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Abstract: This paper aims to seek soliton solutions for the nonlocal generalized Sasa—Satsuma
(gSS) equation by constructing the Darboux transformation (DT). We obtain soliton solutions for
the nonlocal gSS equation, including double-periodic wave, breather-like, KM-breather solution,
dark-soliton, W-shaped soliton, M-shaped soliton, W-shaped periodic wave, M-shaped periodic
wave, double-peak dark-breather, double-peak bright-breather, and M-shaped double-peak breather
solutions. Furthermore, interaction of these solitons, as well as their dynamical properties and
asymptotic analysis, are analyzed. It will be shown that soliton solutions of the nonlocal gSS equation
can be reduced into those of the nonlocal Sasa—Satsuma equation. However, several of these properties
for the nonlocal Sasa-Satsuma equation are not found in the literature.

Keywords: nonlocal generalized Sasa—Satsuma equation; Darboux transformation; KM-breather
solution; M-, W-shaped periodic wave
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1. Introduction

Ablowitz and Musslimani proposed the nonlocal reverse space nonlinear Schrodinger
(NLS) equation [1]

ige(x, 1) + gux(x, 1) £2%(x, )g* (—x,t) = 0, 1)

where * denotes a complex conjugate. Soliton solutions to Equation (1) have been discussed
by inverse scattering transform and Darboux transformation [1-5]. It is interesting that
the nonlocal NLS equation has many properties different from the NLS equation, e.g.,
the nonlocal NLS equation can simultaneously exist as both bright and dark solitons [3]
and has solutions with periodic singularities [1]. Since then, the research on integrable
nonlocal equations, including nonlocal reverse space, nonlocal reverse time, and nonlocal
reverse space-time, has received more and more attention. Nonlocal versions of many
important integrable equations have been studied, such as the nonlocal sine Gordon
equation [2], nonlocal mKdV equation [6,7], nonlocal complex mKdV equation [8], nonlocal
Sasa-Satsuma equation [9], nonlocal Davey-Stewartson equation [10,11], etc.
Very recently, Geng and Wu introduced a generalized Sasa-Satsuma equation [12]

Up 4+ Uyeyx — 3(2a\u\2ux + 2buPuy + au(|u\2)x + b*u*(|u|2)x) =0, ()

where a is real constant and b is complex constant satisfying |a| # |b|. Soliton solutions
by the Riemann-Hilbert method and long-time asymptotic behavior of Equation (2) were
studied in [12,13]. Under the variable transformations

u(x,t):q(X,T)exp{—é(X—lg)}, t=T, XZX—%, ®3)

Mathematics 2023, 11, 865. https:/ /doi.org/10.3390/math11040865

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11040865
https://doi.org/10.3390/math11040865
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11040865
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11040865?type=check_update&version=2

Mathematics 2023, 11, 865

20f18

gSS Equation (2) becomes

1 . .
iy + 5 — a919* + i — 3ia(29191* +q(19%) ) @

~ 3ied (X~ 1) (be%i(xlg)(mqu -3+ b*ﬂ/*(lqlz)x> =0,

It is obvious that Equation (4) with b = 0 is just the Sasa—Satsuma equation [14]. As a
high-order NLS equation, the Sasa—Satsuma equation describes the propagation of fem-
tosecond pulses in optical fibers [15]. Equation (2) is really a generalized Sasa—Satsuma
equation. Inspired by the research work of the nonlocal NLS equation and nonlocal
Sasa—Satsuma equation, in this paper, we investigate the following nonlocal generalized
Sasa-Satsuma equation:

Ut + ey — 3€[2auu® (—x, —t) + au(uu*(—x, —t))x + 2buuy + b*u* (—x, —t) (uu*(—x, —t)),] =0, (5)

where ae = —1 represents the focusing case, and ae = 1 stands for the defocusing case. The
nonlocal generalized Sasa—Satsuma Equation (5) was proposed in ref. [16], in which the
soliton solution of nonlocal integrable equation

Gt + Grxx +3aq((qq(—x, —1))x + 292q(—x, —t)) — 6bg>qx — 3b™q(—x, —t)(q9(—x, —))x =0

is obtained by the Riemann-Hilbert method. It is clear that the nonlocal gSS Equation (5)
is different from the last equation. We will construct Darboux transformation and soliton
solutions for the nonlocal gSS equation. In Ref. [9], a nonlocal Sasa—Satsuma equation

U+ Uyyy + 3€Ruu™ (—x, —H)uy + u(uu™(—x,—1t))x) =0 (6)

was introduced and investigated. Its soliton solutions were obtained using the Darboux
transformation, including dark soliton, W-shaped soliton, M-shaped soliton, and breather
soliton. We should remark here that when a = —1,b = 0, the nonlocal gSS Equation (5)
reduces to the nonlocal Sasa—Satsuma Equation (6); when a = 0,b = —1, the nonlocal gS5
(5) can yield a new nonlocal complex modified KdV-type equation

Up + Uyxy + 36(2M2Mx +u*(—x,—t)(uu*(—x,—t))x) = 0. (7)

In this paper, we will give the constructions of the N-fold Darboux transformation
and soliton solutions for the nonlocal gSS Equation (5), including double-periodic wave,
breather-like, KM-breather solution, dark soliton, W-shaped soliton, M-shaped soliton,
W-shaped periodic wave, M-shaped periodic wave, double-peak dark-breather, and bright-
breather. Furthermore, interaction of these solitons, as well as their dynamical and asymp-
totic properties, are analyzed. The reduction of soliton solutions of nonlocal gSS Equation (5)
yields the soliton solutions for nonlocal Sasa—Satsuma Equation (6) and nonlocal complex
modified KdV-type Equation (7). We would emphasize here that breather-like, KM-breather,
W-shaped periodic wave, M-shaped periodic wave, double-peak dark-breather, and double-
peak bright-breather for the nonlocal Sasa—Satsuma Equation (6) have not been discussed
in the literature.

This paper is organized as follows: In Section 2, the N-fold Darboux transformation
of the nonlocal gSS Equation (5) is constructed. We obtain the soliton formulas for the
nonlocal gSS equation. In Section 3, using the Darboux transformation, various 1-soliton
and 2-soliton solutions for the nonlocal gSS equation are derived. Further, the dynamical
and asymptotic behavior of these solutions are analyzed. Finally, Section 4 is devoted
to conclusions.
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2. Darboux Transformation for the Nonlocal gSS Equation (5)

In this section, we construct the N-fold Darboux transformation of the gSS Equation (5).
The linear spectral problem of the nonlocal gSS Equation (5) can be written as

¥, =UXAQY¥, Y=V QY, 8)
U(A,Q) =iAA+Q, V(A,Q) = 4A3A +4A%2Q + 2IA(Q% + Q) A + Q:Q — QQx — Qux +20°,

where ¥ = (¢1(x,t), ¥2(x, 1), ¥3(x, t))T is an eigenfunction, A is the spectral parameter, and
0 0 u
Q= 0 0 eu*(—x,—t) |, A =diag(1,1,-1).
e(au*(—x, —t) +bu) au+b*u*(—x,—t) 0

Suppose that |y;) = (1/]? ), l[Jéj ), l/Jéj ) )T is an eigenfunction for the spectral problem (8) at
A = Aj, then |1;) = (%])/ ﬂ] ), *6%] ) )! is also an eigenfunction of ihe spectral problem (8) at
A= /\]’.‘, where t represents the complex conjugate transpose and ¥; = ;(—x, —t). It can be
checked that (6;| = (y;(—x, —t)|J is an eigenfunction to the adjoint problem of Equation (5)

(0j]x = —(6;]U, (8] = —(6;|V ©)

at A = )\}*, where

ae b* 0
J= ( b ae 0 >,<yj(—x,—t)| = [y;)"(—x,—t).
0 0 1

We obtain our main result for the construction of the N-fold Darboux transformation to the
nonlocal gSS Equation (5).

Theorem 1. Under the gauge transformation

YN = TNy, TN = | — RKyWy T (Ky), (10)
where
Kn = (ly1), ), ly2), [n2), << lyn) [in)) & (Ki, Ko, - -+ KN), (11)
Q(Ky,Ky)  QO(Ky,Kp) -+ Q(Ky,Ky) I'(Ky)
Q(Ky, K)  Q(Ky,Ky) -+ Q(Kp, Ky) I'(K»)
Wy = : : . : T (Ky) = : ’
Q(Kn, K1) Q(Kn,K2) -+ Q(Ky,Kn) I'(Kn)
el=x DUl D) el )]
Q(Ky, K;) = N N T(K)=| %~ | 1<kj<N
KD = o) x-nliy T EO = g Gy [P 1SRISN,
Sy N -

the spectral problem (8) converts into a new spectral problem
¥ N = uM (1, @Myg™) ¢ N — N () Ny, (12)

where N
oW = +i[KNWI\‘]1KL], A}. (13)

We can draw the conclusion that the structures of matrices UN) (A, Q(N)), VIN)(A, QIN)) are
same as the matrices U(A,Q), V(A, Q). This means that u(x,t) is a solution corresponding to
eigenfunction y for the nonlocal gSS Equation (5), and then uN) (x, t) is a solution corresponding to
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eigenfunction pN) for the nonlocal ¢SS Equation (5). The relation between the potential uN)(x,t)

and the potential u(x, t) is given by
(14)

u™N) =y — 2ihy Wy 'hi,

where
~ * ~ * N ~(N)*
by = (8 e Y Y,
1 ~(1)* (2 ~(2)* N ~(N)*
hs = (3", —es g, —eg - Y, —egl™).
Proof. Through a direct calculation, we have AJ = JA, é*] =JQand AQ = —QA. Then

we can verify following equations:

(e (=x, =) Jly;))x = i(Af +A) (w(—x, =) [JA[y;),
(=%, =) [J|nj))x = 1(Ag + A7)y (—x, =) [JAJy;),
(e (=2, =T ly;))x = i(Ax + ) (i (=, =) [TAy;),
((1e(=x, =) J|nj))x = i(Ax + A7) (i (—x, =t) [JAy;), k,j=1,2,3,..N.
With a direct calculation, we have
DIT(Ky) + AT(Ky) = —K§J, WyDY + DyWy = —Wy ' KLJKNyWLE,  (15)
Ky = iAKNDy + QKy,  (T(Kn)¥)y = —iK} (—x, —1)JAY,
5 s ANSAN),

Wy« = —iKY (—x, —1)JAKy, Dy = diag(A1, A%, Ay, AS,

and then we get
¥ = (AA + Q)Y — Ko Wy 'T(Kn)Y — Ky Wy (T(Kn)Y)x + Ky Wy Wy e Wy ' T(K) ¥
= (IAM + Q)Y — iAKNDN Wy IT(Kn)¥ — QKN Wy IT(Kn) ¥ + iKy Wy 'KE ]A‘I’
— iKW KL JAKN WL T (Ky) ¥
= (IAA + Q)Y +iAKN (W KL JTKNy Wyt + Wi I DI)T(Kn) ¥ — QRKNWR T (Ky)
+iKN Wy IKGJAY — iKy Wy K JAKN Wy T (Ky) ¥
= (IAM + Q)Y — QRNWRIT(KN)Y +iAKN Wy KL KN Wy ' T(Kn) Y — iIAAKN W T (Ky) ¥
—IARKNWY KLY + iKWy KU JAY — iKWy KL JAKN Wy T (Ky) ¥
= (IAA + Q +iKNy Wy TKEJA — IARKNWLTKLD) (I — KyWy 'T(Ky)) ¥
= (iAA + QYN — y(N)p(N),

Let us show that the potential Q
0 =Ky WZ\_IlKLJ, Equation (13) can be rewritten as

has the same structure with the potential Q. Taking

0 0 M—Zi@13
Q(N) = 0 0 eu*(—x,—t) — 210y |,
e(au*(—x,—t) + bu) +2i®@3; au + b*u*(—x, —t) + 2iO3, 0
where

Wy hi cal W hi |l Wy R

O — hy 0 On — h; 0 h; 0
Wy hi pe| Wn o h +eal W hi
h, 0 Oy — h; 0 h; 0

32 — IWN| 7

7

Op = —
» [W|
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(v (=
((k(=
(Cm(=

x, =H)[Jy))e = (yi(=x, =) [JH AL + A7
X, =OJ)e = (ye(=x, =1 [J(4i(A2 + A7
x, =y = (me(—x, 1) [J(4i(A + A3
(e (=x, =) T = (me(=x, =) [J(4i(A7 + A7

with

ho = (9" 91 0 9 ).

Note that

(yi(=x, =) [J|yx),
(nj(=x, =) [J|yx),
(yi(=x, =) i),

(e (=x, =)[T|n;)
(e (=x, —)[Tly;)
(Yr(=x, =1)[Tn;)

we thus have Q (K, K;) = (N)(K]-, Kp)"and Wy = W;{] By settinga 2N x 2N permutation matrix

o1 .--- 00
10 --- 00
A= o
00 .-+ 01
00 1 0

we have h, = l~11 A hz = —€I~13A and AWNA = WIE. With these identities, we obtain

Wy hi| | AWLA —eAn] Wl —ehl | | Wy hi
h, 0| | hiA 0 o0 | h; 0
Wy hi Wy h Wy h Wy hi
b 2 | = 1 b 3
“Ihs 0 |7 ny 0 hs 0| | h O
| Wy Rl Wy h} .| Wy hf Wy hi
“Ihe 0 [T w0 hs 0| m 0

and
Oy = —e@i‘s, O3 = 6(0@* —b0@q3), O3 = —aO3+ b O

Clearly, we can see that the potential Q ) has the same structure w1th the potential Q.
We thus have showed that the structure of the matrix UN) (A, Q(V)) is the same as the
matrix U(A, Q).

Next we will prove that the structure of the matrix VNI (A, Q)Y is the same as the
one of V(A, Q). A long but direct computation yields

A =442 = A2)Q + 2i(Af + A1) (Q2 + Qo)A [1y),
A= 4(A2 = A2)Q +2i(Ax + A))(Q% + Qo) A)lyy),
A—4(A2 = M) Q+2i(A + A7) (Q2 + Q) A) 1),

A- 4()\*2 AD)Q + 2i(Af +A))(Q% + Q) A)yj),
(A%
(A%
(A%

and

Ky = 4AKND3; + 4QKND?% +2i(Q% + Qy)ARKNDy + (QxQ — QQx — Qux +2Q°)Ky, (16)

Wn =

—4iDYRLJAKy — 4R JAKN D}, + 4iDLKLJARN Dy + 4DL KL JQKy
— 4K JQKNDy — 2K} J(Q2+QX>AKN,

(T(Kn)¥): = —4iA2KEJAY + 4iADLKLJAY — 4iDTKEJAY — 4AKEJQY

+4DLKEJOY — 2iKEJ(Q% + Q))AY.

By using relation Equations (13), (15) and (16), we have
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QN2 4+ QA = (Q% + Qo)A + 2iIQK N W TKY ) — 2iKy Wy 'K JQ — 2AK N Dy Wy 'REJ
—2KnWy 1DNK JA — 2KNWy 1K LIARNWLKL ],

QM) — oMM — o) 1 20M) = 0,Q — QQx — Qur +2Q” — 2i(Q + Qu) AKN Wy KL
+ 2iKN W KR J(Q% + Qi) A — 4Ky W 'K JOKN W KL T — 4K Wy ' DY KE JQ
— 4K N WKL JAKN DN WKL T + 4Ky Wy I DR JARN WY TKE)
— 4QKNDNyWy'REJ + 4Ky Wy ' DERLJA — 4iAKy D3 Wy KL

Furthermore, we have

¥V = (4A3A +402Q +20A(Q? + Qo)A + Q:Q — QQx — Qux +2Q%)¥ — Ky /Wy 'T (K ) ¥
+ Ky Wy Wi WY T (Kn) Y — KyWy ' (T(Kn) Y
= (4AA +412Q + 2A(Q% + Qx)A + QxQ — QQx — Qux +2Q°)¥ — iAKN DI W' T(Ky) ¥
— (4QKNDY +2i(Q* + Qu)AKN Dy + (QxQ — QQx — Qux +2Q%) Kn) Wy 'T(Kn) ¥
— KWy (4iDYKRGJAK  + 4K JAR N DY, — 4iDLKLJAKN Dy — 4DLKLJOKy
+ 4K JQRNDy + 2iKEJ(Q2 + Qu) AKN) W T (Kn) Y + Ky Wit (4iA2KEJAY
— HADLREJAY + 4iDTKJAY + 4AKLJQY — 4DLKEJQY + 2iKEJ(Q% + Qi) AY)
= (HA3A + 422 (Q + IKN WKL JA — iIAKN W IKE D) +2iA((Q% + Qo)A
+ 21IQKN Wy KLY — 2IKN WKL JQ — 2AKN DN W TKE S — 2Ky Wy TKE T AR WK )
— 2KyWy ' DEREJA) + Q:Q — QQr — Qur +2Q° — 2i(Q% + Q) AKN Wy 'KE]
+ 2iKN Wi KT Q% + Qu) A — 4Ky Wy IKY ]QKNW KL — 4K, Wy ' DYKREJQ
— 4K Wy KL JAKN Dy WKL T 4+ 4Ky Wy I DEREJAKN WL IKE )
— 4QKNDNWy'RE T + 4Ky Wy ' DITRLJA — 4iAK Ny DEWLIRET) (1 - KyWy 1F(KN))

= (4iA°A + 4120 121 (N + QM)A + QM Q) — QNI — QY 420y ¥ M),
_ y(N)g(N)

This completes the proof of the theorem. [J
3. Periodic Wave Solution, Breather-like, and Breather Solutions for Equation (5) with

the Zero Seed Solution

In the section, we derive the periodic wave, breather-like, breather solution, and their
interaction solution for the nonlocal gSS Equation (5) through the Darboux transformation.
We also give the asymptotic analysis for the 2-breather solution.

For the zero seed solution u# = 0, solving spectral problem (8) at A = Ay, we obtain an
eigenfunction of the spectral problem (8) as follows:

wgk) = czp_pelk, wék) = czp_1eM, wék) = C3ke_yk,]/£k = i/\k(x +4)\]2(t),k =12,...,N, (17)
where cj (j=1,2,---,3N) are complex constants.

3.1. Double Periodic Solution, 1-Breather-like, and Breather Solutions

Let us give the one-fold Darboux transformation. When N = 1, the DT can be
presented as
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1 ~(1)* ~(1)* (1%
o g (IR 95
T —_ __1 1 = A B A=A SA—A SAA J (18)
=T g | P2 1 _B* A M M &) /
1 1 1) ~(1)* 1 1 [P Ll —€ ¥3
Py —eiy A& —A-Xn -
where
A, = 2 ) gV o gl gl g
1= =AM ’
2{161;51)*lﬁgl)*+b*¢§1>*2+b¢,§1)*2_¢él)*2 =, i
B = o ,Bj = Bj(—x,—t),
and the solution for the nonlocal gSS Equation (5) can be given as
. ~(1)* (1 1) ~(1)* 1) (1) | gei(1)* =(1)*
S 200y g ) - emy Ve BT EY)

A} — BB}

Case 1. Double periodic solution
When A; is a real number, we have uj(—x, —t) = p1(x,t), and the solution of the
nonlocal gSS Equation (5) can be written as

ul = A (20)

T Lpe?142elze 1’

L= /\1(|61|2 — |cz|2)(c§(eacl +b*cy) + ci(acy + eb*cy)), Lo = (a2 — |b[2)(|cl|2 — ]cz\z)z,

L3 = (alerc + ec203|2 + Re[b(cic} + €c§C3)2]).

When a = —1,b = 0, this solution reduces to the one for the nonlocal Sasa-Satsuma

Equation (6). It can be seen that this solution is a double periodic wave. The periods

in space and time are ﬁ and 2—7, respectively. The solution reaches the peak value and
1

valley value

1 _ 4L 4L

|u( )|max - maX{| Lzezm +2€]L3e_2"1 ’ L262;41 72;[‘39—2;11 }r
1 L — i 4L 4L

[ in = mm{’Lzezﬂl +2elL3e*2V1 71 Lye? —2e1L3e*2141 [}

at the lines t = Zkg%(k € NT). Taking c; = 1,co = 1+1,¢3 = 1,41 = 1, we give the
1

plot of the double periodic wave solution (see Figure 1) for the nonlocal gSS equation with

b= % For the focusing case, (a) e = 1,a = —1, (b) € = —1,a = 1; for the defocusing case,

(c)e=1,a=1,(d) e = —1,a = —1. It can be seen from Figure 1 that only the peak and
valley values of the solutions of the focusing case and the defocusing case are exchanged.

®  © @

Figure 1. Double periodic wave solution |u(!)| for the nonlocal gSS equation with b = % Focusing
case: (a)e =1,a = —1,(b)e =1,a = —1; defocusing case: (c)e =1,a=1,(d)e = -1,a = —1.
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Case 2. Breather-like solution and breather solution
Set Ay = w1 + B1i (181 # 0), and ¢, = 0. We obtain the solution
u(l) Ao, (eu|c1|2c§2qe2”1 +eb*cTZC3/\1yR 2 —iMy, ‘C3‘ZC§672]71) (21)

- 2eu\c163/\1|2+|cl|4(a2\/\1|27|h|2/\%R)e4i”1f1+|C3|4/\%’Ie74w1'1+€/\%’RL4/

with Ly = be2c32etir + b*ci2cZe ~#1k It is clear that when b = 0, this solution is growing
or decaying wave exponentially. Setting ¢; = 1,c3 = 1, we give plots of the solution
for the focusing nonlocal gSS equation withe = 1,4 = —1,b = % and the defocusing
nonlocal gSS equation with e = 1,4 = 1,b = 1H (see Figures 2 and 3). In Figures 2 and 3,
we can see that the solution displays a periodic-like wave or breather traveling along the
peak line. When ,B% < 30(%, this solution is periodic-like solution; when ,82 = 30(%, this
solution is Kuznetsov—Ma (KM) breather-like solution. When ﬁ% > 304%, this solution is a
breather-like solution. It is worth noting that the nonlocal Sasa-Satsuma equation does not
have a breather-like solution. It can also be seen from Figures 2 and 3 that the shape and
peak-position of solutions for the focusing and defocusing cases are different.

— =037 — =038 i — =008
¥ — =003 || — =204 ]

— 10405 — =018

o 3 10 15

| (a2) | (b2) : (c2)

Figure 2. Breather-like solution for the focusing nonlocal gSS equation Equation (5) with e = 1,
a=-1b=1H @A =141 (b): A =1+V3i () A =1+2i

T
438
5

S

=
o
-

-
o
i

oo
o000

o0t
o0

o5k

foles
9%

&
e

2
2
IR
g
S
P

— =038 — =035 — t=—0.408

12 12
2 — oo 4 — =00m — =00

— 0408 — e=0408 L — =418

1 -2 SF 1 7 -4

(a2) | (1;2) | (c2)

Figure 3. Breather-like solution for the defocusing nonlocal gSS equation Equation (5) withe =1,
a=1b=1 @: A =141, (b): Ay =1+ V3, (c): Ay = 1420

If cp # 0, this solution is a breather solution. Because the expression of this solution
is too complex, we omit its details. In Figure 4, we give the plot of the breather solution
for the nonlocal gSS Equation (5) with ¢; = ¢ = c3 = 1. For the focusing case with € = 1,
a=-1,b= %, when Ay =1+ %, this solution is a periodic-like solution (see Figure 4a); when
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u® = —2ip{", 5, 9, §")

A1 = 1+ /34, this solution is a KM-breather solution (see Figure 4b); when A1 = 1 4 2i, this
solution is a breather solution (see Figure 4c). For the defocusing case withe = 1,4 =1,b = %,
when A; =1+ %, this solution is a periodic-like solution (see Figure 4d); when Ay =1+ V3i,
this solution is a KM-breather solution (see Figure 4e); when A1 = 1 + 2i, this solution is a
breather solution (see Figure 4f). It can be seen from the figure that the crest position and crest

value of breather solution for the focusing and defocusing cases have changed.

@

1 o 1

@

()
Figure 4. Breather solutions for the nonlocal gSS Equation (5): (a—c) the focusing case with e = 1,
a=-1,b= %, (d—e) the defocusing case withe =1,a = 1,b = %: (a,d) periodic-like solution with

AM=1+ % ; (b,e) KM-breather solution with A; = 1+ v/3i; (c,f) breather solution with A; = 1 + 2i.

3.2. Interaction Solution of Double Periodic Wave and Breather
Let us give a two-fold DT. When N = 2, the DT can be written as

o/ St
A1 Bl C1 Dl 7/\17/\
B A Di G sl
T@ = 1= (ly1), Im), ly2), 112)) 51* D, Ai D12 ooy I @)
Di G D 4 (122, 1)
—A3-A

where 5{ =Ci(—x, —t),f);(‘ = Dy (—x,—t) (k=1,2),and

— =x =Dy g — Wl=x=Dlm) — n=x=bly) — =x=D]ln2)
Ay = W/Bl = %;‘Tl/cl = AT, 2 /Dy = . —AT=A5 2,

and a 2-soliton solution of the focusing nonlocal gSS Equation (5) is given by
A, B, C D\
B Ay D C
Ci D1 A Dy
D} C D; A

@5, —epl), g, —epi)T. (23)

Let us discuss the focusing nonlocal gSS Equation (5) withe = 1,a = —1,b = % When
A =1, Ay = 2, we take parametersc; = 1,cp =0,c3 =1,¢c4 =1, ¢c5 = 0 and ¢ = 2i.
This solution displays the interaction of two periodic waves (see Figure 5a); when A; =1,
Ay = %—i— @, we take parametersc; = 1,¢cp =0,c3 =1,¢4 =1,c5 =0and ¢ = 1.
This solution describes the interaction of periodic wave and breather-like solutions (see
Figure 5b); when A1 =1+ %, Ay = % + %, we take parameterscy =1, =0,c3 =1,¢c4 =1,
¢s = 0 and cg = 1. This solution shows the interaction of breather and breather-like solitons
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(see Figure 5c¢). For the interaction of breather and breather-like solitons, we can analyze its

asymptotic behavior as follows:

u(z) Mﬁ + u;l’ I — —oo,
uj; +uy, t— +oo,

u- = Mn My - My + _ My
1T My M T g M T My Mo T g

= 187204 2y 7767351 2} | 141631 o2
My = o2 € 712744 i+ L

. —2(pq —iF ~ . ~ ~
My, — -85 _ 45 1H) | 1300644128927 2 (puy +f) +22689+9142561e2(;417;4{) 4 11453112.41559609i o2(p +7;)

— 17384 179776 755508640 3022034560

_ 34-63i 2u; 3189+10651 o211 _ 10214897 2 127749—1047i 27*
My = 8692 © ! 178186 ! 921352 M+ 1425488 © #

34141 2u, _ 1307454491 —2p, | 2775411 o271  1549971126291i (2713
Mz = —J75gge o050 € 2t Fsmore 17+ T 1izsss0 2,

Mz = 14 5e212773) 1079761498571 e 2p2+p3) 2521+1584ie—2(y2—ﬁ;) 899448-+483439i ,2(y1p+]15)
7

17384 179776 755508640 53792 3022034560 ©

_ 1874204 2y, 23+1 025 . 1259999371 ,—2ji3
My = — gy €72 + 3 2 + S #2.

(a2) (b2; (c2)

(24)

Figure 5. Interaction solutions for Equation (5) witha = —1,b = %, c1=1c0=0,c3=1,¢c4 =1,
cs = 0: (a) interaction of two periodic waves with ¢ = 2i, )\1 =1, A, = 2; (b) interaction of KM-

breather-like and periodic wave withcg =1, A1 =1, /\2 =5 \fl ; (¢) interaction of breather-like

and breather wave withcg =1, A1 =1+ 4 3, Ay = 7 + 5.

4. Soliton, Breather, and Periodic Wave Solutions for Equation (5) with the Nonzero

Seed Solution

For the nonzero seed solution u = 7 (7 # 0, 7 is a real constant), solving spectral

problem (8) at A = Aj, we obtain the the eigenfunction
Y= (IPE])MPS)MP;] )7, lP1 = dﬂe?f/ +dpe X+ (a+b* )d]3e
9y = e(deV +dpe™ — (a+ b)dpe), 9 = L(dj(x; — iA))eV — (s +iA)e V),
Xj = xi(x +2w;jt), ¢; = iAj(x —|—4A]2t),1<j = \/672(251 +b+b*) — )\j,wj =ey*(2a+b+b*) +2)\]2,

where dj, d j2,dj3 are complex constants.

(25)
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4.1. Soliton, Breather, and Periodic Wave Solutions

By one-fold DT (18), we obtain the following soliton solution of the nonlocal gSS
Equation (5):

A0 2 en ) = gl — BV + B ) 26
A? — BB} ’

where A1, B; are defined by (19), and ¢£l) (k =1,2,3) are given in (25). In the following,
wesety = 1,dy1 = 1, Ay = a1 in the formula of the solution.

Casel. (2a+b+Db*)y%e—a? >0
In this case, the solution of the nonlocal gSS Equation (26) can be written as

(a%—|b2)Hy +2x1 (a+b*) (|d12 > —1) ((di +d5,d3)eM1 1+ (diz+dipdiy)e 1 761)

u 1 — dieay (1o ) it e (P12 . (27)
with p = 2a+ b+ b* and
Hy = (di3 + dipd13)? (k1 — aqi)e™ — (d3 + d1adiy)? (1 + aqi)e X0 — 2iag|dyz + d1pdis )%,
Ha = (di3 + dipd13)?(p — e(x1 — a1i)?)eXt + (diz + dadi3)* (p — €(k1 + ari)?)e 2N +dpldis + dipdis ).
If |d12| = 1, this solution is the hump-type soliton, where the wave crest and wave trough are

located on straight lines. Because the expression is too complex, we take parameters as dyp = i,
d13 = 2. For the defocusing case withe = 1,a = 1,b = %, we obtain dark soliton, W-shaped
soliton, or M-shaped soliton solutions (see Figure 6). Figure 6 shows the progress of a dark soliton
becoming a W-shaped soliton and the progress of an M-shaped soliton becoming a dark soliton.
When a1 > 0, when the value of ay decreases, the dark soliton becomes a W-shaped soliton;
When a1 < 0, when the value of wq decreases, the M shaped soliton becomes a dark soliton. For
(2a+b+b*)y%e — % —aZ > 0 when ay = 3, the trough value 0.899 of this dark soliton is
taken at the line t = 207, when oy = 2, trough value 0.134 and peak value 0.372 of this W-shaped
soliton are taken at lines

5x 5[ V235671 — 60 = \/3(69437 —40v/235671) 4 5x
= + , and t=——,
29 29v/43 12+/215 29

respectively; when oy = % trough value 0.032 and peak value 0.871 of this W-shaped soliton are

taken at lines

25x 5v/5 | V204775215 — 60 + \/15(13594561 — 81/204775215) p 25x
-+ n andt = ——,
121 121v/239 60+/239 121
respectively; when oy = — %, trough value 1.580 and peak value 5.690 of this M-shaped soliton are
taken at lines
5x 5\f V235671 + 60 + \/3(69437 — 40/235671) 5x
b=—5% 7T and t=—=—,
29v/43 12/215 29
respectively; when oy = — %, trough value 0.716 and peak value 1.330 of this M-shaped soliton are
taken at lines
45x p 45x 13[ 61+/8079 + 8820 + \/48478119 +1076040+/8079)
———andt=———-+ ’
461 461  461./187 252+/935
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respectively; when ay = —3, trough value 0.835 and peak value 1.002 of this M-shaped soliton are
taken at lines

. _ 15x and b — _ 15x n 5v/15 In V3151 4 60 £ /6511 + 120+/3151
207 T 207 207 415 '
respectively. For the focusing case with a = 1,e = —1, existence of this hump-type solution is

related to the value of b, e.g., if we take b = %, there is not such a hump-type solution; however, if
we take b = 2, there is such a hump-type soliton, which is similar to the case described by Figure 6.

& /,-’ 0 . “.“ os ‘.‘ I f

20 N 4 \‘ I‘ 04 “ ‘I I‘ “

i o \My 02 |\l

. ; P

(a) dark soliton (b) W-shaped soliton (c) W-shaped soliton

B I\ I\ Ls P JE— I
“‘l ‘ “‘.‘ \\ //‘.‘ “{\\\7 ) % //
AN V-
/N N s om0 \

g T i S oss /

-10 10 -10 10

(d) M-shaped soliton (e) M-shaped soliton (f) dark soliton

Figure 6. Soliton solutions for Equation (5) with di, =1i,d;3=2,e=1a=1b= %: (a) dark soliton
with a0y = %, (b) W-shaped soliton with a1 = %, (c) W-shaped soliton with a4y = 11—0, (d) M-shaped
soliton with a; = — %, (e) M-shaped soliton with a; = — %, (f) dark soliton with &y = —3.

[¢8)

If |d1o| # 1, this solution is a breather solution. Here we discuss breather solutions of the
defocusing nonlocal gSS Equation (5) withe = 1,a = 1,b = % and the focusing nonlocal gSS
Equation (5) withe = 1,a = —1,b = 2. Taking di; = 0, a1 = 1, for the defocusing case, when
di3 = 1, this solution is a bright-bright breather solution (see Figure 7a,d); when di3 = 3, this
solution is a dark double-peak breather solution (see Figure 7b,e); when di3 = 31, this solution is
a bright M-shaped breather solution (see Figure 7c,f). For the focusing case, when di3 = 1, this
solution is a dark double-peak breather solution (see Figure 8a,d); when di3 = i, this solution is
an M-shaped double-peak-breather solution (see Figure 8b,e); when di3 = 3i, this solution is an
M-shaped double-peak-breather solution (see Figure Sc,f).

Case2. (2a+b+b*)y%e —a? <0
In this case, the solution of the nonlocal gSS Equation (5) can be written as

% —|b|?) Ha+4ircy (a+b*)dyo 1 (2d13 e X161 +(di,dy3+dipdiy Je X1761) (28)

(1) = 1 — diea, .
il =1 diem (@@ |b2) Hy —dex?dy o %1 /

with

Hs = 4d%3’R(K1 — D(li)ez)ﬁ — (dedlg + dud%)z(iq + Déll‘)eiz)ﬁ —4inyd3 R (dud% + dT2d13),
H4 = 4d%3,R(p — E(Kl — Déli)z)ele + (d12dT3 + dedB)Z(P — €(K1 + 0(11')2)672)(1 + 8Pd13,R (dudi;) + dTZdB)'

If d15 is a real number, or dy3 is a pure imaginary number, or dy; is a pure imaginary number
and dy3 is a real number, i.e., dip 1 = 0, 0r dizg = 0, or dypdis + dj,d13 = 0 (dip - dizr # 0),
this solution is a periodic wave-type solution. When taking dip = i, di3 = 2, b = %, for the
focusing Equation (6) with € = 1,a = —1, this solution is an M-shaped periodic wave and
W-shaped periodic wave with a1 = 2 and a1 = —2, respectively (see Figure 9a,b); whereas for
the defocusing Equation (6) with € = 1,a = 1, this solution is a W-shaped periodic wave and
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classical periodic wave with a1 = 2 and ay = —2, respectively (see Fiqure 9d,e). When taking
dip = 1,dy3 = 2,b = &, for the focusing Equation (6) with € = 1,a = —1, this solution is a
classical periodic wave with ay = 2 (see Figure 9c); whereas for the defocusing Equation (6) with
€ = 1,a =1, this solution is an M-shaped periodic wave with a1 = 2 (see Figure 9f).

(c) bright M-shaped breather

(a) bright-bright breather

1

(b) dark double-peak breather

— =068

— =068 — =068

— =013 sf — =013 — =0

— 1=0.68

— 088 ] — 1=0.68

)

L

]

(d; bri

=T

ght-b

right breather

= —10 -5 10 I

(f) bright M-shaped breather

0 15 - -10 -5 0 10 I

(e) dark double-peak breather

Figure 7. Breather solutions for the defocusing nonlocal gSS Equation (5) withe = 1,4 = 1,b = %,
dyp =0, a1 = 1: (a,d) bright-bright breather solution with d13 = 1; (b,e) dark double-peak breather
solution with dy3 = 3; (c,f) bright M-shaped breather solution with dy3 = 3i.
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(a) dark double-peak breather solution

— =1 — =0 — =08

— =024 [] — =04 — =04

— =11 — =11

— =07

10 15

- -10

(d) dark double-

0

peak breather solution (e) dark double-peak breather

-10 -5

(f) bright M-shaped breather

10 1

10 15 - -10 -5

Figure 8. Breather solutions for the focusing nonlocal gSS Equation (5) withe = 1,4 = —1,b = 2,
d1p = 0, a1 = 1: (a,d) dark double-peak breather solution with d13 = 1; (b,e) M-shaped double-peak-
breather solution with di3 = i; (c,f) M-shaped double-peak-breather solution with d3 = 3i.

When d1p,1 # 0, di3r # 0, and dypd75 + dj,d13 # 0, this solution is breather-periodic wave

solution. In Figure 10, taking e = 1,b = %,for the focusing case witha = —1,01 = %, this
solution is a double-peak breather-periodic wave solution with dip = 1+ %, diz =2o0rdp =i,
diz =1+ % (see Figure 10a—d); for the defocusing case with a = —1,a1 = 3: this solution is

breather-periodic wave solution with dyp = i,d13 =1+ é ordip =1+ %, dy3 = 2 (see Figure 10e,f).
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[==] —=] -
@) ) ) ©
. =1 . =1, [—-]
(d) (e) (f)

Figure 9. Periodic wave solutions for Equation (5) with di3 =2, b = % For the focusing case with
€ =1,a = —1: (a) M-shaped periodic wave with d1, =i, a; = 2; (b) W-shaped periodic wave with
dyp =1, &y = —2; (c) classical periodic wave with dy; = 1, a; = 2; for the defocusing case with
€ = 1,a = 1: (d) W-shaped periodic wave with dj; = i, #; = 2; (e) classical periodic wave with
dyp =1, a1 = —2; (f) M-shaped periodic wave with dj; =1, a1 = 2.

(e) )

Figure 10. Breather-periodic wave solutions for Equation (5) withe = 1,b = % For the focusing case
witha = —1,a; = %: (a,b) double-peak breather-periodic wave solution with dj; =1+ %,dlg =2
(c,d) double-peak breather-periodic wave solution with dy; =i,d13 =1+ % ; for the defocusing case
with a = 1,41 = 3: (e) breather-periodic wave solution with dj, =1i,dy3 =1+ % ; (f) breather-periodic
wave solution with dj, =1+ %,d13 =2.

Case 3. Im[(2a+b+b*)y%e — A3] #0

When A1 is a complex number, the solution (26) of the nonlocal g§SS equation is a breather-type
solution. Because its expression is too complicated, we omit it. Take the plot of Figure 11 as an
example. Setting d11 = 1,d1p =0,di3 =3, and Ay =1+ %, the solution of the focusing nonlocal
gSS equation withe = 1,a = —1,b = % is a double-peak breather solution (see Figure 11a,b);
the solution of the defocusing nonlocal gSS equation withe = 1,a =1,b = % is a bright-bright
breather solution (see Figure 11c,d).
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— =055 ]

— =0

aof — =033 |]

(d)

(b)

Figure 11. Plots of breather solutions of Equation (5): (a,b) double-peak breather solution of the

focusing case withe = 1,4 = —1,b = % ; (c,d) bright-bright breather solution of the defocusing case
withe=1,a=1b= 1.

4.2. Interaction Solution of Hump-Soliton, Breather, and Periodic Wave Solutions

By two-fold DT (22), we obtain the interaction solution of the focusing nonlocal gSS
Equation (5)

A1 By G Dy -

B A Di G
Cf Dq A2 Dy
D; ¢ D; A

W@ —1_ 21(%1),%1)*’%2), %2)*) (Jé”*, _€¢§1)1¢§2)*I _e¢§2))T (29)

where Ay, B1, C1, Dy are defined by (22).

Let us discuss the focusing nonlocal gSS Equation (5) withe = 1,4 = —1,b = 2. When
Aq and Ay are real numbers, we take parametersdy; = 1,d1p = 0,d13 =2,dy =1, dpn =1,
dp3 = 2; this solution displays the collision of breather with hump solitons or periodic
waves (see Figure 10). For the collision of a breather and hump soliton, where A; and A, are
real numbers and (2a + b + b*)y%e — 06]2- > 0, we analyze its asymptotic behavior as follows:

Usq + Uy t— —o0
u@ — a2y ' (30)
Uy + Uy, = F00,
where
u— — 1 _ M51 u— — 1 o 4(0&%7“2)(270(%)(1(]4’0(]1)
21 Ms2” 22 4(a?—a2) (i +a1i) —a Pre X2 +ap Pe?X2
b =1— Mea ut =1-— 4(a3—a3)(2—a3)(x1 —a1i)
21 Mz’ 22 4(a3—a3) (k1 —ayi) —ap Py e®X2 oy Pye2x2”

Ms1 = 2(a1 + a2) ((2 — 7) ()2 + a2i) (a1 + @z + 12( — 2p)e?1) — 201 (PseX1 61 + PyeX1é1)),
Ms = (K2 + 021) (2 — 3) (a1 + a2)” +24(aF — a3)e*1) — iy (Pre? 1 ~1) 4 pre2itén)),
Mg = 2(a1 + a2) (2 — &) (k2 — a2i) (7 + ap + 12(ay — p)e?1) + 207 (PfeX1=61 + PyeX1t61)),

with ]\71,’(} = M,tj(fx, —t),%; (j = 1,2) given by Equation (25), and

Py = (a1 — a2)*(2 + wpan — k1K) — 2(4 — 4% — a3 — 2i1%2)
— i —ag) (4 + mag — a3)x1 — (4 + ayag — af)iz),
Py = (a1 — a2)?(2 + wyap + x1%0) — 2(4 — af — a3 4 2x1%7)
— (a1 — @) (4 + arag — a3)k1 + (4+ cr0z — af)x2),
P3=(2—a3)Kk — (2— a%)xz —inp(2 — zx% — K1K2),
Py=(2—a3)Kky + (2 — ad)ip +iaa (2 — af 4 K1%7).

In Figure 12, when Ay = %, Ay =1, this solution shows the interaction of an M-shaped
double-peak-breather and dark soliton; when Ay = 1, A, = 1, this solution displays the
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interaction of an M-shaped double-peak-breather and W-shaped soliton; when A1 = %,
Ay = —1, this solution shows the interaction of an M-shaped double-peak-breather and
M-shaped soliton. If A =1+ %, Ay = 1, this solution displays the interaction of a double-
peak-breather and a dark soliton. If A1 = %, Ay = —3, this solution describes the interaction
of an M-shaped double-peak-breather and an M-shaped periodic wave (see Figure 13a). If
A1 =1, Ap = =3, this solution shows the interaction of a dark-breather and an M-shaped
periodic wave (see Figure 13b. If A} =1+ %, Ay = —3, this solution shows the interaction
of a double-peak breather and anM-shaped periodic wave (see Figure 13c).
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Figure 12. Interaction solution of breather and soliton for Equation (5) withe = 1,4 = —1,b = 2:

(a) interaction of M-shaped double-peak-breather and dark soliton with A = %, Ap = 1; (b) interac-
tion of M-shaped double-peak-breather and W-shaped soliton with A1 = %, Ay = % ; (€) interaction
of M-shaped double-peak-breather and M-shaped soliton with A; = %, Ay = —1; (d) interaction of
double-peak-breather and dark soliton with Ay =1 + %, Ay =1

For the nonlocal defocusing gSS equation withe = 1,4 = 1,b = %, taking d; =1,
dip = 0,di3 =3,dy = 1,dyp =1i,dy3 =2, M = %,)\2 = 3, this solution describes the
interaction of a bright-bright breather and a W-shaped periodic wave (see Figure 13d);
taking di1 = 1,d1p =0,d13 = 3i,dyy = 1,dpp =i,dp3 =2, M = %,)\2 = 3, this solution
describes the interaction of a double-peak breather and a W-shaped periodic wave (see
Figure 13e); taking di; = 1,d1p = 0,d13 = 3,dp1 = 1,dop = 1,dp3 =2, Ay =1+ £, A =5,
this solution describes the interaction of a bright-bright breather and a classical periodic
wave (see Figure 13f).
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Figure 13. Interaction solution of breather and periodic wave for Equation (5). For the focusing case

withe = 1,a = —1, b = 2: (a) interaction of M-shaped double-peak-breather and M-shaped periodic
wave with A = %, Ay = —=3; (b) interaction of dark breather and M-shaped periodic wave with
A1 =1, Ay = =3; (c) interaction of dark breather and M-shaped periodic wave with A; = 1+ %,
Ay = —3. For the defocusing case with e = 1,4 = 1, b = 2: (d) interaction of bright-bright breather
and W-shaped periodic wave with A1 = %, Ay = —3; (e) interaction of double-peak breather and W-
shaped periodic wave with A} = 1, Ay = —3; (f) interaction of bright-bright breather and M-shaped
periodic wave with Ay =1+ %, Ay = =3.

5. Conclusions

In this paper, we have constructed the N-fold Darboux transformation for a nonlocal
gSS equation. By the Darboux transformation, we have derived various soliton solutions
for the nonlocal gSS equation, including double-periodic wave, breather-like, KM-breather
solution, dark soliton, W-shaped soliton, M-shaped soliton, W-shaped periodic wave,
M-shaped periodic wave, double-peak dark-breather, double-peak bright-breather, and
M-shaped double-peak breather. Furthermore, interaction of these solitons, as well as their
dynamical properties and asymptotic analysis have been discussed. We should remark
that soliton solutions of the nonlocal gSS equation can reduce to those of the nonlocal
Sasa—Satsuma equation, and several of these properties are not displayed for the nonlocal
Sasa-Satsuma equation, e.g., the nonlocal Sasa—Satsuma equation does not have a breather-
like solution. Comparing the solutions of the nonlocal gSS equation with the ones of the
gSS equation, we can see that these two equations have many different properties, e.g.,
there exist M-shaped double-peak breather and W-shaped periodic and M-shaped periodic
solutions for the nonlocal gSS equation, whereas these solutions for the gSS equation have
not been found. The gSS equation exists as semi-periodic-like solution, but this solution for
the nonlocal gSS equation has not been found.
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