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Abstract: Although convolutional neural networks (CNNs) have made significant progress, their
deployment onboard is still challenging because of their complexity and high processing cost. Tensors
provide a natural and compact representation of CNN weights via suitable low-rank approximations.
A novel decomposed module called DecomResnet based on Tucker decomposition was proposed
to deploy a CNN object detection model on a satellite. We proposed a remote sensing image object
detection model compression framework based on low-rank decomposition which consisted of four
steps, namely (1) model initialization, (2) initial training, (3) decomposition of the trained model
and reconstruction of the decomposed model, and (4) fine-tuning. To validate the performance of
the decomposed model in our real mission, we constructed a dataset containing only two classes of
objects based on the DOTA and HRSC2016. The proposed method was comprehensively evaluated
on the NWPU VHR-10 dataset and the CAST-RS2 dataset created in this work. The experimental
results demonstrated that the proposed method, which was based on Resnet-50, could achieve up to
4.44 times the compression ratio and 5.71 times the speedup ratio with merely a 1.9% decrease in the
mAP (mean average precision) of the CAST-RS2 dataset and a 5.3% decrease the mAP of the NWPU
VHR-10 dataset.

Keywords: Tucker decomposition; model compression; onboard object detection; remote sensing
imagery; tensor decomposition; rank selection

MSC: 68T07; 68U10

1. Introduction

Artificial intelligence, especially deep learning, has delivered significant improvements
in several fields, including computer vision, natural language processing, communication
signal processing, and automatic driving. Compared with traditional techniques, deep
learning has proven to have significant advantages in mid-level and high-level feature
extraction. It has been applied to many tasks, including object detection [1] and recognition,
object tracking [2], and object segmentation [3].

There are several issues with the satellite data transmission system due to the geometric
increase in the amount of remote sensing satellite data and the rapid development of
remote sensing technologies. Since clouds cover over 70% of the Earth’s surface, they
make up many of the images that remote sensing satellites collect. Usually, these cloud
images do not contain valid information and are referred to as invalid images. Another
instance is the remote sensing images of the sea surface, where there is no object and little
practical use. As a result, one of the most prominent problems is that a large portion of
the data acquired by remote sensing satellites is invalid [4]. This invalid data transmission
places tremendous pressure on the satellite data transmission system. It wastes precious
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bandwidth resources [5–7] and significantly reduces the utilization of satellite payloads.
These problems make it challenging to meet the stringent timeliness requirements of
demanding missions, such as Earth observation or some military tasks. Notably, the current
problems faced by remote satellites can be solved with onboard image processes, which
can recognize the invalid data and discard this invalid data onboard directly.

Object detection is one of the essential tasks of remote sensing image processing [8].
It is also the basis for advanced applications, such as remote sensing image analyses,
image understanding, and scene understanding. In addition, onboard object detection can
improve satellite data relay services in terms of the amount of user data and timeliness.
Therefore, it has attracted the increasing attention of many scholars.

There are two typical scenarios for remote sensing object detection. One is to transmit
remote sensing images to the ground via a satellite data transmission system, and then
object detection is performed [9]. In this scenario, the object detector is deployed on the
ground without consideration of storage, the computational cost, or the power consumption
limitations imposed by the space environment. Another strategy is to perform object
detection directly on satellites [10]. In this situation, it is necessary to deploy the detector
on board and to consider all of the resources that the satellite can offer.

Onboard object detection is more attractive for military and civilian missions. First,
this approach can respond to changes on the ground in real time and feed back the results,
particularly for military tasks or disaster monitoring. Second, no actions are required to
transmit the original data to the ground station. There is a large amount of redundant data
in the images collected by the satellite, and sending all the data back to the ground station
would undoubtedly waste valuable satellite bandwidth resources. With object detection on
board, only valuable data would be transmitted back to the ground. It would significantly
reduce the waste of bandwidth.

Limited by the space environment, the computational and storage capacities onboard
are significantly inferior to those on the ground [11,12]. Deep learning algorithms are
computationally expensive and memory intensive. The improved performance of these
algorithms comes at the expense of high computational and storage resource consump-
tion [13]. Deploying deep learning algorithms on satellites is more challenging than on
the ground, not only in terms of balancing performance and resources but also in terms of
the onboard implementation of the algorithms. Therefore, onboard object detection model
compression is an urgent request in current research.

Model compression is a practical approach to reducing model complexity which can
significantly reduce the number of parameters and the computing costs of the model
without significantly degrading the performance. It was used to reduce the CNN model
size and hardware requirements of the CNN deployment to solve the problems mentioned
above when the object detector was deployed on the satellite in this paper. Among several
model compression methods, the low-rank decomposition method is an emerging tool for
large-scale data approximation that can be approximately represented in highly compressed
formats and that is widely adopted [14–17].

Decomposed factors are directly mapped to convolution layers without the recon-
struction of these factors to high-order tensors. This method is the most popular approach
to CNN model compression based on low-rank decomposition. In [14], the four factors
of the CP (canonical polyadic) decomposition [15] of the convolution kernel tensor were
considered to be one pointwise convolution kernel, two depthwise convolution kernels,
and one pointwise convolution kernel, respectively. In [16], the four factors of the Tucker
decomposition [17] of the convolution kernel tensor were considered to be a pointwise
convolution kernel, a standard three × three convolution kernel, and another pointwise
convolution kernel, respectively.

Previous works explored this technology on VGG [18], and AlexNet [19] demonstrated
promising results for model decomposition. Still, the situation varies when decomposing
Resnet [20], which is constructed with the bottleneck shown in Figure 1a. The three × three
convolution kernel tensor in the bottleneck can be decomposed into a pointwise convolution
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kernel, a standard three × three convolution kernel, and another pointwise convolution
kernel [16] as shown in Figure 1b. In this case, two pointwise convolutional layers are cascaded
together. The number of input channels reduces, but the convolution layers increase. The
convolutional layers increase the computation time because the CNN models are computed
layer by layer. To solve this problem, we merged the two pointwise convolutional layers and
constructed a novel module called DecomResnet as shown in Figure 1c.
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Figure 1. Tucker decomposition and the proposed DecomResnet. (1) 256-d in the figure means that
the input feature has 256 channels. The three elements in each module stand for the channel number
of the input feature map, the convolution size, and the channel number of the output feature map,
respectively. For example, “1 × 1, 64” in the top module stands for a convolution size of 1 × 1 with
256 input and 64 output channels. “1 × 1, 256” in the bottom module stands for a convolution size of
1 × 1 with 256 output channels. (2) “R3, 3 × 3, R4” stands for a convolution size of 3 × 3 with R3
input channels and R4 output channels. R3 and R4 are the ranks of Tucker decomposition.

The main contributions of this paper are summarized as follows:

(1) A model compression method was proposed for remote sensing image object detection
based on Tucker decomposition which consisted of four steps:

Step 1: model initialization;
Step 2: initial training;
Step 3: trained model decomposition and reconstruction;
Step 4: fine-tuning.

(2) The DecomResnet module was proposed based on Tucker decomposition. It was used
to construct the backbone of the object detection model. The experimental results
showed that the proposed module significantly reduces the number of parameters
and computational costs with a slight decrease in performance.

(3) To verify the performance of the compression model proposed in this paper, the model
was validated on the NWPU VHR-10 dataset. The experimental results indicated that
the proposed method is an effective approach to model compression.

(4) For our practical engineering application requirements, we constructed a remote
sensing dataset named CAST-RS2 which contained only two types of objects according
to the mission requirements and the characteristics of remote sensing objects. The
proposed method was also verified on this dataset.
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2. Related Work

Model compression methods can be broadly categorized into knowledge distilla-
tion [21], pruning [22], quantization [23], low-rank decomposition [24], and lightweight
models [25].

Knowledge distillation is commonly used in migration learning, also known as
student–teacher networks. The key concept is to train a deep teacher network and then to
teach a small student network that mimics the teacher, which is deployed after training.
The teacher model can be a single large model or a collection of individually trained models.
The main idea of pruning is to remove the redundant parameters from the large model to
obtain a small model.

The main idea of pruning is to grow a large model and then to prune away weights to
end up with a much smaller but effective model. Luo et al. [22] reduced Resnet through
pruning. The Resnet that was compressed through pruning is similar to DecomResnet.
However, they are not the same, which is reflected in the following aspects:

First, the number of channels in the convolutional layers is different. Although
both have three layers, the first layer is a one × one convolution, the second layer is a
three × three convolution, and the third layer is a one × one convolution, the number of
channels in the convolution layers is not the same. A greedy algorithm obtains the channels
of the first two convolutional layers in ThiNet. In this paper, however, the rank (R3, R4)
acquired by the VBMF method determined how many channels were present in the first
two convolutional layers.

Second, the method of reducing the number of channels is different. ThiNet adopts
the pruning method, i.e., the unimportant channels in the convolution kernel are removed
directly. However, in this paper, the Tucker decomposition factors were used as the
convolution kernel to reduce the number of channels.

Third, the compressed objects are inconsistent. ThiNet does not prune the first two
layers in the bottleneck. Some of them will not be pruned. However, all the three × three
convolutional layers in the bottleneck were decomposed in this paper.

Fourth, the process of model compression is different. ThiNet prunes CNN models
layer by layer. Its framework is filter selection, pruning, and fine-tuning. Our decomposed
framework was initialization, training, obtaining the ranks, and fine-tuning.

Fifth, the compression ratio is not the same. The compression ratio of ThiNet is set
manually. However, the compression ratio of the method proposed in this paper was
determined by the ranks of Tucker decomposition.

The main idea of quantization is to store the weights and activation tensors in lower-bit
precision representations rather than the 16-bit or 32-bit precision representations.

In recent years, some researchers have been working on designing more compact,
less computationally intensive, and more efficient network structures, such as the fire
module of SqueezeNet [25], the residual structure of Resnet [20], the inception module of
Googlenet [26], etc. These lightweight modules are composed of tiny convolutions, such as
one × one convolutions or three × three convolutions, which can effectively reduce the
number of model parameters and the volume of operations.

Deep models are usually overparameterized, and the weight matrix components usually
reside in low-rank subspaces [27]. Therefore, low-rank decomposition is considered one of
the efficient deep compression schemes and is generally used to compress deep models.

The most popular low-rank decomposition techniques are canonical polyadic decom-
position (CP) [14], Tucker decomposition [16], and tensor-train decomposition [28,29]. CP
decomposition presents an n-way tensor as the sum of r (r is the minimum rank) rank-1
terms. This method is simple and efficient. However, its drawback is that finding the
r rank is an NP-hard problem. Tucker decomposition approximates the original tensor
by multiplying a core tensor by a factor matrix along with each pattern. Tensor-train
(TT) decomposition expresses the tensor as a string of smaller (three-way) core tensors. It
maintains a simplicity similar to CP decomposition and achieves a higher compression
rate. Several works [30,31] focus on decomposing the convolutional weight tensors to
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reduce the parameters more efficiently and to reconstruct the decomposed factors during
inference without significant performance loss. The procedure of this approach is as follows:
First, these methods train the model for a few epochs, which is called initialized training.
Second, the weight tensor obtained from initialized training is decomposed. Finally, the
decomposed model is retrained, which is called fine-tuning. In the inference phase, the
higher-order convolutional weight tensor is reconstructed by lower-order factors again.
The advantage of this approach is that the convolution structure does not change, but the
convolutional kernel must be rebuilt.

Another approach is to decompose the weight tensor and to construct a new convo-
lution module based on the decomposed factors [14,16]. In [14], a convolution module
was created based on the CP decomposition factor, consisting of a point convolution, a
separable convolution, and another point convolution. In [16], a convolution module
was constructed based on the Tucker decomposition factor, which consists of a point
convolution, a regular convolution, and a point convolution. Essentially, these methods
achieve model compression by transforming complex CNN models into lightweight models
through low-rank decomposition. In the inference stage, these methods do not require
the reconstruction of the low-rank tensor into a high-rank tensor, which is suitable for
applications in resource-limited environments. Inspired by these two works, we proposed
a CNN model compression method based on Tucker decomposition.

In addition to the most popular methods mentioned above, the hierarchical Tucker
(HT) method [32] and the Kronecker product decomposition (KPD) [33] method are also
used to compress the weights of the convolution layers.

The hierarchical Tucker (HT) method decomposes the kernel weight tensor into two load
matrices and smaller three-way tensors. The load matrices are equal to one× one convolution
layers, and the three-way tensors are equal to one-dimensional convolution layers.

The KPD method approximates the original matrix with two smaller Kronecker factor
matrices. This method can also be extended to the multidimensional nearest Kronecker
product problem [33]. The rank is an essential hyperparameter in the low-rank decomposi-
tion process. However, the solution to the optimal rank is an NP-hard problem, which is
difficult to obtain. Several rank selection methods have been proposed to obtain the rank
of tensors. A fitness-based rank selection method was proposed in [34]. However, this rank
selection method has limitations in selecting multiple ranks and has convergence problems
in the optimization process. SVD (singular value decomposition) was used to solve for the
optimal rank in [35], but this solution method is very time-consuming. A heuristic method
was used to select the rank in [16], but the CNN structure determines the desired rank and
the dataset used.

Miao et al. [36] recently proposed a budget-aware rank selection method that can
calculate tensor ranks via one-shot training. Although it can automatically select the proper
tensor ranks for each layer, it may obtain different ranks when the training environment
changes, such as the dataset and training hyperparameters.

The variational Bayesian matrix factorization (VBMF) method was proposed in [37].
Although this method generates suboptimal ranks, it is a highly reproducible approach
and is currently considered adequate.

3. Proposed Method
3.1. The Baseline Object Detection Model Analysis

In this paper, we took RetinaNet as the baseline because it can offer a better speed/
accuracy trade-off and because it is a promising onboard deployment candidate model. We
first analyzed the baseline model, focusing on the number of parameters in each part of the
baseline, and then decomposed the weight tensors.

As shown in Figure 2, the object detector consists of three parts: the backbone, neck,
and head.
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Among these three parts, the backbone has the most parameters, accounting for more
than 60% of the detector parameters. Huang et al. [30] pointed out that the backbone
has many redundant parameters. Decreasing the number of backbone parameters is an
effective way to reduce CNN complexity. The backbone consists of a finite number of
convolutional modules. Each convolutional layer of these modules is a 4D tensor.

Due to its excellent feature extraction capability, Resnet is widely used in object
detection tasks. The parameters of Resnet mainly consist of one × one convolutional layers
and three × three convolutional layers. Taking Resnet-50 as an example, the number of
one × one convolution layer parameters and three × three convolution layer parameters
account for 47.4% and 44.44% of the backbone, respectively. The number of parameters in
three × three convolution layers can be reduced through tensor decomposition, but the
number of parameters in one × one convolution layers cannot be reduced similarly. When
the input image size is 512× 512, the FLOPs of the backbone is 21.52 GMac, which accounts
for 40.38% of RetinaNet.

The neck of RetinaNet adopts the feature pyramid network (FPN). The advantage of the
FPN is that it fuses shallow and deep features. The output features contain deep semantic and
shallow spatial information that is beneficial to multiscale object detection. The neck has five
different scales of feature maps (P3–P7). P3, P4, and P5 consist of one × one and three × three
convolution layers. P6 and P7 consist of three × three convolution layers. The number of
parameters in the neck is 8.00 M, accounting for 22.04% of all the detector parameters. The
computational cost of the neck is 4.43 GMac, accounting for 8.30% of RetinaNet.

The head of RetinaNet consists of two parts: bounding box regression and object
classification. Five feature layers share the head, where the number of classification
branch parameters is 2.36 M, accounting for 6.50% of RetinaNet. The computational
cost is 12.88 GMac, accounting for 24.17% of RetinaNet. The regression branch is the same
as the classification branch. The head is essential for the compression of the detector.

The backbone of RetinaNet; the backbone and detection head of RetinaNet; and the
backbone, detection head, and neck of RetinaNet were each decomposed in this work to
implement model compression.

3.2. Decomposed Convolutional Model

To reduce the convolutional parameters, we introduced a tensor decomposition
method. The parameter size of each layer in the object detection network was D×D×S×T.
The numbers of output and input channels were T and S, respectively. The width and
height of the convolutional kernel were D. It could be seen that a four-dimensional tensor
could represent the convolutional kernel. If the input feature was X , its size would be
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H′W ′S, and if the output feature was Y , its size would be H
′ ×W

′ × T, which could be
expressed as Equation (1).

Yh′ ,w′ ,t =
D
∑

i=1

D
∑

j=1

S
∑

s=1
Ki,j,s,tXhi ,wj ,s

′

hi = (h′ − 1)∆ + i− p and wj = (w′ − 1)∆ + j− p
(1)

where K is a fourth-order convolution kernel tensor, its size is D × D × S× T, ∆ is the
stride, and p is the zero-padding size.

We considered model compression as a tensor decomposition problem. The convolu-
tional neural network was compressed if the total elements of the low-dimensional tensors
were less than the total elements of tensor K.

Therefore, Tucker decomposition was used to decompose convolutional kernel tensor
K. The decomposition of the convolution kernel could be expressed as Equation (2).

Ki,j,s,t =
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

R4

∑
r4=1
C ′r1,r2,r3,r4

K(1)
i,r1

K(2)
j,r2

K(3)
s,r3 K(4)

t,r4
(2)

where R1,R2,R3, and R4 are the ranks of Tucker decomposition; C ′ ∈ RR1×R2×R3×R4 is
a smaller four-dimensional tensor; and K(1) ∈ RD×R1 , K(2) ∈ RD×R2 , K(3) ∈ RS×R3 ,
and K(4) ∈ RT×R4 are two-dimensional matrices. Then we substituted Equation (2) into
Equation (1), where the convolution operation could be expressed as Equation (3).

Yh′ ,w′ ,t =
D

∑
i=1

D

∑
j=1

S

∑
s=1

(
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

R4

∑
r4=1
C ′r1,r2,r3,r4

K(1)
i,r1

K(2)
j,r2

K(3)
s,r3 K(4)

t,r4

)
Xhi ,wj ,s

′ (3)

The literature [16] states that not all modes must be decomposed. Since mode-1
and mode-2 were relatively small, usually three or five, there was no need for further
decomposition. At this point, the Tucker decomposition of the convolution kernel could be
expressed as Equation (4).

Ki,j,s,t =
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

R4

∑
r4=1
C ′ i,j,r3,r4

K(3)
s,r3 K(4)

t,r4
(4)

where C ′ ∈ RD×D×R3×R4 is a four-dimensional tensor and where K(3) ∈ RS×R3 and K(4) ∈
RT×R4 are two-dimensional matrices.

Substituting Equation (4) into Equation (1), the convolution operation could be ex-
pressed as Equation (5).

Yh′ ,w′ ,t =
D

∑
i=1

D

∑
j=1

S

∑
s=1

(
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1

R4

∑
r4=1
C ′ i,j,r3,r4

K(3)
s,r3 K(4)

t,r4

)
Xhi ,wj ,s′ (5)

In this case, convolution could be done in three steps. First, subtensor K(3) was
convolved with input feature map X to obtain the result as shown in Equation (6).

Us
h,w,r3

=
S

∑
s=1

K(3)
s,r3Xh,w,s (6)

where K(3) is a matrix with a size of S × R3 which can be considered as a pointwise
convolution kernel. This pointwise convolution reduced the input channels from S to R3.
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Next, Us
h,w,r3

was convolved with four-dimensional tensor kernel C ′ to obtain the result
shown in Equation (7).

Uswh
h′ ,w′ ,r4

=
D

∑
i=1

D

∑
j=1

R3

∑
r3=1
Ci,j,r3,r4

Us
h,w,r3

(7)

This is a standard convolution, but the decomposed kernel is smaller than the orig-
inal kernel. This procedure reduced the parameters of the convolution model and the
computation overhead.

Finally, K(4) was convolved with Uswh
h′ ,w′ ,r4

.

Yh′ ,w′ ,t ==
D

∑
i=1

D

∑
j=1

R3

∑
r3=1

K(4)
t,r4

Uswh
h′ ,w′ ,r4

(8)

As shown in Equation (8), K(4) is also a two-dimensional matrix which can be con-
sidered as a kernel of pointwise convolution. This convolution resized the last dimension
from R4 to T.

Therefore, the decomposed module consisted of three convolutional layers. The first
and third layers were point convolutions with a size of S× R3 and R4 × T, respectively.
The middle layer was a standard convolution with a size of D× D× R3 × R4.

Despite the decomposition of the weight tensor and the reduction in the number of
parameters, the layers in the bottleneck increased. These increased layers would lead to a
longer inference time, which is not what we expected.

As shown in Figure 3, to decompose the weight tensors without increasing the convo-
lution layers, we merged the two continuous pointwise convolution layers into a single
layer. Then, we could obtain a decomposed module, named DecomResnet, that could be
used to construct the compressed model.
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Figure 3. DecomResnet based on Tucker decomposition. (1) 256-d in this figure means the input
feature has 256 channels. The three elements in each module stand for the channel number of
the input feature map, the convolution size, and the channel number of the output feature map,
respectively. For example, “1 × 1, 64” in the top module stands for a convolution size of 1 × 1 with
256 input and 64 output channels. “1 × 1, 256” in the bottom module stands for a convolution size of
1 × 1 with 256 output channels. (2) “R3, 3 × 3, R4” stands for a convolution size of 3 × 3 with R3
input channels and R4 output channels. R3 and R4 are the ranks of Tucker decomposition.
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3.3. Rank Selection

In this paper, the compression ratio (CR) indicated the number of parameters in the
decomposed version compared to that of the original model. Moreover, the speedup ratio (SR)
indicated the computing cost in the decomposed version compared to the original model.

CR =
D2ST

SR3 + D2R3R4 + TR4
(9)

SR =
D2STH′W ′

SR3HW + D2R3R4H′W ′ + TR4H′W ′
(10)

As shown in the compression ratio and speedup ratio definition equations, the ranks
(R3 and R4) are vital hyperparameters that regulate the computing and storage complexity
of the compressed object detection model.

Although we sought to obtain the optimal ranks for the best approximation of the
CNN object detection model, unfortunately, this was an NP-hard problem [38].

In our work, we adopted the VBMF method for the following reasons: First, this method
can automatically find the noise variance and rank. Second, it can even provide a theoretical
condition for perfect rank recovery. Third, libraries that can execute Tucker decomposition
with the ranks chosen through this method are readily accessible, such as Tensorly. Finally,
several works [16,31] have used this method and have achieved desirable results.

Variational Bayesian matrix factorization (VBMF) [37] has been proven to be an effec-
tive method for obtaining the suboptimal rank. This paper used the VBMF method for the
mode-3 and mode-4 matricization of the kernel tensor, respectively, to obtain the ranks of
Tucker decomposition (R3 and R4).

3.4. Computation of Tensor Decomposition

Although Tucker decomposition is not unique to n-rank tensors, the problem can
be solved by adding constraints. The HOSVD (high-order SVD) algorithm is a typical
method for solving Tucker decomposition which first obtains the factor matrix for each
mode through SVD decomposition then uses the projection of the tensor of each mode as
the kernel tensor.

Although the HOSVD algorithm [39] can perform the Tucker decomposition of the
tensor, it is not optimal for giving the best approximation. It is a good initialization for
other iterative algorithms, such as high-order orthogonal iteration (HOOI) [15]. HOOI
treats tensor decomposition as an optimization process and iterates continuously to obtain
the decomposition result.

Suppose there is an Nth-order tensor. Then, the decomposition of the tensor could be
formulated as the optimization problem as shown in Equation (11).

min
S,A(1),··· ,A(N)

‖X − JS; A(1), · · · , A(N)K ‖ (11)

which is subject to S ∈ RR1×R2×···×RN and A(n) ∈ RIn×Rn and in which each column
is orthogonal.

The objective function could be rewritten in vectorized form as shown in Equation (12).∣∣∣X − JS; A(1), · · · , A(N)K
∣∣∣ = ‖Vec(X )− (A(N) ⊗ · · · ⊗ A(1))Vec(S)‖

= ‖X ‖2 − 2
〈
X , JS; A(1), · · · , A(N)K

〉
+ ‖JS; A(1), · · · , A(N)K‖2

= ‖X ‖2 − 2
〈
X×1 A×2

(1)T · · ·×N A(N)T , S
〉
+ ‖S‖2

= ‖X ‖2 − 2〈S, S〉+ ‖S‖2

(12)
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Then, it was straightforward that the square of the objective function could be written
as Equation (13).

‖X − JS; A(1), · · · , A(N)K ‖2
= ‖X ‖2 − ‖X×1 A×2

(1)T · · ·×N A(N)T‖
2

(13)

which is subject to A(n) ∈ RIn×Rn and in which each column is orthogonal.
Since ‖X ‖ is a constant, minimizing Equation (13) was equivalent to maximizing

‖A(n)TW‖, which could be expressed as Equation (14).

max‖A(n)TW‖ s.t. W = X(n)(A(N) ⊗ · · · ⊗ A(n+1) ⊗ A(n−1) · · · ⊗ A(1)) (14)

The solution could be obtained by using SVD and by using A(n) as the Rn leading left
singular value vector of W.

3.5. Training Method

Kossaifi et al. [40] pointed out that tensor contraction is a natural way to integrate
tensor decomposition into a neural network as a differentiable layer. This technique is called
the tensor contraction layer (TCL). Because of the backpropagation process of training, each
decomposed layer needs to be differentiable.

As shown in equation (2), convolution kernel tensor K could be decomposed into
a low-rank core, C ′ ∈ RR1×R2×R3×R4 , and four factors, K(1) ∈ RD×R1 , K(2) ∈ RD×R2 ,
K(3) ∈ RS×R3 , and K(4) ∈ RT×R4 . Although Tucker decomposition was discussed in the
context of four models, it can be generalized to N-way tensors as shown in Equation (15).

K ≈ JC ′; K(1), K(2), · · · , K(N)K (15)

The input and output feature maps were denoted as X ∈ RB×I0×I1×···×IN and
Y ∈ RB×O, respectively. B corresponds to the input samples, and O corresponds to the
labels of each sample. Kernel tensor K ∈ RI0×I1×···×IN×O was decomposed under a fixed
low rank (R0, · · · RN , RN+1). Then the convolution with the decomposed kernel tensor
could be taken as tensor regression layers and could be written as Equation (16).

Y =
〈

X, K
〉

N + b
subject to K =JS; K(0), · · · , K(N+1)K

(16)

S ∈ RR0×···×RN×RN+1 ; K(i) ∈ RIi×Ri for each i in [0 · · ·N]; and K(N+1) ∈ RO×RN+1 .
The convolution function maps a tensor of size RI1×···×IN to space f RIN+1 with low-

rank constraints. By using tensor unfolding [41], the partial derivatives for each factor could
be obtained. For example, the partial derivatives for K(1) and K(N+1) could be expressed as
formula (17) and formula (18), respectively.(

∂Y
∂K(1)

)
(1)

=
(
JS; IR1 , K(2), · · · , K(N+1)K

)
(N+1)

(
X(1) ⊗ IR1

)T
(17)

(
∂Y

∂K(N+1)

)
(1)

=

((
JS; K(1), · · · , K(N), IRN+1K

)
(N+1)

vec(X )

)T
⊗ IIN+1 (18)

The Tucker decomposition differential for the kernel tensor could also be obtained in
the same way as shown in formula (19).(

∂Y
∂S

)
(1)

= K(N+1) ⊗ vec
(

JX ;
(

K(1)
)T

, · · · ,
(

K(N)
)T

K
)T

(19)
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From the above analysis, it can be seen that the decomposed components of the kernel
tensor can be taken as neural network layers and that each layer is differentiable. The
Tensorly [42] library was used to perform Tucker decomposition in this work.

3.6. The Overall Procedure

As shown in Figure 4, our method for object detection model compression included
the following steps:

Step 1: Initialize RetinaNet with the pretrained model on ImageNet.
Step 2: Train the object detection network model on the remote sensing dataset to obtain

the trained model.
Step 3: Obtain the ranks using the VBMF and decompose the trained model layer by layer

using Tucker decomposition. Then, use the DecomResnet module to reconstruct
the model.

Step 4: Retrain the reconstructed model over multiple epochs.
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4. Experiments
4.1. Datasets

Two datasets were used to evaluate the proposed method in our experiments. The
first was the NWPU VHR-10 dataset [43], which contains ten categories. The second was
the CAST-RS2 dataset constructed in this work. Some visualization results of samples and
annotations of the CAST-RS2 dataset are shown in Figure 5.

In our actual mission, not all categories in the NWPU VHR-10 dataset had to be detected.
To validate the performance of the decomposed model in our actual mission, we constructed
the CAST-RS2 dataset, which contained only two types of objects, planes and ships.

The image samples came from two public datasets, DOTA [44] and HRSC2016 [45].
Since the HRSC dataset contains many ship objects and since the DOTA dataset is rich in
scenes and has a large amount of data, we selected 1393 remote sensing images from these
2 datasets.

The process of constructing the dataset is described as follows: First, the plane and
ship samples were selected from the DOTA and HRSC datasets. Second, the width and
height of each object that was annotated in a sample image were multiplied to determine
the size of each object in the selected images. The object size distribution of each class
selected from the two datasets was then counted individually. Third, by scaling the images,
the object size distribution of the corresponding categories in the two datasets was made to
be almost comparable. Finally, the image was divided into 512 × 512 slices, and the slices
that included objects were chosen as samples for the CAST-RS2 dataset.

There were 4032 annotated plane and ship objects in total. The 4032 annotated plane
and ship objects were separated into 2 sets, with 2799 in the training set and 1233 in the test
set. The three decomposed models were also assessed with this dataset.
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Figure 5. Visualization results of samples and annotations of the CAST-RS2 dataset containing the
plane and ship categories.

4.2. Experimental Results

The operating system used in these experiments was 64-bit Ubuntu 18.04. The CPU
was Intel (R) Core (TM) i7-6850K with six cores at 3.60 GHz, and the memory was 16 GB.
The deep learning framework was Pytorch 1.6.0. CUDA 10.1 and cuDNN 7.6.3 were used.
These models were trained on an NVIDIA TITAN Xp GPU. The momentum and weight
decay parameters were set to 0.9 and 0.001, respectively. The object detection model was
trained for 200 epochs.

In this work, the model that decomposed only the backbone was called Decom_b.
The model that decomposed the backbone and the detection head was called Decom_bh.
Additionally, the model that decomposed the backbone, the detection head, and the neck
was called Decom_all.

In our experiments, we set up three sets of experiments for each dataset to evaluate
the performance of the Decom_b, Decom_bh, and Decom_all models.

4.2.1. The Rank Produced through The VBMF Approach

In this work, RetinaNet was selected as the baseline. For the RetinaNet object detection
model, the ranks produced through the VBMF approach are displayed in Tables 1–3. As
shown in Equations (9) and (10), these ranks were vital hyperparameters used for Tucker
decomposition. Each 3 × 3 convolution layer in the Resnet-50 backbone was decomposed
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with the ranks listed in Table 1. Each 3 × 3 convolution layer in the neck of RetinaNet was
also decomposed with the ranks listed in Table 2. The classification network and regression
network in the Retina head were also decomposed with ranks listed in Table 3.

Table 1. The ranks of Tucker decomposition (R3 and R4 ) for the backbone of RetinaNet.

Backbone R3 R4

Conv1 2 28
Stage 1 → Bottleneck 0→ conv 2 38 38
Stage 1 → Bottleneck 1→ conv 2 30 25
Stage 1→ Bottleneck 2→ conv 2 23 24
Stage 2→ Bottleneck 0→ conv 2 50 54
Stage 2→ Bottleneck 1→ conv 2 74 66
Stage 2→ Bottleneck 2→ conv 2 53 52
Stage 2→ Bottleneck 3→ conv 2 46 42
Stage 3→ Bottleneck 0→ conv 2 106 106
Stage 3→ Bottleneck 1→ conv 2 106 96
Stage 3→ Bottleneck 2→ conv 2 93 89
Stage 3→ Bottleneck 3→ conv 2 84 79
Stage 3→ Bottleneck 4→ conv 2 77 73
Stage 3→ Bottleneck 5→ conv 2 83 75
Stage 4→ Bottleneck 0→ conv 2 202 192
Stage 4→ Bottleneck 1→ conv 2 188 152
Stage 4→ Bottleneck 2→ conv 2 269 251

Table 2. The ranks of Tucker decomposition (R3 and R4 ) for the neck of RetinaNet.

Neck R3 R4

FPN→ conv 0 1 1
FPN→ conv 1 256 256
FPN→ conv 2 1 1
FPN→ conv 3 1 2
FPN→ conv 4 256 256

Table 3. The ranks of Tucker decomposition (R3 and R4 ) for the head of RetinaNet.

Head R3 R4

bbox_head→ cls_conv 0 10 10
bbox_head→ cls_conv 1 11 9
bbox_head→ cls_conv 2 10 11
bbox_head→ cls_conv 3 12 14
bbox_head→ reg_conv 0 6 7
bbox_head→ reg_conv 1 6 6
bbox_head→ reg_conv 2 7 8
bbox_head→ reg_conv 3 8 11

retina_cls→ conv 20 19
retina_reg→ conv 14 13

4.2.2. Results for NWPU VHR-10 Dataset

As shown in Table 4, when only the backbone was decomposed, the AP (average
precision) of the ship category, the ground track field category, and the harbor category
improved by 2.4%, 1%, and 1.8%, respectively. The AP of other categories decreased,
and the storage tank category had the largest performance drop of 4%. Compared to the
baseline, the mAP (mean average precision) of Decom_b improved by 0.1%. It can be
seen that, although the AP of some classes decreased, only the backbone compression had
almost no effect on the mAP of the model.
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Table 4. Detection AP (%) comparison of different algorithms tested on NWPU-VHR-10 dataset. AP
loss in this table is the AP loss of Decom_all with respect to baseline.

Baseline Decom_b Decom_bh Decom_all AP Loss

Airplane 97.9% 98.0% 98.3% 97.8% 0.10%
Ship 89.2% 91.6% 91.4% 82.5% 6.70%

Storage tank 96.6% 92.6% 93.5% 88.6% 8.00%
Baseball diamond 99.2% 97.7% 98.1% 97.2% 2.00%

Tennis court 91.0% 90.2% 87.8% 84.8% 6.20%
Basketball court 99.2% 94.0% 92.8% 92.0% 7.20%

Ground track field 94.9% 95.9% 94.9% 93.2% 1.70%
Harbor 90.1% 91.9% 93.0% 91.8% −1.70%
Bridge 87.5% 87.9% 79.3% 62.2% 25.30%
Vehicle 92.1% 92.5% 91.2% 88.5% 3.60%

Mean AP 93.1% 93.2% 92.0% 87.8% 5.30%

When the backbone and the detection head were compressed, the mAP of Decom_bh
decreased by only 1.1%. The detection results showed that the AP of the bridge category de-
creased the most, as it decreased by 8.2%, followed by the basketball court category, which
decreased by 6.40%, and the storage tank and tennis court categories, which decreased by
3.1% and 3.2%, respectively.

The AP of the ship category and the harbor category improved by 2.2% and 2.9%,
respectively. In the NWPU VHR-10 dataset, bridges and basketball courts are large objects,
and storage tanks and tennis courts are smaller objects. We could draw an imprecise
conclusion that, although the mAP of Decom_bh decreased slightly, there was an impact on
the large and small objects and almost no impact on the AP of other classes. Of course, this
conclusion was not verified, and we will continue to verify this conjecture in future work.

When all parts of the object detection model, including the neck, were compressed,
the mAP of the model decreased by 5.30%, which was mainly caused by the AP loss
in the bridge category. The AP of the court category also decreased by 6.2%. It can be
seen that the mAP of Decom_all decreased and that the AP of some categories decreased
significantly, such as the bridge category. It is worth noting that the performance of the
ship category improved when both the backbone and the detection head were decomposed,
but its performance decreased by 6.7% when the neck was decomposed.

Table 5 shows the compression ratio and speedup ratio when different parts of the
object detection model were decomposed.

Table 5. Cost comparison of different models tested on NWPU-VHR-10 dataset.

Baseline Decom_b Decom_bh Decom_all

Parameters (M) 36.29 19.02 14.07 8.18
Computing cost (GMac) 53.3 39.2 12.19 9.33

mAP (%) 93.1 93.2 92.0 87.8
Speedup ratio 1 1.36 4.37 5.71

Compression ratio 1 1.91 2.58 4.44
mAP loss (%) 0 −0.1 1.1 5.3

As shown in Table 5, the number of parameters could be reduced by a factor of
1.91, and the computational cost could be reduced by 1.36 when only the backbone was
compressed. The mAP did not decrease at this time, even with a 0.1% improvement.

When both the backbone and the detection head were decomposed, the number of
parameters decreased by 2.58 times, the computational cost decreased by 4.37 times, and
the mAP only reduced by 1.1%. When the backbone, the head, and the neck were decom-
posed simultaneously, the number of model parameters was compressed by 4.44 times, the
acceleration ratio increased by 5.71 times, and the mAP decreased by 5.3%.
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Therefore, we could conclude that, although there was no mAP loss for Decom_b, its
compression ratio and acceleration ratio were also relatively small. Decom_bh had a slight
loss in mAP, but the compression ratio and acceleration ratio were also greatly improved.
Decom_all could achieve the optimal compression and maximum acceleration ratios, but it
also had a more considerable mAP loss. When the storage and computational resources are
not very stringent, we could consider decomposing only the backbone and the detection
head to ensure performance. When there are performance demands, we could decompose
each part of the model to obtain the optimal compression ratio and acceleration ratio.

PR curves for the three decomposition modes and baseline mode, which were tested
on the NWPU VHR-10 dataset, are shown in Figure 6.
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The precision of Decom_b was comparable to that of the baseline. The precision of
Decom_bh was slightly lower than that of the baseline, and the recall was slightly higher
than that of the baseline. The precision of Decom_all was lower than that of the baseline.

Figure 7 shows the PR curves of Decom_all for each category, which were tested on
the NWPU VHR-10 dataset.
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Figure 7. The PR curves for Decom_all tested on the NWPU VHR-10 dataset.

It can be seen that, although the mAP only decreased by 5.3%, the accuracy of some
categories decreased severely, such as the bridge category, which had a decrease of 25.3%.
Moreover, the accuracy of the ship, storage tank, tennis court, and basketball court cate-
gories showed a significant decline.

As shown in Figure 8, the 3 decomposition models converged after 120 epochs. The loss
curves of the Decom_b model and the Decom_bh model were very close after 120 epochs,
which indicated that the difference between these 2 models tested on this dataset was
minimal. The loss curve of the Decom_all model was slightly higher than the loss curves of
the other two models. However, it was still in the convergence state.

4.2.3. Results for The CAST-RS2 Dataset

In some missions, not so many categories need to be detected. For example, only
the ship and the plane categories needed to be detected in our mission. To satisfy the
requirements of our mission, we also evaluated the proposed method on the CAST-RS2
dataset. The evaluation results of the three decomposed models are shown in Table 6.
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Figure 8. The loss curves of the baseline and the three decomposed models tested on the NWPU
VHR-10 dataset.

Table 6. Detection AP (%) comparison of different models tested on the CAST-RS2 dataset. AP loss in
this table is the AP loss of Decom_all with respect to baseline.

Baseline Decom_b Decom_bh Decom_all AP loss

Plane 98.6% 98.6% 98.5% 98.4% 0.2%
Ship 92.0% 93.2% 92.3% 82.5% 9.5%

Mean AP 95.3% 95.9% 95.4% 93.4% 1.9%

Table 7 shows the compression ratio and acceleration ratio of the three decomposed
models tested on the CAST-RS2 dataset. They were slightly different from those that were
tested on the NWPU VHR-10 dataset.

Table 7. Cost comparison of different models tested on the CAST-RS2 dataset.

Baseline Decom_b Decom_bh Decom_all

Parameters (M) 36.29 18.85 14.07 8.17
Computing cost (GMac) 53.3 38.27 12.18 9.31

mAP (%) 95.3 95.9 95.4 93.4
Speedup ratio 1 1.93 4.38 5.73

Compression ratio 1 1.39 2.58 4.44
mAP loss (%) 0 −0.6 −0.1 1.9

The mAP of the baseline was 95.3%. The mAP of Decom_b improved slightly by
0.6%. The mAP of Decom_bh was 95.4%. These results demonstrated that Decom_b and
Decom_bh had no mAP loss when tested on the CAST-RS2 dataset. The mAP of Decom_all
decreased by 1.9%, mainly due to the higher AP loss in the ship category.

As shown in Figure 9, the precision of Decom_b and that of Decom_bh were slightly
different from the baseline. However, the precision of Decom_all was slightly lower than
that of the baseline. It still reached 93.4%, which met our mission requirements.
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Figure 9. Average PR curves for baseline and all classes of the three decomposed models tested on
the CAST-RS2 dataset.

Figure 10 shows the PR curves of the Decom_all model for the ship and plane cat-
egories tested on the CAST-RS2 dataset. We could draw a similar conclusion that the
proposed method worked well on the CAST-RS2 dataset and that the decomposed model
had good performance in terms of accuracy and recall.
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As shown in Figure 11, the baseline and the 3 decomposed models converged when
trained for more than 100 epochs. Although the loss of the three decomposed models was
slightly more significant than the baseline model, it was very close to the baseline.
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4.2.4. Comparison with Other Compression Methods

Some similar state-of-the-art works conduct experiments on the Resnet-50 classification
task, and we compared these methods with our method. For a fair comparison, we migrated
the proposed approach to the classification task and evaluated it on the ImageNet dataset.
The decomposed Resnet-50 was trained on the ImageNet dataset for 200 epochs using
stochastic gradient descent with a learning rate of 0.0001, weight decay of 0.0005, and
momentum of 0.9. The original network achieved a top-1 accuracy of 76.41% and a top-5
accuracy of 92.64%. The decomposed network achieved a top-1 accuracy of 75.65% and a
top-5 accuracy of 92.07%.

To quantitatively evaluate the proposed method, we compared it with nine low-
rank decomposition methods with respect to model compression on Resnet-50, including
CC [46], Stable [47], TRP [48], HODEC [49], CP-TPM [50], LTD [51], HT-2 [32], GKPD [33],
and LRDKT [52].

The compression ratio (CR), speedup ratio (SR), and performance loss (PL) were
compared. Most low-rank decomposition methods were verified on AlexNet or VGG, but
these models were unsuitable for the onboard object detection task.

Here, performance loss refers to Top-1 accuracy loss with respect to the classification
task and mAP loss with respect to the object detection task.

As shown in Table 8, the proposed method achieved the most significant compression
and speedup ratios compared to other SOTA methods.

The proposed method achieved the best compression ratio for the classification task when
tested on the ImageNet dataset compared to the similar methods mentioned above. It could
achieve up to 4.25 times the compression with merely a 0.57% decrease in Top-1 accuracy.

ThiNet-30 achieved marginally higher SR at the cost of a more significant drop in
accuracy, and it had a lower CR.

HODEC achieved a slight increase in Top-1 accuracy, but our method had a more
significant SR.

In the case of CC (C = 0.5), it had a PL that was similar to our method, but our method
had a larger CR and SR. In the case of CC (C = 0.6), all its metrics were worse than those of
our method.

Compared to Stable, TRP, CP-TPM, LTD, GKPD, ThiNet-50, and ThiNet-70, our
method outperformed these methods in all the metrics.
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The recently published HT-2 had a comparable SR, but our method had a more
significant CR and a smaller PL.

Compared to LRDKT, our method obtained a significantly lower accuracy drop with a
slightly larger CR.

Table 8. Performance comparison performed on Resnet-50.

Datasets CR SR PL (%)

Ours NWPU-VHR-10 4.44 5.73 5.30
Ours CAST-RS2 4.44 5.73 1.90
Ours ImageNet 4.25 2.90 0.57

CC (C = 0.5) [46] ImageNet 1.94 2.12 0.56
CC (C = 0.6) [46] ImageNet 2.42 2.68 1.61

Stable [47] ImageNet - 2.63 1.47
TRP [48] ImageNet - 1.80 1.84

HODEC [49] CIFAR-10 - 2.78 −0.31
CP-TPM [50] ImageNet 1.65 1.60 5.29

LTD [51] ImageNet 1.69 1.89 1.08
HT-2 [32] ImageNet 2.74 2.85 1.34

GKPD [33] CIFAR-10 2.13 - 2.04
ThiNet-30 [22] ImageNet 2.95 3.51 4.46
ThiNet-50 [22] ImageNet 2.06 2.26 1.87
ThiNet-70 [22] ImageNet 1.51 1.58 0.84

LRDKT [52] ImageNet 4.06 2.26 6.29

We also compared the proposed method with state-of-art algorithms across tasks and
datasets. For instance, CC achieved a 2.42 compression ratio and a 2.68 speedup ratio. Our
method achieved nearly two times those of CC with a slightly more significant performance loss.

Our method obtained a compression ratio comparable to LRDKT, but the speedup ratio of
our approach was 2.54 times that of LRDKT with a slightly smaller performance loss.

Compared with HODEC, the speedup ratio of our method was 2.06 times higher,
but there was a 0.31 performance improvement with HODEC and a slight performance
decrease with our approach.

Compared with Stable, TRP, and LTD, the proposed method achieved the best perfor-
mance, compression ratio, and speedup ratio.

Compared with ThiNet-30, the speedup ratio of our method was 1.63 times higher,
and the compression ratio was 1.51 times higher with a 0.84% greater performance loss.

4.2.5. Ablation Study

In this section, an ablation study was performed to illustrate how the selection of rank
affects performance, the number of parameters, and the cost of computing.

This work used VBMF to obtain the ranks of Tucker decomposition (R3, R4). Scal-
ing factor α was used to implement the scaling of the rank acquired through the VBMF
method in ablation experiments to study the performance, parameters, and computing
consumption of the model for ranks larger than and less than the VBMF rank, respectively.
In Equation (20), the scaled ranks are displayed.

R′ i = min(α× Ri Ii) i = 3, 4 (20)

Table 9 shows the results of the decomposition model Decom_all tested on the NWPU
VHR-10 dataset when α is 0.75, 0.875, 1.125, and 1.25, respectively. The PR curves are shown
in Figure 12.

As shown in Table 9, when the rank decreased by 1/8, the number of parameters
decreased by 1.1 M, the computing cost decreased by 0.5 GMac, and the mAP decreased by
10.7. When the rank decreased by 1/4, the number of parameters decreased by 3.02 M, the
computing cost decreased by 2.69 Gmac, and the mAP decreased by 17.4.
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When the rank increased by 1/8, the number of parameters increased by 2.28 M, and
the computing cost increased by 3.85 Gmac. When the rank increased by 1/4, the number
of parameters increased by 9.07 M, and the computing cost increased by 7.45 Gmac.

Table 9. Cost comparison when the VBMF ranks are scaled.

Baseline α = 0.75 α = 0.875 α = 1 α = 1.125 α = 1.25

Parameters (M) 36.29 5.16 7.08 8.18 10.46 17.25
Computing cost (Gmac) 53.3 6.64 8.83 9.33 13.18 16.78

mAP (%) 93.1 70.40 77.1 87.8 88.8 89.2
Speedup ratio 1 8.02 6.04 5.71 4.04 3.16

Compression ratio 1 7.03 5.13 4.44 3.47 2.10
mAP loss (%) 0 22.7 16 5.3 4.3 3.9
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We could conclude the following three points:

(1) When Tucker decomposition was used to decompose the object detection model, the
larger the rank, the larger the number of parameters and the computing cost, and
the better the performance of the decomposed model and vice versa. However, there
was no evidence of a linear link between the variance in rank and the variation in the
number of parameters, computing cost, or mAP.

(2) When the rank obtained through the VBMF method was reduced, its performance
appeared to drop significantly, although the number of parameters and the compu-
tational cost was reduced. Undoubtedly, we could find the optimal scaling factor
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by using a more refined scaling factor, such as 1/16, 1/32, etc., so that the model
performance decrease matches the complexity decrease. However, this would make
the time cost significantly higher.

(3) When the rank obtained using VBMF increased, although the model’s performance
was improved, the number of parameters and the computation cost appeared to
increase significantly. We could also find the optimal scaling factor by using a more
refined scaling factor so that the improvement in model performance matches the
increase in model complexity.

It can be seen that using the VBMF method to obtain the rank does not necessarily
create the best balance between the complexity and performance of the decomposition
model. However, we can use a relatively low-cost method in engineering applications to
solve the problem.

5. Discussion

The experiments’ results demonstrated that the proposed method achieved a per-
formance comparable to that of other methods. It worked well when tested on both our
actual application mission CAST-RS2 dataset and the public NWPU VHR-10 dataset. The
compression ratio and speedup ratio reached those of the SOTA methods with a slight
performance decrease.

Currently, most CNN model compression algorithms based on low-rank decomposition
have been developed and evaluated for the classification task. Still, our method was developed
for the remote sensing image object detection task, which is increasingly in demand for
onboard applications. As far as we know, this work is the first low-rank-based CNN model
compression work to be aimed at onboard object detection algorithm deployment.

The advantages of the proposed method can be summarized as follows:
First, the number of CNN layers of the decomposed model does not increase. Unlike

the previous works [30,31], the decomposition model in this paper did not increase the
number of layers of the CNN model. In practical applications, an increased number
of convolutional layers in the model decomposition process consumes computational
resources and increases the computation time. The increased convolutional layers may
become a computational bottleneck as the convolutional model is computed layer by layer.
This feature is essential for onboard applications.

Second, each part of the object detection model can be decomposed with the same
method. Only the backbone has been decomposed in previous works, such as in Resnet or
VGG, but each part of the CNN object detection model was decomposed with the same
method, including the neck and detection head.

Third, The VBMF method was adopted for rank selection, and it is an easily accessible
and highly reproducible method. These features are more important for engineering
applications than a group of optimal ranks.

The VBMF rank selection is also a drawback of the proposed method. The performance
loss may be higher than that of its optimal counterpart. The results of the ablation study
showed that we can obtain more optimal ranks by multiplying a scaling factor by the
suboptimal ranks, but it is a time-consuming procedure.

The primary reasons that prevent CNNs from being deployed onboard are that hard-
ware that predates the algorithms has insufficient performance and that many CNN models
are computationally intensive. Our goal was to attempt to obtain a scalable and general ap-
proach that could reduce the complexity of CNNs. The experimental results demonstrated
that the proposed method can be applied in our real mission to deploy an object detector
on a satellite.

In addition, there are some other potential real-world uses. One example is represented
by a CNN-based cloud detection algorithm, which is a typical mission for Earth observation
satellites. The proposed method can be used to compress a CNN cloud detector deployed
on a satellite and to select the images eligible for transmission to the ground to reduce the
amount of data to be transmitted to the ground. Another example is represented by the
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CNN-based instance segmentation and object detection algorithms deployed on airplanes
or on satellites to process the images of synthetic aperture radars (SARs). These CNN-based
SAR image processors can also be compressed using the proposed method.

6. Conclusions

In this work, we proposed an object detection model compression method based on
Tucker decomposition to solve the problem of the high storage and computing complexity
of the CNN-based object detection model that was deployed onboard. The proposed
method can effectively achieve the compression of the object detection model with Resnet
as the backbone. The compression ratio reached 4.44, and the speedup ratio reached 5.71.
The mAP only decreased by 1.9% when tested on the CAST-RS2 dataset and by 5.3% when
tested on the NWPU VHR-10 dataset.

Although the proposed method was only evaluated on the RetinaNet, it is a general
low-rank decomposition compression method that can decompose other object detection
models. In addition, although the method was proposed for object detection tasks on
satellites, it can also be applied to other mobile application tasks, such as object detection
and classification on mobile devices.

Note that adequate experiments were conducted on the CAST-RS2 and the NWPU
VHR-10 datasets. Although the experimental results showed that the proposed method
effectively achieved model compression, the VBMF method was employed to determine
the ranks of Tucker decomposition, which is not an optimal rank selection method. Other
methods could be tried to obtain optimal ranks in future works. In addition, the pro-
posed method could be combined with other compression methods, such as pruning or
quantization, to further improve the compression ratio.
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