣∣∣DWmm− a

∣∣∣∣∣∣22. (31)

It is an inverse problem regularized by quadratic regularization. Its solution is

m = (GTWT
d WdG + βDTWT

mDWm)
−1

(GTWT
d d + βDTWT

ma). (32)
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Sub-problem 2: take m fixed and update a. The objective function for sub-problem 2
takes the following form:

min f (a) =
∣∣∣∣∣∣∣∣DWmm− a

∣∣∣∣∣∣∣∣22 + λ

β

∣∣∣∣∣∣∣∣a∣∣∣∣∣∣∣∣0. (33)

Equation (33) is a standard L0-norm regularized problem that can be solved by hard
thresholding [31]. Its solution is

a(i) =
{

0, [(DWmm)(i)]2 ≤ λ/β
(DWmm)(i), [(DWmm)(i)]2 > λ/β

. (34)

where a(i) and (DWmm)(i) are the ith element of a and DWmm, respectively.
In the iteration, the auxiliary parameter β is automatically adapted starting from an

initial value, and it is multiplied by κ each time [24].
After finding out the solution of the objective function (26) through the split-Bregman

iteration algorithm, the final P-wave velocity, S-wave velocity and density can be obtained
through the following simple exponential transformation [17], i.e.,

vp(i) = vp(0) exp[2u(i)]
vs(i) = vs(0) exp[2v(i)]
ρ(i) = ρ(0) exp[2w(i)]

. (35)

We can see that the above Equation (35) is different from Equation (10). Equation (35)
does not contain integration calculation. Hence, it is less sensitive to noise in seismic data.

3. Synthetic Data Tests

We first used the synthetic seismic traces to test the effects of AVA inversion with L0-
norm-gradient regularization and its difference compared to conventional AVA inversion.
The noise-free synthetic seismic traces are shown in Figure 1a, which are obtained from the
convolution between a 35 Hz Ricker wavelet and the P-wave reflection coefficients with
eight incident angles. The P-wave reflection coefficients are calculated from the P-wave
velocity, S-wave velocity and density shown in with red curves through the Aki–Richards
approximation. The eight incident angles are 0◦, 5◦,10◦, 15◦, 20◦, 25◦, 30◦ and 35◦. Then,
25% zero-mean Gaussian random noise is added to the noise-free synthetic seismic traces.
The noise-contaminated synthetic seismic traces are shown in Figure 1b. The relative error
of the noise-contaminated data is 0.07.
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Two AVA inversion methods were performed on the noise-contaminated synthetic
seismic traces. The first one is conventional AVA inversion with sparse regularization
(C-AVA), i.e., first, invert noise-contaminated synthetic seismic traces to obtain relative
change rates, then estimate final P-wave velocity, S-wave velocity and density through trace
integration transformation; the second one is direct AVA inversion with L0-norm-gradient
regularization (L0-AVA).

In the process of AVA inversion, the initial model is the result of smoothing true
model parameters through a high-cut filter with a threshold value of 10 Hz. We used
quality control to calculate the regularization parameters in this paper. In synthetic data,
the best value of regularization parameters is determined by quality control using a part
of true model parameters; i.e., adjust the value of regularization parameters, obtain the
inversion result with the corresponding part of seismic data for each set of regularization
parameters, and choose the one whose inversion result has the best match with the true
model parameters. From quality control, the regularization parameter λ is set to 0.1. The
initial auxiliary parameter β is set to 2.0λ, and multiplier κ is set to 1.5. Then, the chosen
regularization parameters are adopted when we perform inversion for the whole seismic
data. The quality control part is a time interval of 1.55 s to 1.65 s. In addition, we used
the true model parameters and seismic data in this time interval to calculate the model
covariance matrix Cm and data covariance matrix Cd. The inverse of these two covariance
matrices is served as the weighting matrices.

The inverted model parameters are shown in Figure 2, where the green curves are
inverted model parameters by L0-AVA inversion, and the black curves are inverted model
parameters by C-AVA inversion. Figure 2a–c shows P-wave velocity, S-wave velocity
and density, respectively. Generally speaking, we can see that all of the inverted model
parameters can match with the true model parameters and are following the relative
trend of true model parameters very nicely. However, the inverted model parameters
by the two AVA inversion methods are very different in detail. First, the inverted model
parameters by C-AVA swings at some major large contrast interfaces. Especially below
the time 1.7 s, the inverted model parameters by C-AVA inversion are very different from
the true model parameters because the trace integration generates a large accumulation
of errors. The formation boundary of the main stratigraphic sequence interface is not
precise. Second, compared to C-AVA inversion, the inverted model parameters by L0-
AVA inversion are better matched with true model parameters and have obvious “blocky”
geological characteristics, with only small vibrations at contrast interfaces. Hence, the
inverted model parameters by L0-AVA inversion are more accurate with higher resolution.

We calculated the relative errors (RE) of inverted model parameters by different AVA
inversion methods through the following formula:

RE =

∣∣∣∣m−minverted
∣∣∣∣2

2∣∣∣∣m∣∣∣∣22 , (36)

where minverted is inverted model parameters, and m is true model parameters. The
calculated REs of inverted model parameters shown in Figure 2 are listed in Table 1. We
can see that the RE for L0-AVA is much smaller than for C-AVA.

Table 1. The REs of inverted model parameters by different AVA inversion methods.

Inversion Method RE

C-AVA 0.2223
L0-AVA 0.1305
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Figure 2. The true and inverted model parameters: (a) P-wave velocity (m/s); (b) S-wave velocity
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model parameters by L0-AVA inversion and the black curves are inverted model parameters by
C-AVA inversion.

4. Field Data Applications

After performing synthetic seismic traces tests of L0-AVA inversion, a real seismic
line from East China was used to test its practice application. The seismic data have
a good signal-to-noise ratio, with signals extending from 10 to 120 Hz. The calculated
relative error for this seismic line through the method proposed in the literature [33] is
0.22. The source wavelet was estimated from seismic-to-well correlation with a 50 Hz
dominant frequency [2]. Before AVA inversion, the original seismic data were subjected
to a suite of relative amplitude processing. The processing procedures contain shot and
trace edits, noise attenuation, Q compensation, divergence correction, consistent surface
scaling, consistent surface deconvolution, migration, residual statics, amplitude preserving
NMO, multiple attenuations, transmission loss correction, etc. From the results of seismic
processing for this line, we obtained three partial angle stack seismic data profiles, with
stack angle ranges 2–11◦, 12–21◦ and 22–31◦, respectively. Figure 3 shows these three real
partial angle stack seismic data profiles. The CMP numbers are from 701 to 900. These
profiles show similar tectonic structures but with amplitude variations with stack angles.
The amplitude variations are key information in AVA inversion.

Then, L0-AVA inversion is performed on this seismic data line. In the process of
inversion, the initial model is obtained through the following procedures. First, we used
local kriging estimation with P-wave velocity, S-wave velocity and density curves from
a well log, which crosses this seismic line, under the constraint of seismic interpretation
horizons to obtain well log interpolating models. Next, the interpolating model parameters
models were smoothed through a high-cut filter with 10 Hz threshold value. The results
are well log interpolating models with the low-frequency trend, which are used by us as
the initial model. Additionally, we used quality control to determine these regularization
parameters for field data inversion. Here, we think the actual well logs are the “answer”
to the inversion of near-well seismic traces. The actual well logs represent the actual
subsurface geological setting. The best value of regularization parameters is determined
by quality control at well locations. From quality control for field data, the regularization
parameter λ was set to 0.25. Same as synthetic data tests, the initial auxiliary parameter β
was set to 2.0λ, and multiplier κ was set to 1.5. Then, the chosen regularization parameters
were adopted when we performed inversion for other seismic traces. In addition, we used
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the actual well logs and near-well seismic traces to calculate model covariance matrix Cm
and data covariance matrix Cd, and the inverse of these two covariance matrices was served
as the weighting matrices.
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Figure 3. The real seismic data profiles with different partial angle stack: (a) 2–11◦; (b) 12–21◦;
(c) 22–31◦.

Figure 4 shows the inverted model parameters by L0-AVA inversion, where Figure 4a–c
are P-wave velocity, S-wave velocity and density, respectively. In Figure 4, the well log
curves across this seismic inline are also overlaid. We can see that the inverted model
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parameters are well matched with original real seismic data profiles with good structural
configurations and stratigraphic lateral distributions.
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Figure 4. The inverted model parameters profiles: (a) P-wave velocity (m/s); (b) S-wave velocity
(m/s); (c) density (g/cm3). The locations of white arrows and ellipses shown in the inverted S-wave
velocity profiles are oil-bearing sandstone from the interpretation of the well log.

To further display the inversion results, Figure 5 shows a single trace comparison
between well log curves and inverted model parameters. The blue curves are well log, the
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red curves are inverted model parameters and the green curves are the initial model. We
can see that the inverted model parameters are also well matched with well log curves.
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Figure 5. The single trace comparison between well log data and inverted model parameters: (a) P-wave
velocity (m/s); (b) S-wave velocity (m/s); (c) density (g/cm3). The blue curves are well log, the red
curves are inverted model parameters and the green curves are initial model in the process of inversion.

This seismic line is located on the reverse drag anticline structure, which develops
faults. It can be seen from the angle stack seismic data profiles that there are many different
level faults in this seismic line. The target stratums are fluvial facies deposits, and the
lithology changes rapidly. The main oil-producing interval is suited to the upper wall. The
locations of white arrows and ellipses shown in the inverted S-wave velocity profiles are
oil-bearing sandstone from the interpretation of the well log. Both oil-bearing stratums
have lower P-wave velocity, S-wave velocity, and density compared to the surrounding
rock. Figure 6 shows the zoomed area of white arrows and ellipses shown in the inverted
S-wave velocity profiles to clearly delineate the reservoirs. The reservoir’s outlines are very
clear to allow us to distinguish the upper and lower interfaces of target stratums. The clear
vertical and spatial variation features of inverted model parameters profiles can be further
used in reservoir prediction and description. The results of L0-AVA inversion provide
reliable data support for the next work stages in the oil industry.
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5. Discussion and Conclusions

AVA inversion is a way to estimate P-wave velocity, S-wave velocity and density from
pre-stack seismic data. The distribution of estimated P-wave velocity, S-wave velocity and
density are frequently used to mark rock characteristics and help stratigraphic analysis.
However, conventional AVA inversion is sensitive to noise in seismic data. In this paper,
we merged the two stages in conventional AVA inversion into a single problem to estimate
P-wave velocity, S-wave velocity and density directly. The merged inversion method is less
sensitive to noise compared to conventional AVA inversion.

To regularize the merged AVA inversion, we adopted the L0-norm-gradient of model
parameters. The case of L0-norm regularization is a synthesis formulation, and the case of
L0-norm-gradient is an analysis formulation [12]. The difference operator of gradient calcu-
lation in the analysis formulation corresponds to the Heaviside synthesis dictionary [12].
Therefore, L0-norm-gradient regularization constrains AVA inversion results with spare
representation coefficients on the Heaviside synthesis dictionary. Hence, in AVA inversion,
L0-norm-gradient regularization can provide inversion results with blocky features to make
formation interfaces and geological edges precise.

From the tests of synthetic seismic data traces, we can conclude that compared to
conventional AVA inversion, the inverted model parameters by L0-norm-gradient regularized
AVA inversion are better matched with true model parameters and has obvious “blocky”
geological characteristics, with only small vibrations at contrast interfaces. The inverted
model parameters by L0-norm-gradient regularized AVA inversion are more accurate with
higher resolution. From the applications of real seismic lines, we can conclude that the
inverted model parameters are well matched with original real seismic data profiles with
good structural configurations and stratigraphic lateral distributions. In addition, the inverted
model parameters are also well matched with well log curves. The reservoir’s outlines are very
clear to allow us to distinguish the upper and lower interfaces of target stratums. The clear
vertical and spatial variation features of inverted model parameters profiles can be further
used in reservoir prediction and description. The results of L0-norm-gradient regularized
AVA inversion provide reliable data support for the next work stages in the oil industry. It is
an effective way to estimate P-wave velocity, S-wave velocity and density.
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