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Abstract: This article studies the approach to solving the problem of controlling the complex organi-
zational and technical systems based on hybrid models. We propose a new component of intelligent
decision support that is integrated with control systems. The proposed component is based on fuzzy
logic and knowledge engineering. We present a model of ontology to form the context of data analysis
and time series modeling. The ontological context allows us to represent trends of the analyzed object
indicators. An expert can add a set of fuzzy rules to the ontology for systems control based on the
fuzzy inference. The proposed approach allows reducing the time of analysis and interpretation of
the results. Experimental results confirm the correctness and effectiveness of the approach proposed
in this article.
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1. Introduction

The management of complex technical systems requires the analysis of a large volume
of data. The precision of the decisions depends on various factors, such as the control object
complexity, the volume of data for analysis, the control level, and the urgency of decision
making. The described factors require choosing a suitable class of analytical models for
decision support systems. We need to define properties of the analyzed objects to determine
the acceptable approaches and methods for solving control problems.

The proposed approach is based on the following principles:

1. The principle of the control object decomposition: The management of a complex
object is based on analysis of a large volume and the various types of data. It is
necessary to ensure management models have sustainable functioning when choosing
and adapting them. One solution is the formulation of restrictions on input data and
its types and on operation modes of management models. First, this task must be
solved successfully at the lowest level. Then, decision makers can build models for
higher levels.

2. The principle of dynamic indicators: We must analyze the attributes of objects over
the time (in dynamic states) to track tendencies in their values for successful analysis.
Such an analysis allows us to consider a greater number of dependencies.

3. The principle of abstraction: It is necessary to conceptualize abstractions from the
features of the analyzed objects in the modeling process.

4. The principle adaptability: The context of analyzed objects allows us to adapt models
to features and restrictions of the current problem area.

These principles are based on the general theory of control [1] and also require the
creation of new classes of models. We propose to use context modeling for solving forecast-
ing problems in complex organizational and technical systems control. The novelty of the
proposed approach is the creation of a new intelligent decision support component based
on fuzzy logic and knowledge engineering for building hybrid control systems.
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2. Related Works

As you can see in Figure 1, the scheme of the control process contains the following vectors:

• The input of the control object is the vector X = {x1, . . . , xn}.
• The control object is also regulated by the vector W = {w1, . . . , wr}. The values of the

vector W cannot be determined.
• The output of the control object is the vector V = {v1, . . . , vn}.
• The feedback vector from the control system U = {u1, . . . , uk} also comes to the input

of the control object.

Figure 1. Scheme of the control process.

There are various approaches to control complex technical systems that provide control
stability. For example, deterministic models as mathematical dependencies can be used for
this task. Intelligent components and components based on machine learning can be used
for systems with non-linearity and/or uncertainty in the behavior of a control object [2].
The use of forecasting methods allows us to reduce the response time of the system to
emerging deviations. Predictive models have the disadvantage of needing to choose the
appropriate volume of data to build a forecast and evaluate the quality of this data.

Neural networks can be a solution for a control task. A neural network is a black box
model that can accurately estimate complex non-linear relationships. Fuzzy modeling also
can be used for solving the control task. Fuzzy modeling is a modeling method that uses
a fuzzy inference system based on fuzzy rules [3]. Hybrid solutions that overcome the
limitations of existing individual models allow us to obtain new results from both. One
such model is ANFIS. However, the development of methods and algorithms based on
artificial intelligence requires several experiments to produce the required configuration
and accuracy of the models. In addition, if the data contain incompleteness, noise, or gaps,
the results of the work of intelligent models will be of poor quality [4,5].

There are several control systems types. The first class includes automatic control sys-
tems. The role of the decision maker is minimized in these systems [6,7]. Automatic control
systems are often based on PID controllers with various types of models. Another class of
systems is the decision support system. This class of systems is actively used by decision
makers in various management tasks. A hierarchical approach to the decomposition of
data analysis and decision-making tasks is possible in decision support systems [8].

The directions for the development of intellectual methods are [9]:
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• The expansion of the set of analyzed data;
• The complication of the applied models;
• The increase in the interpretability of the results;
• The explainability of the result.

Authors in the article [10] noted that the use of additional information can improve
the quality of modeling.

Researchers often use time series models to identify the patterns of changes in indica-
tors. Time series models are based on methods of trend analysis and various methods for
correlations. Correlation methods allow us to identify relationships between indicators of
a single object or between indicators of different objects. These methods are based on an
analysis of object attributes in dynamics. Statistical, fuzzy, and neural network models of
time series allow solving these tasks, depending on the type of data [11].

3. The Problem Statement

In our study, we use a hybrid approach. The novelty of the proposed approach is the
use of contextual information about the analysed object, such as dependencies, restrictions,
and relationships. We use a priori information specified in the context of objects of the
organizational and technical system instead of searching for dependencies through the
analysis of time series.

It is necessary to change the scheme of the common control process (Figure 1) to apply
the proposed approach. The new block allows for modeling dynamic parameters and
using context data. The new block is not part of the control system because it provides
information to the decision maker and/or to the automatic control system. This solution is
not a decision support system in the classic sense, but it allows increased flexibility of the
control process. We plan to continue improving the contextual analysis of the dynamics of
object attributes in the future. We also plan to apply the approach to unmanned vehicles in
agriculture for automatic planning and tracking the movement trajectory. The modified
scheme is shown in Figure 2.

Figure 2. Modified scheme of the control process.

Let us consider the new block in more detail. The contextual and dynamic decision
support block has the following properties:

• Input to obtain external information about the control context D of a control object;
• Input to accumulate the dynamics of a control object attributes (vector V);
• Management recommendations Res as the output (recommendations for decision

maker and/or numerical values to regulate the behavior of a control object).
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Software development based on agile methodologies is the example of a problem
area used for the proposed approach demonstration. Timely response to emerging events
is especially important in this domain because it allows implementing aspects such as
inspection and adaptation in conditions of extreme development parameters [12].

The indicators of quality in a model software system include functionality (measured
by the number of implemented tasks with new functionality), performance (measured
by the time it takes to execute functions), and reliability (measured by the number of
unhandled exceptions) [13].

The indicators of a quality model during the development process include mainly inter-
nal project quality indicators: efficiency (measured by the test execution time, project build
time, the ratio of the number of implemented functionality to the number of developers), re-
liability (measured by the number of errors during static testing of the code, test coverage),
and fulfillment of requirements (measured by the duration of the development tasks).

Note that this selection of parameters does not pretend to be original. These parameters
are just used to demonstrate the proposed approach in the project management task. The
main aim is to reduce the time required for obtaining information about the critical levels
of quality models.

4. Control Models

Let us present the necessary models for the block of contextual analysis of the dynamics
of indicators of the proposed scheme as shown in Figure 2. A significant difference from
the traditional control scheme is the availability of information about related objects.

Building a model for managing a complex technical system must begin with the
selection of a set of analyzed objects and their properties.

Let O = {o1, o2, . . . , on} be a set of such objects, where n ∈ N. For each object, we
define a set of attributes that characterizes the state of the object: oj = {v

oj
i }, where v

oj
i is

the numerical value of the indicator i for the analyzed object oj. In the scheme in Figure 2,
such a set of attributes for a control object are represented by the vector V = {v1, . . . , vm}.
These indicators are the basis for the time series of indicators. They help implement the
principle of dynamics of indicators, see (1)

TS(v
oj
i , t)→ ts

oj
i , (1)

where TS is the function that creates the time series of the indicator i of the object oj, t is the

time of the fixation the value of the indicator, and ts
oj
i is the time series of the indicator i

object oj.
The relations between the objects of the problem area must be considered in order to

analyze the mutual influence of their states and track dependencies.
Take the case of Rkl = rokol , where rokol characterizes the object connection degree

between ok and object ol . The relation degree is a numerical characteristic involved in the
analysis of the dynamics of indicators. It shows how the selected indicator positively or
negatively affects the state of the associated object. When solving the control problem, such
a relation helps to achieve the principle of decomposition. The limited set of related objects
makes it possible to determine the criteria for achieving a stable state of the control system
based on the proposed models. Instead of the relationship degree of one object to another,
we can use the object attributes relationship degree for more flexibility.

Calculating the dependency degree of the attributes of one object on the parameters of
another is expressed as a function, see (2).

f (Rkl) = ∑ tsok
t+1 ∗ rokol (2)

Such functionality allows us to calculate the state or adjust the control process in the
following scenarios:

1. The state and reliable trends of changes in the values of attributes of one object are
known. It is possible to predict the value of the attribute associated with the source
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object by the presented functional dependence: v
′oj
i = v′ok

i ∗ rokol , where v
′oj
i is the

predicted value of i-th attribute j-th object, or in the form of a time series forecast:
ts

oj
t+1 = tsok

t+1 ∗ rokol

2. We do not know the trends in the values of related objects, but there are predictive
values. Using these values, it is possible to diagnose the values of the attributes
|v′oj

i − vok
i |.

Control actions on the control object are defined by the control task after analyzing the
deviations of the output indicators of the control object from the reference ones, see (3).

|voj
i − eoj | → 0, ∀i, j, (3)

where v
oj
i is the value of the i-th attribute of the j-th object, and e

oj
i is the reference value.

An exact match of the values is not achieved, and it is required to set some intervals
boundaries of acceptable values. We can express a vector for each object, see Equation (4).

∆oj = {δoj
i }

|voj
i − eoj | ∈ δ

oj
i , ∀i, j.

(4)

To implement the principle of adaptability, we specify intervals of acceptable values
as fuzzy labels ∆̃oj .

As a result, we denote the function implemented by the control model of the function (5).

D =< O, ∆̃O, R >,

Control(D, TSModels)→ Res,
(5)

where D is an ontology that describes the links of the objects of analysis O by setting the
weight of the link R and includes restrictions on the values of the attributes of the control
object ∆̃O based on the ontology and a set of models, time series TSModels, recommended
for managing Res as consequential rules for responding to deviations.

5. Analysis Algorithm

According to the scheme shown in the Figure 2, it is necessary to determine the order of
operation of the block for contextual analysis of the dynamics of indicators. The algorithm
given below concerns only the operation of this block and is not a description of the entire
control task. The complex of models in solving the control problem is a set of prognostic
models of time series TSModels, a knowledge base model for the context of modeling time
series D, and a control model based on fuzzy logical inference during the operation of the
system of rules Control(D, TSModels)→ Res.

Let us describe the algorithm used for the decision-making procedure in solving
control problems.

1. Form an ontology D that describes the relationships between objects and attributes.
2. Generate time series of values of indicators of the studied objects v

oj
i . Instead of a

single output vector of the control object, it is necessary to present the history of each
indicator TS(v

oj
i , t)→ ts

oj
i .

3. Describe the context in the ontology D as rules for performing fuzzy inference when
working with predictive TSModels, their parameters, and types.

4. Select and train fuzzy predictive TSModels to adapt to the features of the selected
objects. The results are presented in more detail in [14].

5. Make a forecast based on incoming data and context.
6. Evaluate the result on test data |voj

i − eoj |.
7. If the quality is satisfactory, make a forecast for the next management period and

adjust the management parameters Res based on the forecasts; otherwise, choose
other predictive models.
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The comparison procedure with reference values during testing works on fuzzy values
and rules defined in the ontology. This is not able to set the exact values of the error
thresholds, but it can be used as fuzzy labels ∆̃oj .

6. Quality Assessment

Evaluation of the quality of the models is a multi-level process. There are some metrics
that include a metric for assessing the quality of time series modeling and a metric for
assessing the quality of a management model.

6.1. Time Series Quality Assessment

One of the metrics for assessing the quality of time series forecasting is the SMAPE [15]
criterion. The expression (6) represents the calculations of the metric

SMAPE =
100%

n

n

∑
t=1

|Ft − At|
(|At|+ |Ft|)/2

. (6)

where Ft is t-th forecasted value, At is t-th real value, and n is the forecast horizon.
The value of the forecast error by the SMAPE criterion affects the choice of the time

series model when the algorithm is running.

6.2. Total Quality Assessment

The quality coefficient (the lower the better) of the management model is to measure
the discrepancy between the output of the model and the referenced value. Let us express
this as functional (7).

Qtotal = ∑
i,j

|v′oj
i − e

oj
i |

δ
oj
i

→ min, (7)

where v
′oj
i is the predicted value of the i-th attribute of the j-th object when testing the

model, e
oj
i is the reference value when testing the model, and δ

oj
i is the maximum deviation

from the reference value of the i-th attribute of the j-th object.
The error rate and the difference |v′oj

i − e
oj
i | are used to make recommendations for

management.

7. Ontology for Representing the Context of a Control Problem

The solution to the control problem involves considering the features of both the
control object itself and the domain [16,17]. In addition, the control object functions under
the limitations of the restrictions of some domain. We define these features and limitations
as the context of the control problem (context).

We use ontologies to describe the context of a control problem.

7.1. Description Logic

Ontologies are an effective instrument of describing the context for solving various
automation problems [18]. Ontologies combine tools for describing the features of a
domain, components for the formation and execution of a set of production rules, and a set
of inference engines. The process of inference forms new knowledge based on ontology
constraints and/or a set of production rules in the SWRL language [19]. In addition, the
inference engine controls the consistency of ontology axioms.

Ontologies are based on various description logic languages. Description logic makes
it possible to guarantee the decidability of ontology axioms at low computational costs.
Currently, the OWL 2 standard is used to represent ontologies [20–22].

Table 1 contains description logic operators and axioms for representing the elements
of the proposed ontology.
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Table 1. DL operators and axioms.

Description DL OWL

top (a special class with every individual as an
instance) > owl:Thing

bottom (an empty class) ⊥ owl:Nothing
class inclusion axiom A v B A owl:SubClassOf B
disjoint classes axiom A u B v ⊥ [A, B] owl:DisjointClasses
equivalence classes axiom (or defining classes
with necessary and sufficient conditions) A ≡ B [A, B] owl:equivalentClasses

intersection or conjunction of classes A u B A and B
universal restriction axiom ∀R.A R only A
existential restriction axiom ∃R.A R some A
cardinality restrictions axiom ≤ nR.A R exactly n A
concept assertion axiom (a is an instance of
class A) a : A a: A

role assertion axiom (a, b) : R a R b

7.2. Model of the Proposed Ontology

We propose an OWL 2 ontology of the following structure to describe the context of a
control problem:

D = 〈OD, FD, ED, RD〉, (8)

where
OD is an ontological representation of objects of analysis O;
FD is an ontological representation of a set of modeling methods of time series;
ED is an ontological representation of expert knowledge to implement management functions;
RD is a set of relationships between ontology components.

We present the ontology D of the context of the control problem using a dialect of
ALCHONF (D) description logic:

D = 〈DTBox, OD
TBox, OD

ABox, FD
TBox, FD

ABox, ED
TBox, ED

ABox〉,

where
TBox is a set of terminological axioms;
ABox is a set of axioms.

7.3. Terminology of the Proposed Ontology (TBox)

The common terminology of the D ontology is:

> v ∃hasName.String u ∀hasName.Stringu = 1hasName.String,

where hasName is a functional role common to all ontology classes.
The terminology for representing analysis objects (OD

TBox) can be described as the
following axioms:

• The terminology OD
TBox contains a set of classes for describing:

– Analyzed objects—Object;
– Properties (attributes) of an object—Attribute;
– The time series of values of an object attribute—TS;
– Dependencies between attributes of objects—Dependency;
– Types of dependencies: positive, negative—DependencyType:

Object v > Attribute v > TS v >
Dependency v > DependencyType ≡ {positive, negative};

• The classes Object, Attribute, TS, Dependency, and DependencyType are declared
as disjoint:
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Object u Attribute u TS u Dependency u DependencyType v ⊥;

• The Object class has the hasAttribute role to specify a tie between some object and a
set of its attributes:

Object v ∀hasAttribute.Attribute;

• The Attribute class has:

– Functional roles hasDeltaMin and hasDeltaMax to define the minimum and
maximum value of an attribute;

– The hasDependency role to specify a tie between attributes of analyzed objects;
– The functional role hasTS to define a tie between an attribute and time series that

contains a dynamic of an attribute:

Attribute v ∀hasDeltaMin.Doubleu = 1hasDeltaMin.Doubleu
u ∀hasDeltaMax.Doubleu = 1hasDeltaMax.Doubleu
u ∀hasDependency.Dependency

u ∃hasTS.TS u ∀hasTS.TSu = 1hasTS.TS;

• The TS class has the hasData functional role to define a source of time series data:

TS v ∃hasData.String u ∀hasData.Stringu = 1hasData.String;

• The Dependency class has:

– The functional role dependsOn to organize dependencies between object attributes;
– The functional role hasType to define the dependency between attributes;
– The functional role hasWeight to determine a weight of dependency between

attributes:

Dependency v ∃dependsOn.Attribute u ∀dependsOn.Attributeu
u = 1dependsOn.Attributeu
u ∃hasType.DependencyType u ∀hasType.DependencyTypeu
u = 1hasType.DependencyTypeu
u ∃hasWeight.Double u ∀hasWeight.Doubleu = 1hasWeight.Double.

The terminology of representation of modeling methods of time series (FD
TBox) contains

the following axioms:

• The terminology FD
TBox contains a set of classes for describing:

– Methods for time series modeling—Method;
– The features of time series that a method supports: fuzziness, periodicity, smooth-

ing, trends—MethodFeature:

Method v >
MethodFeature ≡ { f uzzy, periodic, smooth, tendency};

• The classes Method and MethodFeature are declared as disjoint:

Method uMethodFeature v ⊥;

• The Method class has:

– The hasFeature role to define a tie between the method and its features;
– Functional roles hasLengthMin and hasLengthMax to determine the minimum

and maximum lengths of time series that the method supports:
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Method v ∃hasFeature.MethodFeature u ∀hasFeature.MethodFeatureu
u >= 1hasFeature.MethodFeatureu
u ∀hasLengthMin.Integeru = 1hasLengthMin.Integeru
u ∀hasLengthMax.Integeru = 1hasLengthMax.Integer;

• In addition, the additional needFeature role is defined for the TS class in the termi-
nology OD

TBox. The needFeature role allows declaring a tie between time series and
its features:

TS v ∃needFeature.MethodFeature u ∀needFeature.MethodFeatureu
u >= 1needFeature.MethodFeature.

The terminology for representing expert knowledge (ED
TBox) can be described as the

following axioms:

• The terminology ED
TBox contains a set of classes for describing:

– Expert knowledge—Expert;
– A value of some attribute of the object at a certain point of a time series—Point;
– States in which an object is located—State. A set of states of an object is based on

a value of some object attributes. The State class extends the Expert class;
– Actions to correct a value of some object attribute—Result. The Result class

extends the Expert class:

Expert v > Point v >
State v Expert Result v Expert;

• The classes State, Result, and Point are declared as disjoint:

State u Result u Point v ⊥;

• The Expert class has the functional role hasDescription common to all classes of expert
knowledge:

Expert v ∃hasDescription.String u ∀hasDescription.Stringu = 1hasDescription.String;

• The Point class has:

– The functional role hasIndex to associate a value of some attribute with a specific
point of a time series,;

– The functional role hasResult to define actions to correct a value of some object
attribute;

– The functional role hasValue to define a value of an attribute at some point in a
time series;

– The functional role f orAttribute to associate some point of a time series with an
object attribute:

Point v ∃hasIndex.Integer u ∀hasIndex.Integeru = 1hasIndex.Integeru
u ∃hasState.State u ∀hasState.Stateu = 1hasState.Stateu
u ∃hasResult.Result u ∀hasResult.Resultu = 1hasResult.Resultu
u ∃hasValue.Double u ∀hasValue.Doubleu = 1hasValue.Doubleu
u ∃ f orAttribute.Attribute u ∀ f orAttribute.Attributeu = 1 f orAttribute.Attribute.

7.4. Axioms of the Proposed Ontology (ABox)

A set of facts ABox of the proposed ontology is formed automatically using special
screen forms to automate the work of an expert.
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The following steps are used to form the axioms (OD
TBox) for the control problem:

1. Specification of objects:

object1 : Object

(object1,′ Some object′) : hasName.

2. Specification of the attributes for each object. Each attribute specifies a data source
and a valid range of values:

ts1 : TS

(ts1,′ Some time series′) : hasName

(ts1,′ ../data/ts1.csv′) : hasData

attribute1 : Attribute

(attribute1,′ Some attribute′) : hasName

(attribute1, 0.5) : hasDeltaMin

(attribute1, 11.6) : hasDeltaMax

(attribute1, ts1) : hasTS

(object1, attribute1) : hasAttribute.

Currently, only one-dimensional time series in CSV format are supported.
3. Specification of dependencies between object attributes:

dependency1 : Dependency

(dependency1, attribute2) : dependsOn

(dependency1, positive) : hasType

(dependency1, 0.85) : hasWeight

(attribute1, dependency1) : hasDependency.

The following query in the SQWRL language is used to obtain a list of dependencies
for the selected attribute of some object:

hasDependency(attribute1, ?d) ∧ hasType(?d, positive)∧
∧ dependsOn(?d, ?adep) ∧ hasWeight(?d, ?w)→
→ sqwrl : select(attribute1, ?adep, ?w)

It is also necessary to add to the ontology the information about the modeling methods
of time series and specify their features:

method1 : Method (method1,′ F− trans f orm′) : hasName

(method1, smooth) : hasFeature

(method1, f uzzy) : hasFeature

(method1, periodic) : hasFeature

(ts1, periodic) : needFeature

(ts1, f uzzy) : needFeature.
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The following SQWRL query can be used to obtain suitable time series modeling methods:

Method(?m) ∧ hasFeature(?m, ?m f ) ◦ sqwrl : makeSet(?m f set, ?m f )∧
∧ sqwrl : groupBy(?m f set, ?m)∧
∧ hasTS(attr1, ?ts) ∧ needFeature(?ts, ?a f ) ◦ sqwrl : makeSet(?a f set, ?a f ) ◦
◦ sqwrl : contains(?m f set, ?a f set)→ sqwrl : select(?m).

An expert needs to execute the following steps to form axioms of expert knowledge
representation (ED

TBox):

1. Specification of a set of states for some attribute and a membership function to make
fuzzification of attribute values [23]:

low : State (low,′ Low state′) : hasDescription

middle : State (middle,′ Middle state′) : hasDescription

high : State (high,′ High state′) : hasDescription.

A more detailed description of the fuzzy inference module is presented in the Section 7.5.
2. Specification of a set of actions to correct a value of some object attribute:

result1 : Result (result1,′ Some result′) : hasDescription

result2 : Result (result2,′ Another result′) : hasDescription.

3. Specification of a set of SWRL-rules for transition from states to results:

f orAttribute(?p1, attr1) ∧ hasState(?p1, low)∧
f orAttribute(?p2, attr2) ∧ hasState(?p2, middle)∧
f orAttribute(?p3, attr3) ∧ hasState(?p3, low)→
→ hasResult(p1, result1)

f orAttribute(?p1, attr1) ∧ hasState(?p1, middle)∧
f orAttribute(?p2, attr2) ∧ hasState(?p2, middle)∧
f orAttribute(?p3, attr3) ∧ hasState(?p3, low)→
→ hasResult(p1, result2).

The rules are based on the states of the attributes at a certain point in time (a point in
a time series) through the ‘forAttribute’ role.

7.5. Fuzzy Inference

Conclusions about the state of some objects based on the analysis of their attribute
values are formed with fuzzy inference. The following concepts of the fuzzy sets theory are
used for fuzzy inference [24,25]:

• Membership functions;
• Linguistic variables;
• Fuzzy implication methods.

A membership function in fuzzy logic determines a membership degree of the ele-
ments of a universal set to some fuzzy set.

The fuzzy set for a universal set U and a membership function µ : U → [0, 1] is defined
as [24,25]:

Ã = {(u, µA(x))|u ∈ U}.

Membership function µA(x) quantitatively grades the membership of the elements of
a universal set u ∈ U to a fuzzy set Ã. Membership degree zero means that an element is
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not included in a fuzzy set, and membership degree one describes a fully included element.
Values between zero and one represent fuzzy included elements.

A linguistic variable in the fuzzy set theory takes the semantic of terms in a natural or
formal language. Terms represent fuzzy variables and are described by a fuzzy set.

A linguistic variable can be represented as an expression [25]:

LT = {x, T(x), X, G, M},

where x is a variable name, and T(x) is a set of values of a linguistic variable x. Each value
of a set is a fuzzy variable on a set X; G is a is a set of additional features for generating
new x values; M is a mathematical rule for determining the type of membership function
for each value formed based on a G set.

For example, for the linguistic variable ‘employees number’ (Figure 3):

• x is an employees number;
• X a set of integers from the range [0, 6000];
• T(x) is a set of fuzzy variables: ‘low’, ‘middle’, ‘high’. It is necessary to set a mem-

bership function that specifies information about what employees number should be
considered ‘low’, ‘middle’, or ‘high’;

• G is a set of additional features: ‘less than’, ‘more than’. Additional features are used to
create new fuzzy variables. For example, ‘less than middle’ and ‘more than low’, etc.

Figure 3. Example of linguistic variables and their membership functions.

Fuzzy inference is executed based on fuzzy rules. A set of fuzzy rules form a fuzzy
production system in the context of some subject area. A fuzzy rule can be represented as
the expression:

R = 〈K, E, W〉,

where K is the core of a fuzzy rule of the following form:

K = 〈A⇒ C〉,

where A = {A1, A2, . . . , Ai, . . . , An} is an antecedent of a rule consisting of many atoms Ai;
and C = {C1, C2, . . . , Ci, . . . , Ck} is a consequent of a rule consisting of atoms Ci. Atoms of a
fuzzy rule must represent single and compound statements connected by binary operations
AND and OR. In SWRL-rules, the ∧ operator represents the AND operation, and multiple
queries represent the OR operation; the E function determines a truth degree (from range
(0; 1)) of a fuzzy rule result; W is a fuzzy rule weight. If rule weight is not defined, then the
weight is one.

The fuzzy inference module uses the Mamdani algorithm. The fuzzy inference consists
of the following steps:

1. Fuzzification. Fuzzification is used to switch from numerical indicators of object
properties to linguistic variables. The values of all input variables are associated with
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specific values of the membership functions of linguistic terms from antecedents of
fuzzy rules at the fuzzification stage.
A set of attribute states is formed in the process of fuzzy inference based on the
values of time series points (‘hasValue’ role). Each point of a time series is associated
through the ‘hasState’ role with a corresponding linguistic term in the process of fuzzy
inference [23]. The ‘hasState’ role describes a membership of some time series point
to a certain fuzzy set with some degree of membership:

pointi : Point (pointi, i) : hasIndex

(pointi, sj ∈ State) : hasState.

2. Aggregation. A truth degree of antecedents for each rule is determined at the aggrega-
tion stage. If an antecedent of a fuzzy rule contains one atom, then a truth degree of an
antecedent is a truth degree of this atom. A truth degree of an atom is calculated based
on the value of a membership function of a linguistic variable term. If an antecedent
of a rule contains several atoms, then a truth degree is calculated based on the truth
degrees of the antecedent atoms using fuzzy logic AND (min) operator.

3. Activation. A truth degree of each consequent atom of the fuzzy rule is determined
at the stage of activation. A truth degree of each consequent atom is equal to the
algebraic product of a rule weight and a truth degree of a rule antecedent. If weights of
production rules are not specified, then their default values are equal to one. Minimum
is used to calculate truth degrees.
A Set of results for object control is formed as a result of the inference. It is possible
to obtain results for each point of a time series or for the individual points. Fuzzy
inference allows obtaining a set of solutions ordered by their degree of truth. The
degree of truth is calculated at the stages of aggregation and activation of the fuzzy
inference [23]. For example:

Attribute Result Result description Truth degree
attr1 result1 Some result 0.356
attr1 result2 Another result 0.047

4. Accumulation. A membership function is formed for each linguistic variable from
the consequent fuzzy rules at the accumulation stage. Accumulation is based on the
union of fuzzy sets of all consequent atoms for some linguistic variable using fuzzy
logic OR (max) operator.

5. Defuzzification. The result of defuzzification is quantitative (crisp) values for each out-
put linguistic variable based on the results of the accumulation of all output linguistic
terms from the consequences of fuzzy rules using the center of gravity method.

As you can see from Figure 2, the proposed fuzzy inference mechanism can produce
two types of results:

1. A set of recommendations for decision makers ordered by truth degree. The result
is formed at the aggregation step, the accumulation and defuzzification steps are
not required.

2. A set of numerical values to regulate the behavior of the object. All steps must
be completed.

Thus, the proposed ontology model makes it possible to form a context for solving the
control problem. Creation of axioms for the proposed ontology does not require knowledge
of special tools from an expert. Using fuzzy inference makes it easier to form a set of
SWRL-rules.

8. Results

We will consider the analysis according to the scheme in Figure 2. The object un-
der control is the software project development process. The vector of input parameters
X = {x1, . . . , xn} will be a set of requirements for developers: a list of tasks to be imple-
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mented and time limits. The output data V = {v1, . . . , vm} of the control object will be
artifacts and indicators extracted from the git repositories of the program code, testing
systems, and source code analysis.

By themselves, the values of these parameters may not reflect the actual state of the
project being implemented. Therefore, we introduce an integrated assessment, which makes
it possible to track the influence of input data, control actions and random influences as a
quality assessment in dynamics.

Two main sections: product quality and quality of development processes, represent
software development quality models. Development management keeps track of both key
metrics. Therefore, it is possible to identify development indicators that will influence the
formation of quality. For each indicator, the history of the value change as a time series
is retrieved.

We show the application of the proposed approach on one of the software projects to
automate the activities of the university research group [26]. Junior programmers developed
the project over several months.

The source data for analysis are the indicators of the git source code repository, which
reflects the indicators of the development process and its results. We host the repository
on the GitLab service, which allows storing and versioning the source code, to automate
development processes: building and testing the project, keeping statistics, and managing
project tasks.

Let s provide a description of each indicator. The indicator values are average values
over a weekly time interval.

• The number of features is determined by the number of issues (issue) in the “Imple-
mented” state.

• Feature execution time is determined by the cumulative execution time of automated tests.
• Exception count is the sum of all exceptions found during testing.
• Test time is the cumulative runtime of unit tests.
• Project build time is the average time of compilation of a project and running in

automatic mode to check if it works.
• Efficiency of developers is determined by the number of completed tasks in a weekly interval.
• Bugs in the code are determined using the SonarQube service to obtain an indicator of

the static code analysis system.
• Code test coverage shows the measure of checking all the implemented functionality

with unit tests.
• Code writing time reflects a measure similar to developer efficiency, the time devel-

opers spend on tasks. However, unlike the first indicator, the measurement of this
indicator does not include such overhead costs as task management, life cycle changes,
discussion, and testing costs.

Table 2 also lists the weights of indicator links that affect quality models. That is, for
example, the relationship between the problem area object “Product Quality” and “Number
of Features” is ranked by weight five.

By the steps of the algorithm (see the Section 5), the ontology describes choosing
methods for predicting time series and relationships between analyzed objects (see the
Section 7.2).

Figures 4 and 5 show examples of extracted time series.
Forecast values of indicators allow making a logical inference in the ontology. These

forecasted values are input as parameters according to the trends in the time series of
indicators, as shown in Table 3. In this experiment, the forecast horizon was based on
known real values to help assess the quality of the forecasts. The test forecast horizon
covers time series points from 11 to 16. The described earlier in [27] approach forecasts by
choosing a model suitable for the time series context.
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Table 2. Indicators of development and theirs impact on quality models.

Indicator Name Relation Weight

Product quality

Features count 5

Features execution time −3

Exception count −1

Project quality

Testing time −2

Building time −1

Developers efficiency 5

Code faults −4

Code coverage by tests 3

Coding time −5

Figure 4. Time series of quantitative indicators.

Forecast values represent only a single trend value per forecast interval (for simplicity).
Based on the forecast data and information from the ontology about the allowable change
intervals, the following indicators have deviations: exception count, building time, and
testing time parameters. The values of these indicators are inflated compared to the model’s
predicted values.

Previously, there were certain links between indicators and objects of management—
the quality of development processes and the quality of a software product. This relation-
ship can explain why the state of the control object is deteriorating and in what proportion.

Figure 5. Time series of time-measured indicators.



Mathematics 2023, 11, 875 16 of 18

Table 3. Forecasts of indicators of development.

Indicator Name Actual Value Forecast Tendency Value Smape, %

Features count 60 63 1.28

Features execution time 9.1 10 4.35

Exception count 1.9 1.7 10.79

Testing time 8.81 4.4 15.83

Building time 3.55 1.42 15.65

Developers efficiency 0.14 0.72 0.01

Code faults 1.99 1.91 4.67

Code coverage by tests 40.8 45.1 3.83

Coding time 8 9 0.1

In the compiled ontology, the boundaries of the permissible values of indicators, as
well as the rules for responding to exceeding the boundaries, are determined.

Let us assess the control object indicators based on the forecast values as shown in
Table 4. We made the calculation considering the normalized values because the weights of
the rokol indicators according to (2) are already normalized relative to each other, and the
absolute values of the indicators can differ greatly. We normalize considering the maximum
value among the current and forecast values of indicators. For example, for the “Features
count” indicator, the maximum value will be 63. Further, using the formula value ∗ weight,
we will recalculate the values of indicators from the Table 3.

The values from Table 4 are used to calculate the integral quality index Qtotal . The
value of the software system quality model reflects a higher value of the quality of the
software product. It was the primary target of the development of the software project, and
the indicators of the quality model of the development processes significantly worsened
its total value. Predictive models reflected this state. The final assessment of the quality is
Qtotal = 5.94.

During the implementation of the project, we made organizational changes. We
changed the test environment (continuous integration server) and the logic for testing
developers’ code changed. These changes allowed us to improve the indicators “|Testing
time” and “Project build time”. After the changes, Qtotal was 2.75.

Table 4. Quality models evaluation.

Indicator Name Weight × Normalized Value Weight × Normalized Forecast

Product quality

Features count 4.7 5

Features execution time −1.72 −1.89

Exception count −0.03 −0.02

Total 2.95 3.09

Project quality

Testing time −1.11 −0.55

Building time −0.22 −0.08

Developers efficiency 0.01 0.057

Code faults −0.12 −0.12

Code coverage by tests 1.94 2.14

Coding time −2.52 −2.84

Total −1.02 −1.48

9. Conclusions

The results presented in this article develop a previously proposed approach for
the contextual analysis of indicators of objects in the problem area, expressed as time
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series. This approach helps obtain a set of models that reflect the features of the analyzed
objects, reduces the burden on experts, and has complete possibilities for interpreting the
simulation result.

This article showed an approach to solving a control problem based on the dynamics
of changes in the indicators of a set of objects in the problem area.

The advantages of this approach are the ability to use more complete data for making
management decisions, as well as reducing the analysis time through the use of intelligent
models. Thus, the experiment conducted on the data of the git repository of the program
code showed that the proposed approach also made it possible to increase the explainability
of the analysis results. We show the difference between the proposed approach as a hybrid
solution between traditional control systems and a decision support system.

Further work within the framework of this study involves the creation of a control
system for solving problems of automatic control based on the analysis of the context of
the dynamics of changes in the parameters of objects.
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