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Abstract: Over the past few years, aviation security has turned into a vital domain as foreign object
debris (FOD) on the airport paved path possesses an enormous possible threat to airplanes at the time
of takeoff and landing. Hence, FOD’s precise identification remains significant for assuring airplane
flight security. The material features of FOD remain the very critical criteria for comprehending
the destruction rate endured by an airplane. Nevertheless, the most frequent identification systems
miss an efficient methodology for automated material identification. This study proffers a new FOD
technique centered on transfer learning and also a mainstream deep convolutional neural network.
For object detection (OD), this embraces the spatial pyramid pooling network with ResNet101 (SPPN-
RN101), which assists in concatenating the local features upon disparate scales within a similar
convolution layer with fewer position errors while identifying little objects. Additionally, Softmax
with Adam Optimizer in CNN enhances the training speed with greater identification accuracy. This
study presents FOD’s image dataset called FOD in Airports (FODA). In addition to the bounding
boxes’ principal annotations for OD, FODA gives labeled environmental scenarios. Consequently,
every annotation instance has been additionally classified into three light-level classes (bright, dim,
and dark) and two weather classes (dry and wet). The proffered SPPN-ResNet101 paradigm is
correlated to the former methodologies, and the simulation outcomes exhibit that the proffered study
executes an AP medium of 0.55 for the COCO metric, 0.97 AP for the pascal metric, and 0.83 MAP of
pascal metric.

Keywords: foreign object debris (FOD); pre-processing; aircraft; classification; augmentation; annota-
tion; resizing

MSC: 68T07

1. Introduction

Foreign object debris (FOD) remains a chief issue in the aviation maintenance industry,
which lessens the security level of the airplane. Fundamentally, FOD, which is called a for-
eign object, could lead to destruction in an airplane engine failure and human mortality [1].
An instance of such a disaster because of FOD remains the aircraft accident of French Flight
4590 in 2000 which took the life of 113 persons. The financial loss because of this crash
has been approximated to be around three to four billion USD annually. FOD indicates
that objects in the proximity of the airport, particularly on the runway, could destroy an
aircraft [2]. FOD’s instances include curved metallic bars, which led to the French Flight
4590 crash, parts separated out of airplanes or automobiles, concrete lumps out of runways,
and plastic components [3].

Presently, for lessening FOD air mishaps, four runway scrutiny systems were estab-
lished and modeled for APs such as Tarsier in the United Kingdom, FOD Finder in the
United States of America, FODetect in Israel, and IFerret in Singapore [4]. Deep learning
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(DL) technology is turned into a watchword since this remains capable of giving fine
outcomes in image classification, object detection (OD), and natural language processing. It
occurs because of the presence of huge datasets (DSs) and strong graphics processing units.

The deep learning methodology which possesses vital outcomes in image detection re-
mains the convolutional neural network (CNN). This CNN methodology (CNNM) entered
into several computer vision implementations such as IC, face authentication, semantic
segmentation, OD, and image annotation. This CNN algorithm (CNNA) is exhibited to
execute finer detection and identification since this possesses a finer resolution and strength
for FOD detection (FODD) [5,6].

Studies on CNNM for predicting air mishaps because of FOD was performed expe-
rientially, theoretically, and for the rest of the applicable intentions. The FOD materials’
institution centered upon CNN was performed by Xu et al. In 2018 if this methodology
were employed, it would have enhanced the material detection precision by 39.6% on FOD
objects (FODO). Nevertheless, the definitive background (BG) could influence the classifica-
tion betwixt metal and plastic; thus, this needs radar or infrared to subdue it. Centered upon
diverse publically attainable datasets such as ImageNet [7], Pascal VOC [8], and COCO [9],
CNNAs were validated to execute finer detection and identification when compared with
the conventional feature methodologies. Correlated with such physically modeled features,
CNN-related features possess finer resolution and strength for FODD [10].

The FOD issue comprises two assignments: target location and object classification
on the paved path. Focused on these two assignments, a new 2-phase structure has been
modeled and presented in the present study. In the initial phase, the spatial pyramid
pooling network with ResNet 101(SPPN-RN101), as a complete convolutional network
(NW), has been trained end-to-end to produce FOD position propositions. In the next
phase, the CNN classifier (CNNC) centered upon Softmax with Adam Optimizer (SAO)
was implemented to acquire the measurement criteria [11], rotation, and warping. Because
of STN’s execution, FODs can be rightly detected by produced features, regardless of image
deformation. The emphasis and progresses in the present study can be encapsulated as the
following ensues.

• A dense connection scheme has been embraced for enhancing the backbone NW’s con-
nection framework, and the identification accuracy has been optimized by reinforcing
the feature distribution and assuring the maximal data flow within the NW.

• An enhanced spatial pyramid pooling (SPP) framework has been presented for pool-
ing and concatenating the local features upon the different scales within a similar
convolutional layer with fewer position mistakes while identifying little objects.

• SPPN-RN101 needs less memory and calculations, yet it exhibits finer execution—
attains finer execution than the advanced NW paradigms while implementing the
paradigm to the feature extraction (FE) NW of an object detector—and remains com-
petent in the actual-time processing of a DNN-related to an object detector.

• A novel loss function (LF), comprising the MSE loss for position and the cross-entropy
(CE) loss for classification, has been utilized for a quicker paradigm training speed
and greater identification accuracy.

This study has been arranged as the following: Segment 2 highlights the associated
studies for the survey on scanning methodologies (SMs) for FOD alongside the survey on
neural network (NN)-related FOD. Segment 3 discusses the proffered method alongside
pre-processing (PP), OD, and classification. Segment 4 presents the proffered paradigm’s
execution with the correlation of SPPN-RN101. Finally, Segment 5 sums up a comprehensive
conclusion for the proffered paradigm.

Based on the convolution neural network, in order to improve the adaptability of
the algorithm for the detection of foreign matters in aircraft, this paper puts forward the
corresponding improved method. In view of the low image quality caused by dark and
uneven illumination in the underground, firstly, the dataset is preprocessed. Aiming at
the problem of the complex background of foreign objects and a large interference, the
training data are correctly marked, the backbone network with good effect is adopted, and
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the weighted feature fusion of feature layers with different scales is introduced, which
speeds up the convergence speed and reduces the amount of parameter calculation. Under
the condition of ensuring the detection speed, the detection accuracy has been greatly
improved.

2. Related Works

For resolving the FODD issue, a few efficient algorithms have been proffered lately [12–16].
These efficient algorithms are centered upon disparate sensors, such as the dynami-
cally scanning LiDAR system [12], mm-wave FMCW radar [14], and wideband 96 GHz
Millimeter-Wave Radar [15], which can attain fine outcomes in disparate surroundings. A
cosecant squared beam pattern in elevation and a pencil-beam pattern in azimuth, pro-
duced via folded reflectarray antenna by the phase-only control, has been assessed for
identifying objects upon the ground [16]. A multiple-sensor system (MSS), centered upon
FOD’s innate feature, has been presented for detecting and identifying FOD. Centered
upon a huge quantity of formal knowledge and a physically modeled feature extractor
(FEr), such methodologies can transition an image’s pel values (PVs) into an appropriate
inward portrayal [17,18]. Hence, such methodologies remain efficient for identifying FODs
with fewer noises yet remain inoperative for FODs with intricate definitive backgrounds
and noise [19–22].

3. Survey on SMs for FOD

Su et al. [23] present a novel data compilation methodology for producing artificial
data and assists in alleviating the data deficiency issue. Additionally, the authors proffer a
novel identification methodology named Edge Proposal NW to lessen incorrect proposition
positions and enhance identification execution. Finally, the authors performed multiple
experimentations to authenticate the efficiency of the two methodologies and a few analysis
experimentations to acquire an intense comprehension of the compiled data. Jing et al. [24]
introduced a new methodology for identifying FOD centered upon random forest (RF).
The data’s intricacy in the airfield paved the way for images, and the FOD’s versatility
turned foreign object detection features were complicated for physical modeling. To
subdue this adversity, the authors modeled the pixel visual feature (PVF), wherein weight
and receptive field were discerned via learning and acquiring the optimal PVF (OPVF).
Next, the RF’s structure utilizing the OPVF for segmenting FOD was proffered. This
proffered methodology’s efficiency has been exhibited upon the FOD DS (FODDS). The
outcomes exhibit that, when correlated with the initial RF and the DL methodology of
Deeplabv3+, this proffered methodology remains dominant in precision and recall for
FODD. Zhang et al. [25] modeled CNN with attention modules for precisely segmenting
FOs out of an intricate definitive, and lively background. This proffered NW comprised an
encoder and a decoder, and the attention mechanism was established in the decoder for
capturing affluent semantic data. The visualization outcomes confirmed that the attention
modules could concentrate on the vital areas’ features and impede the impertinent definitive
background that vitally enhanced the identification’s accuracy. The outcomes exhibit that
this proffered paradigm perfectly detects 97% of the FOs in the 1871 set of test images.
Shukla et al. [26] established a procedure that employed CNNs for material detection.
At first, this CNN paradigm trained itself with the features excerpted from the image
samples. Lastly, the classification was performed with the CNN paradigm, which learned
the classes acquired through the CNN of the materials’ disparate classes. Experiential
authentication has been performed by testing the CNNC’s accuracy in opposing diverse
DL classifiers. Ma et al. [27] implemented the CenterNet (CN) target identification AG for
the foreign object identification of coal conveying belts (CCBs) in coal mines. Provided
the CCBs’ quick running speed and the impact of definitive background and light sources
upon the objects to be examined, the CN’s enhanced AG was proffered. Initially, the depth
separable volume was presented. The goods substituted the conventional convolution that
enhanced the identification effectiveness. Simultaneously, the normalization methodology
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was enhanced to lessen the computer memory. Lastly, the weighted feature fusion (FF)
methodology was included; thereby, every layer’s features were completely employed,
and the identification accuracy was enhanced. Son et al. [27] emphasized a DL-related
foreign object identification AG (paradigm). The authors provided a synthetic methodology
for effectually obtaining DL’s training of DS, which could be employed for food quality
assessment and food production procedures. Additionally, the authors carried out data
optimization by employing a color jitter upon a synthetic DS and exhibiting that this
technique remarkably enhanced the paradigm’s illumination invariance features trained
upon synthetic DSs. The paradigm’s F-1 score (F1S), which trains almonds’ synthetic DS at
360 lux illumination intensity, attained an execution of 0.82, the same as the paradigm’s
F1S, which trained the actual DS. Furthermore, the paradigm’s F1S, which is trained with
the actual DS when joined with the SDS, attained a finer execution when compared with
the paradigm that was trained with the actual DS in the modification of illumination.

Alshammari [28] used the VGG16_CNN framework, which can be correlated with
three advanced methodologies (moU-Net, DSNet, and U-Net) concerning diverse criteria.
It was observed that the proffered VGG16_CNN attained 93.74% accuracy, 92% precision,
92.1% recall, and 67.08% F1 score. Tang et al. [29] proposed a novel method for smart
foreign object detection and the generation of data automatically. A cascaded CNN was
employed to detect foreign objects on the tobacco. The results showed notability for the
proposed model. There are solutions and methods offered in research that have a lot of
beautiful things [30–32].

The study introduces a new methodology for intelligent foreign object detection and
automated data production. A cascaded CNN for identifying foreign objects on the tobacco
pack’s surface has been proffered in this study. This cascaded NW converts the examination
into a 2-phase YOLO-related object detection comprising the tobacco pack’s localization and
the foreign object detection. For dealing with the image shortage with FOs, multiple data
optimization methodologies were established to prevent over-fitting. Additionally, a data
production method centered on homography transition and image fusion was established
for producing synthetic images with FOs.

Centered upon the CNN to enhance the AG’s adjustability to the identification of
foreign objects in the airplane, the present study presents the correlating enhanced method-
ology. Considering the low image quality due to the dark and uneven illumination in
the underground, initially, the dataset was pre-processed. Focusing on the issue of the
FO’s definitive background and big intrusion, the training data were rightly labeled, the
backbone NW with a fine impact was embraced, and the weighted feature layers’ FF having
different scales were established, which accelerated the convergence speed and lessened
the criteria computation quantity. Bound by the scenario of assuring the identification
speed, the identification accuracy was highly enhanced. Table 1 shows the comparison
between the existing and proposed methods.
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Table 1. Comparison between existing and proposed methods.

Author/Year Method Advantage Disadvantage

Noroozi et al. (2023) [16] Augment method It requires very few samples for training High cost and time consuming

Zeitler et al. (2010) [17] Arc-scanning synthetic aperture radar (ASSAR) It shows robustness to irrelevant features. Computational cost is higher

Wang et al. (2022) [18] Prototype system Easy and simple to use method A larger tagged dataset is necessary for working

Zhong et al. (2022) [19] Clutter-map constant FA rate (CMCFAR) It is robust to overfitting Slow prediction generator

Qin et al. (2021) [20] Edge identification Performs better than a single classifier Need massive objects to obtain better results

Wong et al. (2022) [21] Visual mapping-related system It reduces variance Difficult training of the network

Su et al. (2022) [23] Edge proposal It produces a more robust and accurate output
which is resistant to overfitting. Huge dependency on cluster centroids

Jing et al. (2022) [24] Pixel visual feature Can reduce the complexity in the data Vanishing gradient and garient exploding problems

Zhang et al. (2021) [25] CNN Less cost Time consuming

Shukla et al. (2021) [26] CNN Less time consuming Expensive

Ma et al. (2022) [27] CenterNet Easy and simple to use method More time

Son et al. (2022) [27] DL-related foreign object identification It requires very few samples for training Less speed
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4. System Model

At first, the images out of the DS were classified as training data and testing data. The
training data were pre-processed by rescaling and ensued by data optimization such as
smoothening, zooming, rotation, and shear. The pre-processed image was provided to
SPPN-RN101 for effectual OD. This placed the area proposition and correlation feature
map (FM) via the ROI pooling procedure for acquiring the FM block in the fixed dimension.
The identified object was classified by employing SAO. Figure 1 below illustrates FOD’s
comprehensive system framework.
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5. Image Collection (IgC)

As per the FAA, FOD generally incorporates the ensuing: ‘airplane and engine fasten-
ers (nuts, bolts, washers, safety wires, and so on), airplane parts (fuel caps, landing gear
pieces, oil sticks, metal sheets, trapdoors, and tire pieces), mechanics’ tools, food provisions,
flight line articles (nails, personnel badges, pens, pencils, luggage tags, soda tins, and so
on), apron objects (paper and plastic debris out of food and consignment pallets, baggage
pieces, and detritus out of ramp devices), runway and taxiway items (concrete and asphalt
blocks, rubber joint stuff, and paint fragments), building detritus (chunks of wood, stones,
fasteners, and assorted metal parts), plastic and/or polyethylene items, natural objects
(plant parts, wild animals, and volcanic ash), and contaminations out of winter scenarios
(snow and ice).

For generating a practicable DS, which can be implemented in AP FOD administration,
we gathered images in various scenarios. As weather and light situations in APs differ, the
FODOs’ DS should integrate this factor into incorporated data. Wet and dry surroundings
give weather variance for FOD-A IgC. For light variance, the IgC procedure integrates
bright, dim, and dark light scenarios. As every such environmental variance can be effort-
lessly excerpted to suit classification works, FOD-A incorporates classification labels for the
weather (dry and wet) and light levels (bright, dim, and dark). As snow is instantaneously
removed from of the AP surroundings, this remains inessential for integrating a snowy
class. Whatsoever moisture stays subsequent to snow is removed and must even suit
the wet class. FOD-A’s dry and wet weather classes must include a big part of weather
kinds that are actionable to APs. Substantially, the weather and light-level classification
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annotations remain alongside FOD-A’s concentration, that is, bounding box annotations
(BBAs) for OD.

6. Image Rescaling

The input image (II) has been executed with rescaling and cropping from the middle,
followed by decreasing average values (AVs) and scaling values by scale component. The
present technique of seam carving (SC) rescaling remains to eliminate pels prudently. SC
remains linear in the pels’ quantity, and rescaling remains, hence, linear in the seams’
quantity to be eliminated or included. On a mean, an image of dimension 300 × 300 to
100 × 100 was retargeted at around 2.2 s. Nevertheless, calculating tens or hundreds of
seams lively remains arduous work. For dealing with this problem, this study gives a
portrayal of the multiple-dimension image, which encodes, for an image of dimension
s, a whole range of retargeting dimensions for 1× 1 to n×m, and still adds to N′ ×M′,
while N′ > M′, M′ > n. This data possesses much less of a memory footprint that could be
calculated within a few seconds as a PP phase and enables the user to retarget an image
that is consistently lively. An index map V of dimension n×m which encodes, for every
pel, the seam index that eliminates it has been described, that is, V(i, j) = t refers to that
pel (i, j) which has been eliminated by the t-th seam elimination.

The coordinates of the object point M within the scene in the camera coordinate system
(CS) Oc −XcYcZc remain xc, yc, zc. The point M mapped to the image CS O−XYZ remains
M′, the coordinates remain (x, y), and the focal length remains f . The mapping remains a
3D to the 2D procedure; the mapping association has been exhibited in Equation (1) and
could be portrayed as a matrix format as in Equation (2).{

x = f xc
zc

y = f yc
zc

(1)

zcm =


f xc
f yc
zc

(2)

In the real scene, the image caught by the camera onsite remains a color image (CI);
hence, it remains requisite for transforming the CI into a grayscale image (GI). Every pel
within the CI is compiled of three color elements—red, blue, and green. CI’s gray degree
remains as the procedure of transforming three-element color values into a particular value
as per a specific communication. The arithmetical equation for the same remains,

Gray = 0.299R(i, j) + 0.587G(i, j) + 0.114BR(i, j) (3)

Amidst these, Gray portrays a gray value, R(i, j) portrays a red element, G(i, j) por-
trays a green element, and BR(i, j) portrays a blue element. The CI is transformed into a GI.
The finite variation computation gradient amplitude was acquired in the 2 × 2 neighbor-
hood and remains susceptible to noise, which is effortless for identifying false edges, and
the identification outcome remains coarse.

Lastly, the adaptable execution of artificially identifying the image’s edge to fix the
top and less thresholds remains bad. Centered upon this, the present work enhances
the conventional canny edge identification (CEI) AG and acquires an enhanced edge
identification methodology for the Canny operant. For an original image (OI) that is to be
processed, this remains frequently similar to signal and noise. Hence, optimizing signal
retention and removing noise remains the way to smooth an image. It needs a finer filtering
methodology to smooth the image and remove noise and enable additional processing. The
conventional CEI operant employs Gaussian filtering (GF) for smoothing the image. The
arithmetical equation for the same remains,
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G(x, y) =
1

2πσ2 exp
[

x2 + y2

2σ2

]
(4)

GF remains a form of low-pass filtering, and the variance option remains crucial;
its dimension portrays the band’s narrowness and width. The bigger the variance, the
narrower the frequency band (FB) remains that could repress the noise nicely; yet, this
might lessen the image edge’s (IE) sharpness because of the smooth transformation, and
the IE particulars might be missed. The lesser the variance, the broader the FB remains,
and additional edge particulars data could be sustained, yet the optimal noise decrement
impact could not be attained. The image has been smoothed by employing acute median
filtering. The noise within the image possesses its self-features. The acute value median
filtering AG provides the parameters to assess the image pels’ signal points and noise
points as per their features and process these. The present study employs the AV median
filtering to substitute the GF in the conventional CEI operant for smoothing the image. The
arithmetical equation of the noise assessing parameters and filtering methodology rules of
the filtering AG remain:

xij =

{
noise, xij = min

(
W
[
xij
])

, max,
(
W
[
xij
])

signal, min(W[xij] < xij < max
(
W
[
xij
]) (5)

where
[
xij
]

portrays a digitalized image, signal portrays an SP within the image, noise
portrays an NP within the image, W

[
xij
]

portrays obtaining a window procedure upon the
point xij within the image based upon the point (i, j), minW

[
xij
]

portrays the minimal value
for entire points within the window W

[
xij
]
, and W

[
0xij

]
portrays the maximal value for

entire points within the window W
[
xij
]
. The filtering methodology could be depicted by:

yij =

{
med(W

[
xij
]
), xij ∈ noise

xij, xij ∈ signal
(6)

7. Image Optimization

Subsequently, data optimization has been executed subsequent to image PP. The
proffered methodology’s chief conception remains in producing alike images to construct a
huge quantity of training data out of the OI data’s little quantity. Since the training images’
quantity impacts the IC’s execution, which is centered upon a DL NW, an enormous DS
should be made ready to train the DL NW. Even though the training data has been produced
by employing the proffered methodology that remains similar to the initial data, these
must remain non-linear to assure the diverseness needed to train the NW efficiently. The
cause regarding relatedness remains that the training images’ relatedness in a similar class
must be ensured to some extent for the classifier’s sufficient execution. Hence, this study
proffers a data optimization methodology by producing an image that remains similar
to the OI centered upon a similarity computation. Furthermore, this study aims at color
perturbation since the color can be influenced by lighting and could be modified to another
color. Thus, to produce novel images that are fairly centered upon the color perturbation
to train the NW, this study tries to indicate the transition range. The form applying this
conception, in this study regards the methodology of computing the relatedness betwixt
the initial and the produced images. Hence, the PSNR conception for data optimization
has been implemented.

10 log10

(
1

mn

m
∑

i=1

n
∑

j=1

[
I(i, j)− K(i, j)2

]
= 20 log10

(
MAX2

I
))

−PSNR
m
∑

i=1

n
∑

j=1

[
I(i, j)− K(i, j)2

]
= mn ∗ 102log10

(
MAX2

I
)
0.1PSNR

(7)
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The relatedness betwixt two images could be computed. Hence, this study presents
the methodology to produce the same images inversely regarding the PSNR equation
(PSNRE). Initially, the PSNR range outcome value was fixed. Next, by inversely computing
the PSNRE, the PVs’ perturbation range has been discerned. Correspondingly, an NI DS
comprising the training data has been produced. An image, which remains the same as the
OI, must be produced to optimize the training data. Moreover, the PVs have been normally
modified due to the lighting in the surroundings. Hence, the proffered methodology
regards color perturbation. The inverse PSNRE has been employed to attain a rational
transition. The inverse PSNR could be employed to discern the transition range concerning
the color perturbation. For producing an NI, when regarding its relatedness with the OI,
the color space’s features have been definitively indicated. By employing the proffered
methodology, the PVs have been calibrated into a single color space.

8. Object Detection

The OD NW embraces the traditional 2-phase identification procedure that has been
developed out of the SPP NW and ResNet-101, such as the FE network (FEN) for applying
the FE of high-resolution sensing images. Later, the region proposal network (RPN) was
employed to perform the candidate region proposal (RP) and acquire the -confidence RPs
and correlating coordinates on the FM attained by FEN. Finally, this places the RP and
correlating FM via the ROI pooling procedure to attain a very precise object class and
coordinates, and hence, this procedure can be called the classification.

9. ResNet-101

The ResNet-101 NW is composed of ninety-nine CLs that comprise four ResNet blocks
(RNBs) and two fully connected layers. Because of its unique block framework, it can
excerpt the deep feature within the image devoid of the vanishing gradient issue, which
makes it immensely suitable for ship objects’ FE in complex surroundings. For importing
this NW into the OD NW, this study eliminates the final 2 fully connected layers and
separates this into two portions: one has been employed as the FEN that incorporates
the initial three RNBs, and the next (the fourth RNB) is employed subsequent to the ROI
pooling procedure. The FEN configuration has been exhibited in the first part of Table 2.

Table 2. FEN configuration.

Block Output Dimension Layers Layer Criteria

Conv1 512 × 512 × 64 Convolution 7 × 7, 64, Stride = 2

Pool1 256 × 256 × 64 Max pooling 3 × 3, Stride = 2

Block1 128 × 128 × 256 Convolution group Stride = 2

Block2 64 × 64 × 512 Convolution group Stride = 2

Block3 64 × 64 × 1024 Convolution group Stride = 1

Block 4 7 × 7 × 2048 Convolution group Stride = 2

Pool2 7 × 7 × 2048 Average pooling 2 × 2, Stride = 1

Amidst these, the atrous convolution (AC) has a strong tool that could accurately
and directly manage the FMs’ filters. Consequently, the AC could excerpt multiple-scale
features (MSFs) and generalize conventional convolution procedures. The ensuing Figure 2
depicts the ResNet-101 framework that comprises two layers. the ensuing equation σ
portrays the non-linear function ReLu.

F = W2σ(W1x) (8)
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Next, via a shortcut and second ReLU, the following output (OP) y is acquired:

y = F(x, {Wi}) + x (9)

With regard to the stack or framework created by multiple stacks, if the IP is x,
the feature this learns remains H(x), and it is expected that this could learn the residual
F(x) = H(x) − x. Its initial learning feature remains F(x) + x. If the residual remains zero,
just the identity mapping is performed on the stack, and the NW execution does not drop.
This facilitates the stack for learning novel features based on the IP features for possessing
a finer execution. This can be exhibited as:

y = F(x[Wi ])
+ Wsx (10)

Presuming a unidimensional signal, the OP FM (y [a]) correlating to every position a
can be described as a function of the IP signal (x[a]) and a filter (q[k]) with length k:

y[a] = ∑k x[a + r · k]q[k] (11)

in which r portrays the atrous rate, which explicitly impacts the sampling signal’s stride.
The filter’s field of view remains additionally altered by modifying the r value. If r remains
one, the process comprises a standard convolution. The atrous convolution (AtC) module
could, hence, excerpt wider features scale if the atrous rate remains above one. In this, the
convolutional procedure’s receptive field rampantly enhances as the atrous rate remains
optimized.

Subsequent to the AtC, the encoder module embraces the depthwise separable convo-
lution. The convolution NW could lessen the computative intricacy and criteria quantity by
decaying a standard convolution into a depthwise one, i.e., depthwise convolution (DWC)
individually executes spatial convolution for every IP channel, and pointwise convolution
has been implemented to join the DWC’s OP. Subsequent to the EM, a decoder module
has been utilized to enhance the edge segmentation’s accuracy. Therefore, the last feature
particulars, alongside the edge data, could be efficiently obtained and secured by remaining
linked at lower-level and higher-level features excerpted out of the encoding-decoding
procedure. In this, the excerpted paradigm LF has been provided as:

ls
overall = ls

(ji ,ki)
+ lR (12)

in which ls
(ji ,ki)

and lR indicate the softmax (SMx) CE LF and the regularization LF (RLF).

These have been calculated in the ensuing equations:

ls
(ji ,ki)

= −∑M
i j(x) log k(x) (13)
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lR = µ ∑M
i (xi)

2 (14)

in which ji and ki indicate the labeled PV and anticipated PV at i-th training image data, M
indicates the images’ quantity in the training DS and µ indicates the regularization criterion.
The RLF could evade acute OF to serve the trained set, thus, optimizing the comprehensive
ability for paradigm generalization.

10. SPP Network

For embracing the deep NW for images or random dimensions, the final pooling
layer (PL) (for instance, pool5, subsequent to the final CL) has been substituted with an
SPP layer (SPPL). Figure 3 exhibits this methodology. In every spatial bin, every filter’s
replies are pooled (max-pooling [MP] has been employed in this study). The SPP’s Ops
remain kM-dimensional vectors with the bins’ quantity indicated as M (k remains the filters’
quantity in the final CL).
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The fixed-dimensional vectors remain the IP to the FCL. Alongside SPP, the II could
remain of whatsoever dimension. It does not merely facilitate a random aspect proportion
but facilitates random scales. The II could be rescaled to whatsoever scale (for instance,
min (w, h) = 180, 224, . . . ) and implement a similar deep NW. If the II remains at different
scales, the NW (having similar filter dimensions) would excerpt features at different
scales. For dealing with the problem of differing image dimensions in training, an array of
predetermined dimensions is taken into account. We regarded two dimensions: 180× 180
alongside 224 × 224. Instead of clipping a little 180 × 180 area, the above-mentioned
224 × 224 area was rescaled 180 × 180. Thus, the areas at both scales vary just in the
resolution and not in content/layout.

For the NW to agree to 180× 180 IPs, one more fixed-dimension-IP (180× 180) NW
was applied. The FM dimension subsequent to conv5 remained a× a = 10× 10 here. Next,
heretofore win = a/n and str = a/n were employed to apply every pyramid PL. The
SPPL’s OP of the 180-NW possesses a similar fixed length to the 224-NW. Consequently,
this 180-NW possesses precisely similar criteria as the 224-NW within every layer. That is
to say, in the course of training, the differing-IP-dimension SPP-net was applied by two
fixed-dimension NWs, which exchanged criteria.
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The global and LMFs were implemented jointly to enhance the OD’s accuracy. The
traditional SPP splis the IP FM into ai = ni × ni bins (in which ai portrays the bins’ quantity
in the feature pyramid’s [FP] ith layer) as per the scales, which portray FP’s disparate layers.
The FMs were pooled by the sliding windows (SWs), whose dimensions remained similar
to the bins. The ai.d dimensional feature vector, with d as the filter’s quantity, was acquired
to remain the FCL’s IP. The novel SPP block has 3 MP layers (MPLs) presented between the
deep coupling block and the OD layer within the NW. The IP FMs’ quantity was lessened
from 1024 to 512 by employing the 1 × 1 convolution. Subsequent to this, the FMs were
pooled in different scales. In Equation (15), sizepool × sizepool indicates the SWs dimension,
and sizefmap × sizefmap indicates the FMs’ dimension.

sizepool =

[ sizefmap

ni

]
(15)

Consider ni = 1, 2, 3 and pool the FMs by the disparate SWs whose dimensions remain[ sizefmap
3

]
∗
[ sizefmap

3

]
,
[ sizefmap

2

]
∗
[ sizefmap

2

]
and

[ sizefmap
1

]
∗
[ sizefmap

1

]
accordingly; thus, the

pooling stride remains entirely one. The padding was employed for maintaining OP FMs’

consistent dimension; thus, 3 FMs with
sizefmap

1 ∗ sizefmap
1 ∗ 512 could be acquired. The NW’s

final portion remains the OD block, where the DC block’s OP FMs with a high resolution
were rebuilt and concatenated with the SPP block’s OP FMs with a low resolution.

Next, these FMs were convoluted by the 1× 1× (K× (5× C)) convolution for ac-
quiring the FMs of S × S × (K× (5 + C)) for OD. The SPPN-RN101′s anticipations for
every bounding box (BB) could be indicated by b =

[
bx, by, bw, bh, bc

]T , in which
[
bx, by

]
represented the box’s middle coordinates, bw and bh represented the box’s breadth and
length, and bc represented confidence. The offsets tx, ty from the image’s upper left corner
to the grid middle in bx, by, and bc, were constricted to [0, 1] by the sigmoid function.

Likewise, BB’s ground truth (GT) could be indicated as g =
[
gx, gy, gw, gh, gc

]T . Every BB’s
classification outcome remained class = [class1, class2, . . . classc]

T , the classification’s GT
remained Pr(Classl)l ∈ C, and the anticipated probability which the object appertained to
the l class remained Pr(Classl)l ∈ C.

11. SAO-Related Classification

For speeding up the conventional Adam optimizer (AO) within the softmax layer opti-
mization procedure, an AO with a power-exponential learning rate (PELR) was employed
to train the CNN paradigm, in which the iteration trajectory and phase dimension were
managed by the PELR for hitting the optima. The PELR could be modified adaptably as
per the former phase’s learning rate (LR) and the gradient association between the former
phase and the present phase. The former gradient value (GV) was employed to modify
the correction factor to reach the adaptable modification’s requisites. It assists in adjusting
the LR within a little range, every iteration’s criteria remain comparably steady, and the
learning phase was chosen as per the suitable GV for modifying the NW paradigm’s con-
vergence performance (CvP) and assuring the NW paradigm’s steadiness and efficiency.
AO remains an AG, which executes a stage-by-stage optimization on a haphazard objective
function (ObF). The gradient’s updated rules for the criteria remain:

θt+1 = θt −
P√
v′t+ε

·m′t (16)

m′t = β1mt−1 + (1− β1)gt (17)

vt= β1vt−1 + (1− β2)g2
t (18)

in which θt = θt+1 portrays the obF, t portrays the time criterion, β1, β2 ∈ [0, 1) ∈ [0, 1)
portrays the shifting average index’s decomposition rate, η portrays the LR, ε portrays a
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constant criterion ε = 0.9999, and m′t and v′t portray the first-order moment (FOM) and
second-order moment (SOM) assessment subsequent to the gradient alteration accordingly.
When mt and vt were initialized to the 0 vector, these were offset to 0. It remains requisite
for correcting the deviation where m′t and v′t would be rectified by:

m′t =
1mt

1− βt
1

, v′t =
vt

1− βt
2

(19)

In the initial AO AG, the FOM to the non-middle SOM assessment was altered, and the
offset was lessened. Nevertheless, in the procedure of rolling bearing fault detection and
classification, the AG possessed a weak impact in fitting the paradigm’s convergence state.
A correction feature was included in the LR for dealing with the initial AO AG’s weaknesses.
The downward trends’ PELR was employed as the fundamental, and the former phase’s
GV was employed to adjust this to reach the adaptable modification requisites to alter the
NW paradigm’s CvP. The paradigm for PELR remains:

µ = µ0m−k (20)

in which µ0 denotes original LR µ0 = 0.1, k denotes the hyper-criterion, and m denotes the
iterative intermediate where m has been discerned by the iterations’ quantity. The maximal
iterations’ quantity has been described by:

m = 1 +
t
R

(21)

in which t indicates the iteration quantity and R indicates the iterations’ maximal quantity.
If Equation (21) is joined with Equation (22), the LR update format remains:

µ(t) = µ0

[
1 +

t
R

]−k
(22)

The CNN paradigm centered upon identity mapping was constructed. The paradigm
comprises ten CLs, one MPL, and one FCL. Subsequent to the FCL, the enhanced AO
was employed for updating and computing the NW criteria that impacted the paradigm’s
training and OP for turning them approximately or hitting the optimum value. Lastly, the
data were sent via the SMx classifier, and the correlating classification outcomes remained
the OP.

12. Performance Analysis

DS description—Images confined within the material recognition (MR) DS were in a
zoomed-in form. This remains similar to the images gathered in the course of implementing
FODD works that would not be zoomed into objects; hence, FOD-A presents images in a
zoomed-out form with BBs. Moreover, the MR DS comprises around three thousand object
instances, whereas the FOD-A DS comprises above thirty thousand object instances. Briefly,
the FOD-A DS remains very suitable for FODD works since this comprises annotation
formats finely matched to the AP’s surroundings (that is, BB annotations alongside weather
and light classification annotations), many other object instances, and depictive object
classes. Figure 4 shows a sample dataset provided by Everingham et al. [8].
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Figure 4. Sample dataset.

13. Comparative Analysis

In Figure 5a, for the adjustable clamp, the AP is 93.01%. In Figure 5b for the class
AdjustableWrench, the AP is 77.7%. In Figure 5c, for the class battery, the AP is 95.34%.
In Figure 5d for class Bolt, the AP is 98.22%. In Figure 5e for class BoltNutset, the AP is
87.74%. In Figure 5f for class Boltwashet, the AP is 89.99%. When analyzing Figure 5g, for
the class Clamppart, the AP is 86.59%. in Figure 5h, for the class cutter, the AP is 98.75%.
In Figure 5i, for the class Fuel Cap, the AP is 97.99%, and for the class hammer, the AP is
89.92%. As shown in Figure 5j and, for the hose, the AP is 64.29%, as shown in Figure 5k.
For the class label, the AP is 90.23%, as shown in Figure 5l. The precision and recall curve
is shown in Figure 6.
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Wrench (c) Battery (d) Bolt (e) BoltNutSet (f) BoltWasher (g) Clamppart (h) Cutter (i) FuelCamp
(j) Hammer (k) Hose (l) Labe.
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14. Conclusions

FOD MR remains an arduous and vital job, which should be executed to assure the
AP’s security. The normal MR DS was not implemented to FOD MR. Thus, a novel FOD DS
was built in this research work. The FOD DS remains disparate from the former MR DSs,
wherein the entire training and testing samples were gathered in outdoor surroundings,
for instance, on a runway, taxiway, or campus. This study correlates the two renowned
paradigms’ execution with the novel DS. It has been observed that the SPPN-RN101
accomplishes this. A prospective study would examine feasible techniques for enhancing
image segmentation and differentiating the FOs. The limitation of this work is moderate
accuracy. The rest of the technologies, such as radar or infrared imaging, might be needed
for finer detection outcomes.
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