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1. Introduction

The identification of integrable nonlinear partial differential equations (NLPDEs) can
be addressed from different perspectives. This article primarily deals with two of them.
One of the most accepted notions of integrability for an NLPDE lies in the existence of
an associated linear problem [1], also known as a Lax pair. Nevertheless, this approach
raises the issue of how to obtain the Lax pair for a given NLPDE. On the other hand, a
second concept of integrability is the one derived from the Painlevé test [2]. An NLPDE
is said to be integrable in the Painlevé sense when all its solutions are single-valued
in a neighbourhood of the movable singularity manifolds. The main advantage of this
method is that it can be straightforwardly checked whether or not a differential equation
has the Painlevé Property (PP), by means of either the Ablowitz–Ramani–Segur (ARS)
algorithm [3] or the Weiss–Tabor–Carnevale (WTC) algorithm [4]. Moreover, if an equation
has the Painlevé Property, the Singular Manifold Method (SMM) [2] allows us to derive
key properties of the NLPDE related to its integrability, such as Bäcklund transformations,
Darboux transformations, τ-functions, etc. Of critical importance will be the algorithmic
obtention of the Lax pair by this procedure, establishing the relation among the singular
manifold and the eigenfunctions of the spectral problem [5]. In this way, the SMM provides
the equivalence between the integrability described by the existence of a Lax pair and the
one derived from the Painlevé Property.

Nonetheless, several limitations may emerge from both the determination of the PP
and the application of the SMM. The first problem is that there exist integrable differential
equations that possess a Lax pair but do not pass the Painlevé test. Such is the case of the
celebrated Camassa–Holm equation [6]. In a series of previous publications [7,8], it has
been shown that several such equations (to which the Painlevé test is not applicable) can be
transformed by reciprocal transformations [9] in equations with the PP. The spectral prob-
lem of these equations can therefore be obtained by the inverse reciprocal transformation
of the Lax pair associated to the equation with the PP.

The application itself of the SMM may also present some drawbacks. This method
focuses on truncations of the Painlevé series such that this process gives rise to an auto-
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Bäcklund transformation between solutions of the NLPDE. A major flaw emerges when
the NLPDE has several branches of expansion. In this case, the SMM shall be modified to
include as many singular manifolds as Painlevé branches. Such a procedure has proved to
be successful for several examples [5,10]. Moreover, the SMM frequently requires setting
as null every coefficient in the different powers of the singular manifold arising from the
substitution of the truncated Painlevé expansion into the given NLPDE. This procedure
constitutes an issue since it may retrieve trivial results for some NLPDEs. Vanishing all
the coefficients for every power of the singular manifold represents a highly restrictive
approach, which should be relaxed in order to obtain the desired results [11]. An example
of how to perform such generalization of the SMM can be found in [12,13].

This paper aims at studying an NLPDE that presents this type of particularity. Such an
equation accounts for a generalization of the complex modified Korteweg–de Vries (mKdV)
equation [14,15]. The SMM, when applied to this equation in the usual way, gives rise to
unsatisfactory results because it does not allow us to introduce a spectral parameter in the
associated linear problem. Nevertheless, a proper generalization of the SMM leads to the
complete resolution of this issue, as illustrated hereafter.

2. Generalized Complex mKdV Equation

In a recent paper [14], an integrable generalization of the complex mKdV equation [1]
was introduced. This equation, referred as GcmKdV in the following, reads as

ut + uxxx + 6u2ux + 3u[u · u]x = 0,

ut + uxxx + 6u2ux + 3u[u · u]x = 0,
(1)

where u = u(x, t) is the complex conjugate of u = u(x, t).
In [14], a three-component Lax pair, Darboux transformations, soliton and breather

solutions were identified for this equation. Nevertheless, no explanation of how this Lax
pair was obtained ever appears in the article. This paper strives to present a comprehensive
study of Equation (1) based on the Painlevé Property [4] and the SMM [2]. This procedure
allows us to straightforwardly derive the Lax pair. Darboux transformation and Bäcklund
transformations are also directly constructed. The τ-function [16] immediately arises, and
it provides an algorithmic and iterative method for the construction of solutions.

2.1. Painlevé Property

As it is well-known [2], Equation (1) has the PP if and only if all its solutions can be
locally written as the Laurent series

u =
∞

∑
j=0

ajφ
j−α,

u =
∞

∑
j=0

ajφ
j−α.

(2)

with coefficients aj = aj(x, t), aj = aj(x, t), α ∈ N, and where φ(x, t) = 0 is the manifold
of movable singularities. The index α, as well as the leading coefficients a0 and a0, can be
obtained through a leading-order analysis. The result is

α = 1, a2
0 + a2

0 + φ2
x = 0.

The application of the WTC test [4] is rather straightforward, and it can be conducted
with the aid of Maple. There are three simple resonances at j = 0, 2 and 3 and a double
resonance at j = 4. All the resonance conditions are identically satisfied, which means that,
for instance, a0, a2, a3, a4 and a4 are arbitrary, and consequently, GcmKdV has the PP.
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2.2. Truncation of the Painlevé Series: Modified SMM

Once the PP has been tested, we can proceed with the SMM. It requires the truncation
of the Painlevé series (2) at constant level as

u[1] = u[0] + A
φx

φ
,

u[1] = u[0] + A
φx

φ
.

(3)

Notice that the truncation means that Equations (3) can be considered as auto-Bäcklund
transformations between the seed solution {u[0], u[0]} and the iterated one {u[1], u[1]}. Fur-
thermore, A(x, t) and A(x, t) are the leading terms, which we shall discuss later.

Substitution of the truncated expansion (3) in (1) yields polynomials in powers of φ of
the form

h4
φ4

x
φ4 + h3

φ3
x

φ3 + h2
φ2

x
φ2 + h1

φx

φ
= 0,

h4
φ4

x
φ4 + h3

φ3
x

φ3 + h2
φ2

x
φ2 + h1

φx

φ
= 0,

(4)

where hi and hi are complicated expressions involving u[0], u[0], φ and their derivatives. The
SMM usually requires that all the coefficients hi, hi vanish. This procedure typically works
for most parts of integrable PDEs, but sometimes this requirement is too restrictive, and it
should be relaxed in order to have nontrivial results (cf. [12,13]). In our case, for GcmKdV,
the usual SMM does not provide a spectral parameter when the associated linear system is
obtained. In order to obtain a proper spectral problem, we shall rewrite (4) as

(
h4 +

m4φ

φx

)
φ4

x
φ4 +

(
h3 −m4 +

m3φ

φx

)
φ3

x
φ3 +

+

(
h2 −m3 +

m2φ

φx

)
φ2

x
φ2 + (h1 −m2)

φx

φ
= 0, (5a)(

h4 +
m4φ

φx

)
φ4

x
φ4 +

(
h3 −m4 +

m3φ

φx

)
φ3

x
φ3 +

+

(
h2 −m3 +

m2φ

φx

)
φ2

x
φ2 +

(
h1 −m2

)φx

φ
= 0, (5b)

where—in words of the authors of ref. [11]—{mi, mi} are quantities which should be
“judiciously chosen”. The computational complexity substantially rises when this approach
is considered. For the benefit of the reader, the details are included in Appendix A, and the
results are summarized thereupon:

• Leading-order terms
The usual application of the SMM implies h4 = h4 = 0, and therefore

A2 + A2
+ 1 = 0.

Nonetheless, according to our previous discussion, this condition should be relaxed
by introducing a constant λ such that

A2 + A2
+ 1 = 2λ

φ

φx
. (6)

This is the critical point in our modification of the SMM. As we shall see later, λ is just
the necessary spectral parameter of the Lax pair which appears as a consequence of
the generalization of the SMM.

• Expression of the fields in terms of the singular manifold
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The coefficients in φ−3 in (5) yield the following expressions for the seminal solutions
in terms of the singular manifold

u[0] = −Ax −
1
2

vA,

u[0] = −Ax −
1
2

vA,
(7)

where v is a useful quantity related to the singular manifold defined as

v =
φxx

φx
. (8)

• Singular manifold equations
The truncation of the Painlevé series implies that the singular manifold φ should
satisfy a set of conditions named as singular manifold equations. These conditions
can be obtained from the coefficients in φ−2 and φ−1 in (5) as

r = −3
(

A2
x + A2

x

)
− vx +

v2

2
+ 3λ

[
−v +

(
v2

2
− 2λ2

)
φ

φx

]
, (9a)

At = −Axxx + 3A
(

Ax Axx + Ax Axx
)
− 3Ax

(
A2

x + A2
x

)
−3

2
Ax

(
vx −

v2

2

)
+

3λ

4

(
2Avx − Av2 − 4vAx

)
−3vλ

4
φ

φx

(
2Avx − Av2 − 2vAx

)
, (9b)

At = −Axxx + 3A
(

Ax Axx + Ax Axx
)
− 3Ax

(
A2

x + A2
x

)
−3

2
Ax

(
vx −

v2

2

)
+

3λ

4

(
2Avx − Av2 − 4vAx

)
−3vλ

4
φ

φx

(
2Avx − Av2 − 2vAx

)
, (9c)

where we have defined r as
r =

φt

φx
. (10)

Furthermore, the compatibility condition between (8) and (10) yields

vt = (rx + rv)x. (11)

2.3. Lax Pair

As performed for several examples [5,13], Equation (7) can be linearized through the
introduction of three new functions ψ(x, t), η(x, t) and η(x, t) defined as

φx = ψ2 =⇒ v = 2
ψx

ψ
, (12a)

A =
η

ψ
, (12b)

A =
η

ψ
. (12c)
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The introduction of (12) in (7) yields

ψx = λψ + u[0]η + u[0] η, (13a)

ηx = −u[0]ψ, (13b)

ηx = −u[0]ψ, (13c)

which can be considered as the spatial part of the linear spectral problem. It can also be
expressed in matrix form as

~Ψx = B0

[
u[0]
]
~Ψ + λB1~Ψ, (14)

where ~Ψ = (ψ, η, η)ᵀ and B0, B1 are the matrices

B0[u] =

 0 u u
−u 0 0
−u 0 0

, B1 =

 1 0 0
0 0 0
0 0 0

. (15)

The computation of the temporal part of the Lax pair may turn out challenging. It can
be derived from Equations (9)–(12) after some algebraic manipulations. The result is

~Ψt = C0

[
u[0]
]
~Ψ + λC1

[
u[0]
]
~Ψ− λ2B0

[
u[0]
]
~Ψ + λ3C2~Ψ, (16)

where the matrices C0, C1, C2 read

C0[u] =

 0 −2u
(
u2 + u2)− uxx −2u

(
u2 + u2)− uxx

2u
(
u2 + u2)+ uxx 0 uux − uux

2u
(
u2 + u2)+ uxx uux − uux, 0

,

C1[u] =

 −(u2 + u2) −ux −ux
−ux u2 uu
−ux uu u2

,

C2 =

 −4 0 0
0 −3 0
0 0 −3

. (17)

This is essentially the Lax pair provided in [14]. Nevertheless, in this reference, the
author gives no explanation about how this Lax pair is constructed. Conversely, we have
proved that the SMM, through its generalization, provides the right spectral problem.

2.4. The Singular Manifold and the Eigenfunctions

An interesting consequence of the SMM is that it yields a direct relation between the
eigenvector ~Ψ and the singular manifold φ. This relation can be deduced by combining
Equations (6) and (12), resulting in

φ =
1

2λ

[
ψ2 + η2 + η2

]
=

~Ψ · ~Ψ
2λ

. (18)

where · denotes the usual dot product in the Euclidean space.
Notice that the parameter λ is essential for the construction of φ. The fact that this pa-

rameter can only be introduced through the extension of the SMM provided in Equation (6)
is one of the main goals of this paper.

2.5. Darboux Transformations

The SMM not only directly yields the associated linear spectral problem, it is also
the basis for the construction of binary Darboux transformations [13]. It is worthwhile to
remark that auto-Bäcklund and Darboux transformations arising from the Painlevé analysis
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and the SMM may differ from the Darboux transformations understood in the classical
sense [17], as evidenced in several works [2,18]. This is due to the fact that binary Darboux
transformations derived from the SMM aim to preserve not only the nonlinear PDE and its
associated spectral problem, but also the relation between the singular manifold φ and the
eigenfunctions ~Ψ, i.e., expression (18). This implies that transformations for the singular
manifold must also be taken into account. Therefore, it is possible to construct truncated
Painlevé series using φ as the expansion variable (rather the eigenfunctions ~Ψ as in the case
of classical Darboux transformations), just as prescribed by the SMM.

Let ~Ψi = (ψi, ηi, ηi)
ᵀ, i = 1, 2, be a pair of eigenvectors for the spectral problem with

seed solution
{

u[0], u[0]
}

associated with two different values for the spectral parameter λi,
respectively. Therefore, their Lax pairs read as(

~Ψi

)
x
=
(

B0

[
u[0]
]
+ λiB1

)
~Ψi, (19a)(

~Ψi

)
t
=
(

C0

[
u[0]
]
+ λiC1

[
u[0]
]
− λ2

i B0

[
u[0]
]
+ λ3

i C2

)
~Ψi, (19b)

where the matrices Bj, Ck have been defined in Equations (15) and (17). Singular manifolds
for each value of the spectral parameter can be obtained through Equation (18) as

φi =
1

2λi

[
ψ2

i + η2
i + η2

i

]
=

1
2λi

~Ψi · ~Ψi, i = 1, 2. (20)

The truncation of the Painlevé series given in (3) yields iterated fields
{

u[1], u[1]
}

by
means of the singular manifold φ1 linked to the spectral parameter λ1. The Lax pair for this
iterated solution can be written as(

~Ψ1,2

)
x
=
(

B0

[
u[1]
]
+ λ2B1

)
~Ψ1,2, (21a)(

~Ψ1,2

)
t
=
(

C0

[
u[1]
]
+ λ2C1

[
u[1]
]
− λ2

2B0

[
u[1]
]
+ λ3

2C2

)
~Ψ1,2, (21b)

where the notation ~Ψ1,2 refers to the eigenvector corresponding to solution u[1] and spectral
parameter λ2.

A Lax pair as (21) is frequently considered as a linear system for the eigenfunctions.
Nevertheless, as we have done in several papers [5,12,13], we can also regard (21) as a
nonlinear coupling between the eigenvector ~Ψ1,2 and the fields

{
u[1], u[1]

}
[19]. In this case,

the Painlevé truncated expansion (3) should be completed with a similar expansion for the
eigenfunctions of the form

ψ1,2 = ψ2 − ψ1
∆1,2

φ1
, (22a)

η1,2 = η2 − η1
∆1,2

φ1
, (22b)

η1,2 = η2 − η1
∆1,2

φ1
, (22c)

where ∆1,2 is a function to be determined through the substitution of (3) and (22) in (21).
This calculation may be cumbersome but straightforward, leading to

∆1,2 =
ψ1ψ2 + η1η2 + η1η2

λ1 + λ2
=

~Ψ1 · ~Ψ2

λ1 + λ2
. (23)

This procedure results in a binary Darboux transformation [17], i.e., the fields and
eigenfunctions of the iterated Lax pair (21) can be constructed by combining two different
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eigenfunctions of the seed Lax pair (19), corresponding to two different values of the
spectral parameter. This binary Darboux transformation can be summarized in the form

u[1] = u[0] +
ψ1η1

φ1
, (24a)

u[1] = u[0] +
ψ1η1

φ1
, (24b)

~Ψ1,2 = ~Ψ2 −
2λ1

λ1 + λ2

[
~Ψ1 · ~Ψ2
~Ψ1 · ~Ψ1

]
~Ψ1. (24c)

2.6. τ-Functions and Iterated Solutions

The relation between the SMM and the Hirota direct method [20] can be easily derived
by also considering the iteration of Equation (20) as

φ1,2 =
1

2λ2
~Ψ1,2 · ~Ψ1,2. (25)

If we look at this equation as a nonlinear relation between the iterated eigenvector
~Ψ1,2 and an iterated singular manifold φ1,2, we can easily conclude that φ1,2 could also be
expanded as a truncated Painlevé series. This expansion should be

φ1,2 = φ2 −
∆2

1,2

φ1
, (26)

as it can be checked by substitution of (24) in (25). As φ1,2 is the singular manifold for the

iterated solution
{

u[1], u[1]
}

, a second iteration can be obtained as

u[2] = u[1] +
ψ1,2η1,2

φ1,2
, (27a)

u[2] = u[1] +
ψ1,2η1,2

φ1,2
, (27b)

which combined with (24) and (26) yields

u[2] = u[0] +
φ1ψ2η2 + φ2ψ1η1 − ∆1,2(ψ1η2 + ψ2η1)

τ1,2
, (28a)

u[2] = u[0] +
φ1ψ2η2 + φ2ψ1η1 − ∆1,2(ψ1η2 + ψ2η1)

τ1,2
, (28b)

where

τ1,2 = φ1φ2 − ∆2
1,2 = det ∆i,j, i, j = 1, 2, (29a)

∆i,j =
~Ψi · ~Ψj

λi + λj
, φi = ∆i,i. (29b)

Expression (23) can also be iterated as

∆1,2,3 =
ψ1,2ψ1,3 + η1,2η1,3 + η1,2η1,3

λ2 + λ3
=

~Ψ1,2 · ~Ψ1,3

λ2 + λ3
, (30)

which is satisfied when ∆1,2,3 is expanded in a truncated Painlevé series as

∆1,2,3 = ∆2,3 −
∆1,2∆1,3

φ1
. (31)
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This provides a new iteration for the singular manifold in the form

φ1,2,3 = φ1,3 −
(∆1,2,3)

2

φ1,2
, (32)

which retrieves the following third iteration for the solution

u[3] = u[2] +
ψ1,2,3 η1,2,3

φ1,2,3
, (33a)

u[3] = u[2] +
ψ1,2,3 η1,2,3

φ1,2,3
, (33b)

where
~Ψ1,2,3 = ~Ψ1,3 −

∆1,2,3

φ1,2
~Ψ1,2. (34)

If we define
τ1,2,3 = φ1,2,3φ1,2φ1, (35)

it is easy to prove that the τ-function τ1,2,3 can be rewritten in compact form as

τ1,2,3 = det ∆i,j, i, j = 1, 2, 3. (36)

In general, for the nth-iteration, the τ-function is

τ1,...,n = det ∆i,j, i, j = 1, . . . , n, (37a)

∆i,j =
~Ψi · ~Ψj

λi + λj
, (37b)

where ∆i,j accounts for the generalization to n dimensions of the ∆-matrix introduced
in (29).

The key point is that the eigenfunctions of the seed Lax pair (19) are the sole ingredi-
ents we need to construct the τ-function (37) in every step of the iteration procedure.

3. Solutions

The iterative procedure arising from the Darboux tansformations described in the
previous section can be successfully applied in order to obtain solutions of the system (1).

3.1. Eigenfunctions for the Seed Solution

The simplest solution of the system (1) is trivially

u[0] = u[0] = 0, (38)

whilst the solutions for the Lax pair (19) are in this case

ψi = Hi(t)Ji(x, t), (39a)

ηi = cos(θi)Hi(t), (39b)

ηi = sin(θi)Hi(t), (39c)

where θi is an arbitrary constant, and Hi(t), Ji(x, t) are the functions

Hi(t) = e−3λ3
i t, Ji(x, t) = eλi(x−λ2

i t), i = 1, 2. (40)



Mathematics 2023, 11, 859 9 of 13

3.2. ∆-matrix

According to (29b), we have

φi =
H2

i
2λi

(
J2
i + 1

)
, (41a)

∆i,j =
Hi Hj

λi + λj

[
Ji Jj + cos(θi − θj)

]
. (41b)

3.3. First Iterated Solution

From (24), the first iterated fields are

u[1] =
λ1 cos(θ1)

cosh
[
λ1
(

x− λ2
1t
)] ,

u[1] =
λ1 sin(θ1)

cosh
[
λ1
(

x− λ2
1t
)] .

(42)

These solutions depend on two arbitrary constants λ1 and θ1, which can be complex.
Nevertheless, these fields are free of singularities when λ1 is real. The solutions display
the usual profile of the travelling one-soliton solution for the mKdV equation, propagating
alongside the direction x − λ2

1t, as illustrated in Figure 1. Here, λ2
1 is interpreted as the

wave speed, and the angle θ1 establishes the orientation of the soliton, and it rescales its
amplitude. For real values of the parameters, the solutions are always real and well-defined.

Figure 1. u[1] for parameters θ0 = 0, λ1 = 1.

3.4. Second Iterated Solution

We select two sets of eigenfunctions of the form (39), corresponding to different
eigenvalues λ1 and λ2. The singular manifolds and the ∆-matrix (41) are

φ1 =
H2

1
2λ1

(
J2
1 + 1

)
, (43a)

φ2 =
H2

2
2λ2

(
J2
2 + 1

)
, (43b)

∆1,2 =
1

λ1 + λ2
H1H2 J1 J2, (43c)

where we have introduced the following ansatz

θ1 = θ0, θ2 = θ0 +
π

2
, (44)
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and the τ-function (29a) is

τ =
H2

1 H2
2

4λ1λ2

[
1 + J2

1 + J2
2 +

(
λ1 − λ2

λ1 + λ2

)2
J2
1 J2

2

]
. (45)

Different solutions can be derived through different choices of the spectral parameters.
Notice that we are mainly interested in solutions for which the τ-function (45) has no zeroes,
and hence, solutions are free of singularities.

Let us introduce two arbitrary constants k0, λ0 defined as

λ1 = λ0(1 + k2
0), λ2 = λ0(1− k2

0). (46)

Thus, Equation (45) can be written in terms of hyperbolic functions as:

τ =
H2

1 H2
2 J1 J2

2λ2
0(1− k4

0)

[
k2

0 cosh(z1 + z2) + cosh(z1 − z2)
]
, (47)

where

z1 = λ0(1 + k2
0)
[

x− λ2
0(1 + k2

0)
2t
]
+ ln(k0), (48a)

z2 = λ0(1− k2
0)
[

x− λ2
0(1− k2

0)
2t
]
+ ln(k0), (48b)

z1 + z2 = 2λ0

[
x− λ2

0(3k4
0 + 1)t

]
+ 2 ln(k0), (48c)

z1 − z2 = 2λ0k2
0

[
x− λ2

0(k
4
0 + 3)t

]
. (48d)

Equation (28) therefore yields the solutions

u[2] =
2k0λ0

[
(1 + k2

0) cosh(z2) cos(θ0) + (1− k2
0) sinh(z1) sin(θ0)

]
k2

0 cosh(z1 + z2) + cosh(z1 − z2)
, (49a)

u[2] =
2k0λ0

[
(1 + k2

0) cosh(z2) sin(θ0)− (1− k2
0) sinh(z1) cos(θ0)

]
k2

0 cosh(z1 + z2) + cosh(z1 − z2)
. (49b)

This solution depends on three arbitrary parameters {k0, λ0 and θ0}. Notice that all of
these parameters can, in general, be complex. The solutions of reference [14] correspond
to particular cases of this more general solution. For real values of the parameters, the
behaviour of u[2] and u[2] is shown in Figure 2.

Figure 2. u[2] (blue solid line) and u[2] (red dashed line) for t = 0, λ0 = 1, k0 = 0.2, and for θ0 = 0
(left) and θ0 = π

2 (right).
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It is also worthwhile to remark that solutions (49) are rotations of angle θ0 that linearly
combine the following two independent solutions

u[2]
{θ0=0} =

2k0λ0(1 + k2
0) cosh(z2)

k2
0 cosh(z1 + z2) + cosh(z1 − z2)

, (50a)

u[2]
{θ0=

π
2 }

=
2k0λ0(1− k2

0) sinh(z1)

k2
0 cosh(z1 + z2) + cosh(z1 − z2)

, (50b)

whose behaviour is plotted in Figure 3.

Figure 3. u[2]
{θ0=0} (left), and u[2]

{θ0=
π
2 }

(right) for, λ0 = 1, k0 = 0.2.

4. Conclusions

A modification of the Singular Manifold Method has been implemented in order to
derive a spectral problem for a generalized complex version of the modified Korteweg-de
Vries equation. This modification yields a direct relation between the singular manifold
and the three-component eigenvector of the spectral problem. The salient point is that the
introduction of the spectral parameter in the Lax pair can be solely achieved when the
generalization of the singular manifold is considered.

Once the spectral problem is obtained, we shall apply the truncation of the Painlevé
expansion to the Lax pair itself. It allows us to derive, in an algorithmic way, many of
the properties of a nonlinear integrable system such as Bäcklund and binary Darboux
transformations.

We should notice that this derivation of binary Darboux transformations can be applied
in the future to different systems [18] for which the truncation of the Painlevé series has
been successfully applied.

The iteration of this method gives rise to the τ-function and to a recursive procedure
to construct solutions.

In particular, we have obtained solutions for the second iteration. These solutions
depend on three arbitrary complex parameters and generalize previously known results
from [14]. For real values of the parameters, the solution exhibits hyperbolic behaviour in
both space and time.
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Appendix A. Modification of the SMM

Substitution of the truncated expansion (3) in (1) yields polynomials in powers of φ as
those written in (4). The explicit calculation of the coefficients reads

h4 = 6A
(

A2 + A2
+ 1
)

, (A1a)

h3 = 6Ax

(
A2 A2

+ 1
)
+ 3AAAx + 6AA

(
A2 + A2

+ 2
)
−

−3u
(

4A2 + A2
)
− 8AAu, (A1b)

h2 = −3Axx + 3
(
4uA + 2uA− 3v

)
Ax + 3

(
uA + uA

)
Ax + 6A2

(
u2 + 2uv

)
+

+3A2
(ux + uv) + 3AA

(
ux + 3Av

)
− 3uuA−

−A
(

6u2 − 3u2 − 7v2 − 4vx − r
)

, (A1c)

h1 = At + Axxx + 3vAxx + 3uuAx + 3
(

2u2 + u2 + v2 + vx

)
Ax +

+
(

6u2v + 3u2v + v3 + 12uux + 3u ux + 3vvx + vr + vxx + rx

)
A +

+3(uuv + uux + 2uxu)A, (A1d)

and their complex conjugate expressions for hi.
In order to obtain a spectral parameter λ, the modification of the SMM is introduced

by choosing m4 and m4 as

m4 = 12λA,

m4 = 12λA. (A2)

Let us consider the different coefficients from (5):

• h4 +
m4φ

φx
= h4 +

m4φ

φx
= 0,

which yields Equation (6).

• h3 −m4 +
m3φ

φx
= h3 −m4 +

m3φ

φx
= 0.

By using (6) and (A2), we obtain expressions (7), as well as

m3 = −12λA(Ax + Av),

m3 = −12λA
(

Ax + Av
)
. (A3)

• h2 −m3 +
m2φ

φx
= h2 −m3 +

m2φ

φx
= 0.

The result is in this case

m2 =
3λ

2

(
4Axx + 4vAx + 2Avx + Av2

)
,

m2 =
3λ

2

(
4Axx + 4vAx + 2Avx + Av2

)
(A4)

and the expression (9a) for r.
• h1 −m2 = h1 −m2 = 0.

Finally, these identities result in Equations (9b) and (9c).
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