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Abstract: The evaluation of objective functions and component reliability in the optimisation of
structural-acoustic systems with random and interval variables is computationally expensive, es-
pecially when strong nonlinearity exhibits between the response and input variables. To reduce
the computational cost and improve the computational efficiency, a novel anisotropy-based adap-
tive polynomial chaos (ABAPC) expansion method was developed in this study. In ABAPC, the
anisotropy-based polynomial chaos expansion, namely the retained order of polynomial chaos ex-
pansion (PCE) differs from each variable, is used to construct the initial surrogate model instead of
first-order polynomial chaos expansion in conventional methods. Then, an anisotropy-based adaptive
basis growth strategy was developed to reduce the estimation of the coefficients of the polynomial
chaos expansion method and increase its computational efficiency. Finally, to solve problems with
probabilistic and interval parameters, an adaptive basis truncation strategy was introduced and
implemented. Using the ABAPC method, the computational cost of reliability-based design optimi-
sation for structural-acoustic systems can be efficiently reduced. The effectiveness of the proposed
method were demonstrated by solving two numerical examples and optimisation problems of a
structural-acoustic system.

Keywords: anisotropy-based polynomial chaos; reliability-based optimization; hybrid uncertainty;
structural-acoustic system

MSC: 65D40; 65D15

1. Introduction

Reliability-based design optimisation (RBDO) has attracted increasing attention in
the field of structural-acoustic reliability. Structural-acoustic systems refer to complex
systems comprising structures, coupled interfaces, and acoustic cavities [1]. In engineering
practice, unavoidable uncertainties, such as initial conditions, external excitation, material
characteristics, boundary conditions, and external environment, exist [2]. Accordingly,
the RBDO of structural-acoustic systems with uncertain parameters has recently garnered
extensive attention.

Reliability optimisation requires an appropriate uncertain model to quantify the
uncertainty parameters. Recently, reliability optimisation models for structural-acoustic
systems have been built to handle uncertain information, including probability models,
interval models, and hybrid probabilistic and interval models. In the case of probability
models, the uncertainty should be represented by a precise probability distribution of an
uncertain parameter made available from many samples. In the case of interval models, it
is not necessary to obtain the exact distribution function; instead, it is sufficient to represent
the uncertainty of an uncertain parameter by its upper and lower bounds [3]. In engineering
practice, both uncertain models that mentioned above are common. This study mainly
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investigates reliability analysis and optimisation problems under hybrid probabilistic and
interval models.

RBDO with hybrid probabilistic and interval parameters is comparatively complex
and can be considered a three-loop optimisation problem. The inner and middle loops
help evaluate the objective function and limit state function, respectively, and analyse
their probabilistic statistics in extreme cases. The computational burden in each iteration
is considerable due to the large number of uncertainty analyses of the inner and middle
loops [4]. Two common methods have been employed to increase the computational
efficiency of RBDO with probabilistic and interval variables. One of them is decoupling,
which converts a nested optimisation problem into a single-loop optimisation problem. Du
et al. [5] made an early attempt to convert a hybrid RBDO problem of the inner loop into a
single-loop optimisation problem. This method was further extended to a hybrid RBDO
problem with dependent interval variables [6]. Subsequently, Kang and Luo et al. [7,8]
developed a valid single-loop decoupling method based on linearisation and optimality
conditions for performance functions. Torii and Lopez et al. [9] proposed a decoupling
sum method that can be applied to different reliability analysis methods based on the
sequence optimisation and reliability evaluation method. Wang C et al. [10] proposed a
novel reliability-based optimization method for thermal structure with hybrid random,
interval, and fuzzy parameters.

The computational burden in uncertain optimisation can also be reduced by increasing
the computational efficiency of probabilistic interval analyses. The efficiency problem in
an uncertain analysis with probabilistic and interval variables is typically solved using
the perturbation method and polynomial chaos expansion (PCE) method. Xia et al. [1]
utilised an uncertain analysis method based on the perturbation method to solve the
objective function and reliability constraint, effectively reducing the computational bur-
den in the RBDO of structural-acoustic systems. Although the perturbation method is
computationally efficient, it has limitations in the case of structural-acoustic problems
with less uncertainty [11]. Generally, the polynomial expansion method can be divided
into the Kriging model expansion, gPC expansion, Chebyshev expansion, and arbitrary
PCE methods. Yang and Liu et al. [12] proposed a combined Monte Carlo simulation
(RS-MCS) method, and a novel optimisation method for Karush–Kuhn–Tucker conditions
was proposed to increase the efficiency of the reliability analysis. Wu et al. [13,14] used
the gPC expansion and Chebyshev expansion methods to construct a polynomial basis
with probabilistic and interval parameters, respectively, and calculated the response of a
hybrid uncertain structural-acoustic system. However, because of the limitations of the
gPC expansion method itself, a hybrid uncertain problem with an arbitrary probability
density function (PDF) cannot be solved. Yin et al. [15] integrated the aPC expansion with
the Chebyshev expansion method to improve the computational accuracy when solving
a hybrid uncertainty problem with arbitrary PDFs. Hamdia K M et al. [16] operate the
application of PCEs in sensitivity analysis for the mechanics of tendons and ligaments.
Compared with the perturbation method and other surrogate model methods, the arbitrary
PCE method has the following advantages. First, the statistical characteristics of a system’s
response can be acquired using its expansion coefficient, avoiding complex probability inte-
gration; second, surrogate models with different fidelity requirements can be established
through polynomial optimisation.

The calculation efficiency in solving uncertain engineering problems using the arbi-
trary PCE method mainly depends on the solution efficiency of the expansion coefficient.
The original approach to solving the expansion coefficient involves applying the total-order
expansion method, in which the polynomial expansion orders are identical for different
variables. The novel Legendre polynomial expansion method developed by Wang et al. [17]
utilises the full-order expansion method and Latin hypercube sampling to compute the
expansion coefficients. However, this approach has a comparatively higher computational
cost than the Taylor-based approach. A sequential sampling strategy has been developed
to increase the efficiency of PCE sampling. Wu et al. [13] used the total-order expansion
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method and sequential sampling to propose a novel high-order polynomial surrogate
model, which would be unstable if other sampling methods were used instead of the
Chebyshev sampling method. Zhu et al. [18] used the total-order expansion method and
sparse-grid sequential sampling to develop a novel sparse-polynomial expansion method.
The computational efficiency was significantly improved without compromising the pre-
cision using this method. However, none of these methods are suitable for cases where
the number of variables is extremely large, and the expansion orders vary significantly for
different variables. In a structural-acoustic system, the sensitivity of the system response to
different parameters varies significantly. For a structural-acoustic problem, Yin et al. [19]
adopted a tensor-product method to calculate the expansion coefficients; this method can
retain different polynomial expansion orders for different variables. However, with an
increase in the number of input parameters, the computational cost quickly increases,
making it unsuitable for multivariate cases. To further reduce the computational cost,
Thapa et al. [20] proposed a novel method to obtain stochastic models of responses based
on an adaptive algorithm. This method firstly constructs the initial surrogate model N0

by first-order expansion, then constructs the high-order surrogate model N1 by adaptive
convergence criterion. The advantages of the adaptive PCE include the following: (1) The
surrogate model of the adaptive PCE method is simple and convenient for optimization; (2)
less sampling points are required to construct the surrogate model, which means higher
computational efficiency can be obtained. Meanwhile, owing to its substantial computa-
tional savings, the adaptive PCE has been widely implemented in many applications, such
as nonlinear random vibration analysis [21], nonintrusive projection [21–25], stochastic
finite element analysis [26,27], and benchmark problems [20].

Clearly, many uncertainty analysis algorithms have been proposed to increase the
calculation efficiency of uncertain optimisation [28,29], particularly the adaptive PCE
method, which has a high calculation accuracy and efficiency. However, when constructing
a surrogate model for a system with high-dimension variables and strong nonlinearity,
the conventional adaptive PCE will be also inefficient. The main reason is that lots of
polynomial update iterations are required from the construction of initial surrogate model
N0 to the final high-order surrogate model N1, while the computational burden of each
iteration is relatively large for uncertainty problem with high-dimension variables. It
should be noted that strong nonlinearity usually exhibits between the system response
of the actual structural-acoustic problem and part of variables. Therefore, it is eagerly to
develop a method for uncertainty analysis and reliability-based optimization for structural-
acoustic problems.

In this paper, a novel anisotropy-based adaptive PCE method, called ABAPC, was
developed to address the computational cost and accuracy problems in the reliability
optimisation of structural-acoustic systems. Based on this method, hybrid uncertainty
quantification and RBDO were performed on a structural-acoustic system. First, an adap-
tive PCE was suggested to reduce unnecessary computations in the polynomial expansion
mode. Subsequently, an anisotropy-based initial surrogate model was proposed to handle
the anisotropy of structural-acoustic systems and further reduce the computational burden.
Thus, to decrease the number of polynomial basis terms and effectively increase the com-
putational efficiency in the reliability optimisation of structural-acoustic systems, a novel
adaptive algorithm was implemented.

The remainder of this paper is organised as follows. In Section 2, a moment-based
arbitrary polynomial chaos (MAPC) approach for hybrid uncertainty quantification is
described. In Section 3, we propose an anisotropy-based adaptive PCE method, and in
Section 4, we discuss the application of this method to the RBDO of a structural-acoustic
system. In Section 5, the efficiency and effectiveness of the ABAPC are demonstrated by
solving two numerical examples and optimisation problems of a structural-acoustic system.
Finally, the conclusions are presented in Section 6.
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2. Moment-Based Arbitrary Polynomial Chaos Expansion for Hybrid Uncertainty
Quantification
2.1. MAPC Approximation

The PCE can be understood as a process of approximating the uncertainty by utilising
the sum of the orthogonal polynomials with independent variables [30]. The PCE for
approximating a function can be expressed as follows:

F(x) =
N

∑
i=0

fi ϕi(x) (1)

where the retained order of an arbitrary PCE is represented by N, and ϕi(x) represents the
polynomial basis of order I, which is different for random variables with different PDFs.
The term fi is the expansion coefficient of an arbitrary PCE that must be estimated.

The orthogonal polynomial of the MAPC approximation obtained by the recurrence
relationship is expressed as follows:

bj ϕj(x) = (x− aj)ϕj−1(x) + bj−1 ϕj−2(x) (2)

where aj and bj denote recurrence coefficients. A more detailed derivation can be found
in [31].

According to the Gaussian integration formula, the expansion coefficient fi in Equa-
tion (1) can be expressed as follows:

fi =
1
hi

∫
R

F(x)ϕi(x)ω(x)dx =
1
hi

m

∑
i=1

F(x̂)ϕi(x̂)ωi (3)

where x̂ represents the Gauss integration nodes, and m denotes the total number. ωi
represents the Gaussian integration weights. Additionally, there is hi =

〈
ϕ2

i (x)
〉
, where x̂

and ωi can be calculated using the eigenvalue decomposition of the Jacobi matrix Jn, which
is expressed as follows:

Jn =



a0 b1

b1 a1 b2
. . .

b2
. . .
. . . an−2 bn−1

bn−1 an−1


(4)

The eigenvalue decomposition of Jn can be expressed as follows:

QT JnQ =diag(λ1, λ2, · · · , λn)

QTQ =I
(5)

where I denotes the n× n dimensional identity matrix. Therefore, the nodes and weights
can be expressed as follows:

xi = λi, ωi = b0q2
i,1, i = 1, 2, . . . (6)

where qi,1 denotes the first element of the ith column vector in Q. The interval variable
is treated as a random variable evenly distributed over the interval, and its expansion
coefficient and polynomial basis can be obtained by referring to Equations (1)–(6).
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2.2. Moment-Based Arbitrary Polynomial Chaos Expansion for Hybrid Analysis

For multi-dimensional uncertain problems, F(x) with interval and random variables
can be approximated as follows:

F = F(xI , xR) =
N1

∑
i1=0
· · ·

NL

∑
iL=0

fi1,··· ,iL ϕi1,··· ,iL1

(
xI
)

ϕiL1+1,··· ,iL2

(
xR
)

(7)

where x = [xR, xI ] represents all the uncertain variables, xR
j (j = 1, 2, . . . , L1) denotes the

j-th random variable, and xI
j (j = 1, 2, . . . , L2) is the j-th interval variable. L1 and L2 denote

the numbers of random and interval variables, respectively. The retained order of the
MAPC expansion is denoted by Nj(j = 1, 2, · · · , L), where fi1,··· ,iL represents the expansion
coefficient, and ϕi1,··· ,iL(x) denotes the L-dimension polynomial basis, which is defined as
follows:

ϕi1,··· ,iL1
(xR) =

L1

∏
k=1

ϕik (xR
k ); ϕiL1+1,··· ,iL(x

I) =
L

∏
k=L1+1

ϕik (xI
k) (8)

where the ik-order polynomial basis for random variables ϕik (xR
k ) can be calculated using

the moment of the random variables. ϕik (xI
k) represents the ik-order polynomial basis

with an interval variable, which is orthogonal to the weight function of the Chebyshev
polynomial. According to the above equation, as the number of variables increases, the
computational cost of constructing a polynomial basis increases exponentially.

By using the Gauss integration, fi1,··· ,iL can be obtained and expressed as follows:

fi1,··· ,iL = 1
h1×···×hL

∫
R · · ·

∫
R F(x)ϕi1,...,iL(x)ωi1,...,iL(x)dx

= 1
h1×···×hL

M1
∑

j1=1
· · ·

ML
∑

jL=1
Y(x̂I , x̂R)ϕi1,...,iL1

(x̂I)ϕiL1+1,...,iL(x̂R)ωi1,...,iL

(9)

where x̂I and x̂R represent the Gauss integration nodes for xR and xI , respectively. Mk(k =
1, 2, . . . , L) represents the total number of integration nodes with respect to xk.

The total number of integration points to estimate fi1,··· ,iL can be determined by
the following:

Ntot = (N1 + 1)× (N2 + 1)× · · · × (NL + 1) (10)

From the above formula, we find that Ntot and fi1,··· ,iL increase exponentially with
the increase in the retained order and number of variables. Thus, the computation of the
coefficients of an arbitrary PCE using the Gauss integration technique for high-order and
multi-dimensional problems is extremely cumbersome and time-consuming. A simplex
format was introduced into the arbitrary PCE to increase the efficiency and precision of
high-order orthogonal PCE for multi-dimensional problems. Equation (7) can be rewritten
as follows:

F = F(xI , xR) = ∑
0≤i1+···+iL1+···+iL≤n

fi1,··· ,iL ϕi1,··· ,iL1

(
xI
)

ϕiL1+1,··· ,iL

(
xR
)

, i1, . . . , iL = 0, 1, . . . , n. (11)

Thus, the number of expansion coefficients is reduced to the following:

Nc(n, L) =
(n + L)!

L!n!
(12)

The least-squares method (LSM) can be used to calculate the coefficients of the polyno-
mials. Thus, Equation (11) can be rewritten as follows:

F(x) = βTα (13)

β = [β1 · · · βs]
T = [ f0···0, · · · , fi1···iL ]

T , 0 ≤ i1 + · · ·+ iL ≤ n (14)
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α = [α1 · · · αs]
T = [ϕ0···0, · · · , ϕi1···iL ]

T (15)

where α represents a polynomial basis vector, β represents a coefficient vector, s denotes
the number of expansion coefficients, and s = Nc. β is obtained by LSA, which can be
expressed as in Equation (16):

β =
(

ATA
)−1

ATY (16)

Y = [F(xI
1, xR

1 ) · · · F(xI
s , xR

s )], s = NC (17)

A =

α1(xI
1, xR

1 ) · · · αs(xI
1, xR

1 )
...

. . .
...

α1(xI
s , xR

s ) · · · αs(xI
s , xR

s )

, s = NC (18)

where α1(xI
1, xR

1 ), . . . , αs(xI
s , xR

s ) denotes all the sampling points.
Therefore, it is apparent that the precision and efficiency of the PCE method based

on the sequential sampling scheme are significantly influenced by the sampling schemes.
Conventionally, Latin hypercube sampling [32] has been easily implemented; however,
it has drawbacks, such as lack of flexibility and instability. To increase the efficiency and
stability of PCE sampling, a sequential sampling strategy was developed. However, the
number of candidates increases exponentially. Compared with the previous scheme, the
square grid sampling scheme can help improve the computational efficiency. However, its
accuracy is not as stable as that of the former. Therefore, the sequential adaptive sampling
strategy is introduced in the next section.

3. Anisotropy-Based Adaptive Polynomial Chaos Expansion Method

The response of an uncertain structural-acoustic system exhibits anisotropy, and the
complexity of each dimension varies significantly. Existing expansion methods are in-
efficient in solving multi-dimensional and strongly anisotropic problems. Moreover, an
excessive number of polynomial basis terms can increase the computational burden of
optimisation when using a surrogate model. To solve the above problems, the proposed
method employs the following steps. First, the anisotropy-based polynomial chaos expan-
sion is used to construct the initial surrogate model in high-order and multi-dimensional
problems. Second, an anisotropy-based adaptive basis growth strategy is proposed based
on the adaptive strategy to reduce the estimation for the coefficients of the PCE method
and improve the computational efficiency of the PCE method. Finally, an adaptive basis
truncation strategy based on the contribution of the variance was introduced and imple-
mented to solve problems with probabilistic and interval parameters. The specific steps of
the ABAPC method proposed in this section are as follows.

3.1. Anisotropy-Based Initial Surrogate Model

Treating each dimension isotropically means that each dimension is treated in the
same manner. However, this assumption only applies to problems in which there is
little difference in the complexity of each dimension. In other words, if the problem
exhibits significant differences between dimensions, the method requires a large number of
polynomial update iterations to converge. Thus, it is desirable to consider the anisotropy in
the PCE-based adaptive basis truncation strategy [33,34]. Therefore, an anisotropy-based
initial surrogate model was proposed in this section to address this problem.

The anisotropy-based initial surrogate model can be built by obtaining an initial
expansion-order vector that considers the complexity of each dimension, which can be
defined as follows:

N0 =
{

n1
0, n2

0, · · · , nl
0
}

(19)

where the initial expansion order of the rth variable in the anisotropy-based initial surrogate
model is defined as n0

r (r = 1, . . . , l), and N0 denotes the l-dimensional initial expansion
order vector. Therefore, based on the idea that transforms a multi-dimensional problem
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into a one-dimensional problem, the main steps for obtaining the initial expansion order of
each dimension in the PCE method are as follows:

Step 1: Input dimension r of the PCE and treat the other dimensions as constants;
Step 2: Obtain the response of the PCE by the method described in Section 2.2.;
Step 3: Calculate the relative errors in the expectation and variance by Equations (20)

and (21);
Step 4: If the maximum value of the errors is less than the given tolerance ertol , stop
Otherwise, the order n0

r is increased to n0
r + 1, and Steps 3 and 4 are repeated until the

error is satisfied;
Step 5: Steps 1–4 are repeated until all the initial expansion orders for l dimensions are

obtained. Output the initial expansion-order vector N0 =
{

n1
0, n2

0, · · · , nl
0}.

Here, the relative errors in the expectation and variance can be determined as follows:

erσ =

∣∣∣∣∣σ2 − σ2
re f

σ2
re f

∣∣∣∣∣ (20)

erµ =

∣∣∣∣∣µ− µre f

µre f

∣∣∣∣∣ (21)

In Equations (20) and (21), σ2
re f and µre f represent the reference results obtained using

the Monte Carlo method (MCM). The number of sampling points for the random (interval)
variables of the MCM was set to 10,000. The number of sampling points for obtaining σ
is determined by the expansion order. The precision of the PCE method was obtained by
iteratively increasing the order of the PCE until the maximum value of erσ and erµ is less
than the given tolerance ertol , which was set as 10−2 in this study. Further applications of
the anisotropy-based initial surrogate model are presented in the next section.

3.2. Anisotropy-Based Adaptive Basis Growth

The adaptive enrichment of the polynomial basis proposed in [20] treats each dimen-
sion isotropically, leading to unnecessary computations for problems with strong anisotropy.
To reduce the estimation of the coefficients of the PCE method and increase its efficiency, a
weight vector based on the anisotropy-based initial surrogate model was proposed. A new
basis set was obtained by adaptively adding a new polynomial basis based on the weight
vector.

Iteratively increasing the order of the PCE is the conventional method for enhancing
the precision of the PCE approach with a given number of samples. Therefore, a PCE model
with order Np+1 can be constructed based on existing available information of the PCE
method with the order Np. Subsequently, the number of additional polynomial basis terms
added can be represented by Num.(ϕincrease) and is expressed in Equation (22).

Num.(ϕincrease) = Num.(ϕn
Np+1

)− Num.(ϕn
Np

) (22)

Here, Num.() represents the cardinality of the set. Num.(ϕincrease) increases exponen-
tially with increasing retained order of the PCE, which significantly increases the computa-
tional amount for obtaining the response of an uncertain structural-acoustic system/(multi-
dimensional problems). To mitigate this effect, a polynomial basis can be selected a priori
by implementing specific strategies. However, because the rank and sparsity of solutions
are typically not known in advance, the importance of the polynomial basis cannot be
realized in advance. Therefore, an adaptive enrichment basis polynomial is required to
extract the maximum amount of information from a given number of samples.

The adaptive enrichment of the old basis set of order Np is achieved by adaptively
adding a new polynomial basis in blocks to obtain new basis sets of order Np+1, instead
of adding all the polynomials of ϕincrease. The number of polynomial basis terms in each
block Rn is given by Equation (19). Each chunk is assigned an equal number of polynomial
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basis terms. However, the last one contains leftover basis polynomials if this requirement
cannot be satisfied. The total number of chunks of ϕincrease represented by Rs is given by
Equation (24).

Rn = log(n)×
√

Num.(ϕincrease) (23)

Rs =

⌈
Num.(ϕincrease)

Rn

⌉
(24)

Here, de represents the real part of the number. The basis set of the early adaptive
selection algorithm, proposed by A at al. [20], was gradually enriched by adding Rn new
polynomials at a time. In this study, the basis set of the PCE method wars updated by
adding a group of polynomial basis ϕASMAPC

add to the old basis set ϕASMAPC
old , obtaining a

new set ϕASMAPC
new , which is expressed as follows:

ϕASMAPC
new = ϕASMAPC

old ∪ ϕASMAPC
add (25)

In the adaptive enrichment of a polynomial basis based on the adaptive basis trunca-
tion strategy, each dimension is treated isotropically. The expansion order of each variable
in each iteration is increased by one level. To consider the anisotropy in the operation of
adaptive enrichment,ω = {ω1 , ω2, · · · , ωm} can be defined as an l-dimensional weight
vector for each variable. The anisotropy-based adaptive enrichment of the existing basis
set, which includes a polynomial basis with the initial expansion order N0, is to obtain new
basis set with an updated order N by adaptively adding a new polynomial basis based
on ω = {ω1 , ω2, · · · , ωl}. After anisotropy-based adaptive enrichment of the existing
expansion-order vector, the updated expansion-order vector is defined as follows:

N = N0 +

[
m× 1

ω
×ω

]
m = 1, · · · , Nmax (26)

ωr =
n0

r
l

∑
r=1

n0
r

, r = 1, 2, · · · , l (27)

where N denotes the updated l-dimensional expansion-order vector. The term m represents
the expansion order to be increased for each variable, ω = max1≤r≤l ωr [ ] represents the
integral part of the value in Equation (26), and the weight vectorω can be obtained from
Equation (27).

As mentioned above, the anisotropic method can account for problems in which each
dimension is not equally important by appropriately setting the weight vector. This can
be explained by the fact that, the higher the weight value in the anisotropic formula, the
higher the importance. For example, the isotropic adaptive basis truncation strategy is a
special case for the anisotropic method. The initial expansion orders of each dimension and
components of the weight vectors are equal. This implies ω1 = ω2 = · · · = ωl . In other
words, the anisotropic method can be treated as a more generalised version of the isotropic
adaptive-basis truncation strategy.

For instance, a four-dimensional problem is considered as in Equation (28):

f (x) = ex1 + x1
4 + x2 × x3 + x4 (28)

where xy(y = 1, 2, · · · , 4) represents the independent uncertain parameters, which can
be assumed as a linear function of the random variable. Table 1 presents the uncertainty
information and deformed function of each uncertain parameter. In this case, each random
variable is uniformly distributed in the range [−1, 1].
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Table 1. Uncertainty information and deformed function of each uncertain parameter.

Uncertain
Parameters

Uncertain
Information Deformed Function f0

i (xi) er n0
i

x1 x1 = 1 + 0.3ξ1 ex1 + x1
4 + 10 2.6× 10−10 3

x2 x2= 2 + 0.6ξ2 7.72 + 3x2 1.9× 10−15 1
x3 x3= 3 + 0.9ξ3 7.72 + 2x3 2.1× 10−15 1
x4 x4= 4 + 1.2ξ4 9.72 + x4 5.6× 10−15 1

From Table 1, the order vector of the initial expansion order can be set to N0= {3, 1, 1, 1
}

.
The weight vectorω = {50%, 16.7%, 16.7%, 16.7%} can be calculated using Equation (23).
Table 2 presents the order vectors of the proposed approach and the isotropic adaptive
polynomial chaos expansion (IAPCE) approach updated as an increase in m. The num-
ber of sampling points can be set as 1.5 times the number of basis terms before the basis
truncation operation.

Table 2. Updated order vectors of the proposed method and IAPCE method.

m Method Retained Order
Vector

Number of
Sampling Points

Number of
Basis Terms

0 ABAPC method {3,1,1,1} 32 8
IAPCE method {3,3,3,3} 256 22

1 ABAPC method {4,1,1,1} 40 15
IAPCE method {4,4,4,4} 625 15

2 ABAPC method {5,1,1,1} 48 8
IAPCE method {5,5,5,5} 1296 20

3 ABAPC method {6,2,2,2} 189 11
IAPCE method {6,6,6,6} 2501 11

As shown in Table 2, the sampling points in the ABAPC method are fewer than those in
the IAPCE method. The advantages of the proposed method become increasingly evident
with increasing number of variables.

Traditional arbitrary PCE method requires extensive calculation of the expansion
coefficients. However, the adaptive expansion method can require a smaller number
of estimates for the coefficients of the PCE method because it adaptively adds a new
polynomial basis in chunks. This improves the computational efficiency of the polynomial
expansion method. In addition, the computational cost of the PCE method is expected to
be reduced further, as described in the next section.

3.3. Basis Discarded Based on Variance Contribution

Adaptive basis enrichment can help reduce the computational cost; however, it is
inapplicable when the basis set already contains many basis terms. The contribution to
the precision of the response varies with respect to the basis terms. Thus, only a few
basis items are significant for the influence of the response analysis, and the others can be
discarded. Consequently, to refine the basis terms, an adaptive basis truncation strategy
was developed in [20]. However, this strategy is applicable only to problems with random
parameters. Therefore, it is introduced in this study and implemented to solve problems
with probabilistic and interval parameters.

For a hybrid probabilistic and interval method, the interval variables can be considered
constant to determine the bounds of the expectation and variance. The variance of a
response can be expanded through the sum of the variances of the polynomial basis terms,
which is defined as follows:

σj2
2 =

Nj2

∑
j1=1

z2
j1 − z2

1 =

Nj2

∑
j1=2

z2
j1 (29)
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σ2(u) = [σ1
2, σ2

2, · · · , σj2
2], j2 = 1, 2, · · · , N2 (30)

where σj2
2 represents the variance of the basis term with the j2th (j2 = 1, 2, · · · , N2) interval

variable in the basis set ϕASMAPC
new . The sensitivity of the basis term for each random variable

is given by Equation (31).

dj1 =
z2

j1
Nj2
∑

j1=2
z2

j1

, (j1 = 2, 3, · · · , Nj2) (31)

dj2 = [d1, d2, · · · , dj1 ] (32)

d =
{

d1, d2, · · · , dj2
}

, j2 = 1, 2, · · · , N2 (33)

where dj2 denotes the variance of the basis term with the j2th (j2 = 1, 2, · · · , N2) interval
variable in the basis set ϕASMAPC

new . Here, dj2 denotes the variance contribution vector of the
basis term of each interval variable, and d denotes the variance contribution vector of all
the basis terms. Different interval variable polynomial basis terms correspond to different
numbers of random-variable polynomial basis terms. Meanwhile, with different j1, the
number of vectors dj2 varies.

σy
2 =

N

∑
i=1

f 2
i − f 2

1 =
N

∑
i=1

f 2
i − f 2

1 =
N

∑
i=2

f 2
i (34)

dk =
f 2
k

N
∑

i=2
f 2
k

, (k = 2, 3, · · · , N) (35)

dtol =
1

N − 1
(36)

The tolerance is given by Equation (36). The polynomial basis will be preserved if its
sensitivity is above the given tolerance dtol , whereas the unimportant polynomial basis
ϕASMAPC

new can be ignored. The new refined basis set ϕre f ind is given in Equation (38). The
basis terms are retained when the sensitivity of the basis term is greater than a given
tolerance; otherwise, they are discarded when the basis term is less sensitive than the
given tolerance.

dk =

{
≤ dtol , then ϕk ∈ ϕdiscard
> dtol , then ϕk ∈ ϕre f ind

(37)

ϕre f ind = ϕold\ϕdiscard (38)

εre f ind =

∣∣∣∣∣σ
2
f ull − σ2

re f ind

σ2
f ull

∣∣∣∣∣ (39)

The choice of dtol significantly influences the precision and efficiency of the PCE
method. σ2

f ull and σ2
re f ind represent the variance of the PCE method used to determine

whether to perform basis refinement. εre f ind denotes the absolute percentage difference
between σ2

f ull and σ2
re f ind. The optimal value of dtol is selected as follows. If the absolute

percentage difference εre f ind is less than the reference value εre f erence = 10−5, dtol is divided
by a factor of 10 until εre f ind is less than εre f erence, which is expressed in Equation (40).

dtol =
dtol
10t (40)

where t is the iterations of dtol .
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3.4. Adaptive Sampling Scheme

The adaptive sequence sampling scheme proposed in [20], which combines growth
strategies and a sequence sampling scheme, can deal with many function evaluations with a
large number of random input parameters. Hence, an adaptive sequence sampling scheme
was introduced in this study to calculate the expansion coefficient.

3.4.1. Initial Sampled Set

In this section, the candidate set, represented by β, is generated using the Gaussian
integration sampling scheme. The sampled set can be represented using γ. The elements of
the initial sampled set were determined using the maximin metric from the candidate set.
The scalar-valued criterion function of the maximin metric [35], as expressed in Equaiton
(41), is primarily used to sort the competing sampling sets.

Φp(β) =

(
z0

∑
i=1

z0

∑
j=i+1

d
(

β(i), β(j)
)−p

)1/p

(41)

where z0 denotes the number of integration points for the candidate set. p represents
a comparatively large integer that can be set to 100. β(i) represents the ith integration
point in the β space. d

(
β(i), β(j)

)
represents the Euclidean distance, which is expressed as

follows [36]:

d
(

β(i), β(j)
)
=

(
Q

∑
q=1

∣∣∣β(i)
q − β

(j)
q

∣∣∣2) 1
2

(42)

where β
(i)
q
(
q = 1, 2, · · · , Q, i = 1, 2, · · · , nq

)
represents the i-th sampling point of the q-th

variable, q represents the number of variables, and 2 represents the Euclidean norm.
The uniformity of the sampled set is greater if the value of Φp decreases. According

to 35, Φp is recalculated to select a new sampling point each time, and the new sampling
point with the minimum Φp is placed in the sampling set γ to update the sampling set.

This process is repeated until all the elements are identified. Φp

(
β, β

(j)
1

)
can be rewritten

as follows:

Φp

(
β, β

(h)
1

)
=

(
s0

∑
i=1

d
(

β(i), β
(h)
1

)−p
)1/p

(43)

where
(

β, β
(h)
1

)
denotes a new sampling set that includes both the original sampling point

β(i) ∈ γ and the recalculated sampling point β
(h)
1 ∈ β. The number of sampling points in γ

is represented by S0.

3.4.2. Sampling Technique for Sampling Point Selection

The specific procedure for sampling point selection for adaptive growth strategies
is as follows. First, new sampling points in xadd can be acquired using the minimum
value of the maximin metric Φp

(
β, β

(j)
1

)
, which can be calculated using Equaiton (42). The

previously obtained sampled set xold can then be reutilised as a subset of the expansion,
and the variance is recalculated by xnew. The relationship between xnew, xold, and xadd can
be expressed by Equation (44).

xnew = xold ∪ xadd (44)

The adaptive strategy considers both the original and updated basis sets; thus, the
accuracy and computational cost are significantly affected. Additionally, the calculation of
the sampling point was based on the LSM. Thus, A denotes the matrix of the polynomial
basis used in this approach, which needs to be a full-column rank matrix. The rank of
matrix A can be determined using singular value decomposition.
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When the rank of A equals n, it is determined to be a full-column rank matrix. The
rank of A was calculated for each sampling point. If the rank is not equal to n, the sampling
point is deleted, and both the sampling and candidate sets are updated. The above steps are
repeated until the number of sampling points retained in the sampling set is 1.0–1.3 times
the number of expansion coefficients.

4. Adaptive Polynomial Chaos Expansion Method for Reliability-Based Optimization
of Structural-Acoustic System
4.1. Structural-Acoustic Systems with Interval and Random Uncertainties

The dynamic equilibrium equation for a structural-acoustic system can be built using
an acoustic finite element analysis [37], which can be expressed as follows:[

Kvs −ω2Mvs −H
ρω2HT Kac −ω2Mac

]{
uvs
P

}
=

{
Fvs
Fac

}
(45)

where Kvs and Kac denote the structural stiffness matrix and acoustic stiffness matrix,
respectively; Mvs and Mac denote the mass matrices for a vibrating structure and an
acoustic cavity, respectively; Fvs and Fa f denote the generalised force vectors acting on
the vibrating structure and acoustic cavity, respectively; ω denotes the angular frequency
of the time harmonic; ρ denotes the density of the acoustic fluid; H expresses the spatial
coupled matrix; uvs represents the structure displacement vector; and P represents the
sound pressure vector in the acoustic cavity.

After simplifying the dynamic equilibrium equation, Equation (45) can be expressed
as follows:

ZR = F (46)

Here:

Z =

[
Kv −ω2Mvs −H

ρω2HT Kac −ω2Mac

]
, R =

{
uvs
P

}
, F =

{
Fvs
Fac

}
(47)

where Z represents the structural-acoustic dynamic stiffness matrix, F denotes the external
excitation vector for the structural-acoustic system, and R denotes the structural-acoustic
response vector.

Considering the actual uncertainties, the dynamic equilibrium equation for the structural-
acoustic system can be expressed as in Equaton (48), where the uncertain parameters are
denoted by (xI , xR).

Z(xI , xR)R(xI , xR) = F(xI , xR) (48)

4.2. Interval and Random Analyses of an Uncertain Structural-Acoustic System

In Section 2.2, Equation (11) expresses the uncertainty problem of the interval and
random variables that the ABAPC can compute. There are two steps in the interval and
random analyses of an uncertain structural-acoustic system. First, we assume the interval
variable to be a constant parameter. Thus, Equation (11) can be expressed as follows:

F(x) =
N1
∑

i1=0
· · ·

NL1
∑

iL1=0

(
NL1+1

∑
iL1+1=0

· · ·
NL
∑

iL=0
fi1,...,iL ϕiL1+1,...,iL(x

I)

)
ϕi1,...,iL1

(xR)

=
N1
∑

i1=0
· · ·

NL1
∑

iL1=0
zi1,...,iL1

ϕi1,...,iL1
(xR)

(49)

where

zi1···iL1
=

NL1+1

∑
iL1+1=0

· · ·
NL

∑
iL=0

fi1,...,iL ϕiL1+1,...,iL(x
I) (50)
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According to orthogonality, the expectation can be expressed by the following:

µ = E

[
N1
∑

i1=0
· · ·

NL1
∑

iL1=0
zi1···iL1

ϕi1···iL1
(xR)

]
= z0,··· ,0

(51)

Similarly, the variance is expressed by the following:

σ2 = E

( N1
∑

i1=0
· · ·

NL1
∑

iL1=0
zi1,...,iL1

ϕi1,...,iL1
(xR)

)2
− µ2

=
N1
∑

i1=0
· · ·

NL1
∑

iL1=0

(
zi1,...,iL1

)2
− (z0,...,0)

2

(52)

where 0 ≤ i1 + · · ·+ iL1 + iL1+1 + · · ·+ iL ≤ n, i1, . . . , iL1 , . . . , iL = 0, 1, . . . , n.
From Equations (50)–(52), the expectation and variance can be expressed by the following:

µ
(

xI
)
=

NL1+1

∑
iL1+1=0

· · ·
NL

∑
iL=0

f0,...,0,iL1+1,...,iL ϕiL1+1,...,iL(x
I) (53)

σ2
(

xI
)
=

N1

∑
i1=0
· · ·

NL1

∑
iL1=0

 NL1+1

∑
iL1+1=0

· · ·
NL

∑
iL=0

fi1,...,iL ϕiL1+1,...,iL(x
I)

2

−

 NL1+1

∑
iL1+1=0

· · ·
NL

∑
iL=0

f0,...,0,iL1+1,...,iL ϕiL1+1,...,iL(x
I)

2

(54)

Finally, the bounds of µ
(
xI) and σ2(xI) obtained using the MCM are given by the following:

[
σ2, σ2

]
≡
[

min
xI

j∈[x,x]

{
σ2(xI)}, max

xI
j∈[x,x]

{
σ2(xI)}]

[
µ, µ

]
=

[
min

xI
j∈[x,x]

{
µ
(
xI)}, max

xI
j∈[x,x]

{
µ
(
xI)}] (55)

4.3. Optimization Model Based on Reliability for a Structural-Acoustic System

The RBDO model of a structural-acoustic system under hybrid probabilistic and
interval models is typically expressed by the following:

min E
[
u
(
ξ, η I , h

)]
s.t. P

(
gm
(
ξ, η I , h

)
≤ 0

)
≥ ηm, m = 1, 2, . . . , M

hlower ≤ h ≤ hupper

(56)

where ξ =
{

ξ1, ξ2, . . . , ξq
}T

(q = 1, 2, . . . , Q) denotes the design variable vector in which Q
represents the number of design variables. R denotes the number of random variables, and
η I =

{
η I

1, η I
2, . . . , η I

r
}T

(r = 1, 2, . . . , R) represents the random variable vector. K denotes
the number of interval variables. h = {h1, h2, . . . , hk}T(k = 1, 2, . . . , K) expresses the inter-
val variable vector. u

(
ξ, η I , h

)
represents a random-interval objective function. M denotes

the number of limit-state functions, and gm
(
ξ, η I , h

)
(m = 1, 2, . . . , M) denotes the m-th

limit-state function, where P
(

gm
(
ξ, η I , h

)
≤ 0

)
denotes the probability of gm

(
ξ, η I , h

)
≤ 0.

ηm represents the mth design reliability index. P
(

gm
(
ξ, η I , h

)
≤ 0

)
≥ ηm is the reliability

constraint, where hlower and hupper denote the lower and upper bounds of h, respectively.
The optimisation goal in structural-acoustic systems is to reduce the sound pressure in the
acoustic cavity. In this study, the maximum value of the sound pressure response is chosen
as the optimisation objective. This is because when the maximum value meets the design
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requirements, the rest of the values are bound to meet the design requirements. Therefore,
the RBDO with probabilistic and interval variables was determined as follows:

min Emax
[
u
(
ξ, η I , h

)]
s.t. Pmin

(
gr
(
ξ, η I , h

)
≤ 0

)
≥ ηm, m = 1, 2, . . . , M

hlower ≤ h ≤ hupper

(57)

5. Numerical Examples

The effectiveness of this approach was demonstrated using two numerical examples
and one engineering example. For a structural-acoustic system with uncertainties, the APC
expansion method using Gaussian integration (IRAPCM) is commonly used [11]. In the
application of adaptive algorithms, a method based on basis adaptivity and sequential
sampling (VARPCE) has recently been proposed with a comparatively higher computa-
tional efficiency [20]. To prove the effectiveness of the ABAPC with the conventional
structural-acoustic method and the adaptive algorithm, it is fully compared with IRAPCM
and VARPCE, respectively.

5.1. Numerical Example

In this case, two anisotropic functions were defined to demonstrate the effectiveness
of the ABAPC. To reflect the anisotropy of the problems while maintaining brevity and
generality, the functions are defined as in Table 3.

Table 3. Function expression.

Functions Expression

case 1 f (x) = x1 + x2 + 50x6 + 25
(
5x3 + 25x5

4
)3

+ 50
(
25x6

4 + 30x2
5
)2

+ 60
(

x1 + 5x3 + 20x2
4
)2

+ 200x6
4

case 2 f (x) = ex1+x2+x3+x4+x5+0.1x6 + e5x3
4

Where, xi(i = 1, 2, 3, 4, 5) denotes the random variables distributed uniformly in
[−1,1]; x6 denotes the interval variables, and x6 ∈ [−1, 1]. The only available information
about the random variables is statistical data. Figure 1 shows the frequency distribution
histogram of the random variables.

The responses of the above two typical functions were obtained using the proposed
ABAPC method. To compare the characteristics of the different methods, the VARPCE
and IRAPCM methods were introduced for comparison with the ABAPC method. In this
section, the MCM is used to obtain the reference results, where five interval sampling points
and 10,000 random sampling points are selected. To compare the calculation accuracies
of different arbitrary polynomial expansion methods, the relative error in the variational
ranges for both the expectations and variances under the hybrid uncertain model is defined
as follows:

erµ = max
{∣∣∣∣ µ−µre f

µre f

∣∣∣∣, ∣∣∣∣ µ−µ
re f

µ
re f

∣∣∣∣}
erσ = max

{∣∣∣∣ σ2−σ2
re f

σ2
re f

∣∣∣∣, ∣∣∣∣ σ2−σ2
re f

σ2
re f

∣∣∣∣} (58)

Here, µ, µ, σ2, and σ2 denote the maximum and minimum values of the expectations
and variances calculated using different arbitrary polynomial expansion methods, respec-
tively. µre f , µ

re f
, σ2

re f , and σ2
re f denote the reference values for the maximum value, the

minimum value of the expectations, and variances calculated using the MCM, respectively.
Figures 2 and 3 show the erµ and erσ values obtained using different methods.
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Figure 2. Convergence of erµ and erσ for case 1 using different methods: (a) relative error of
expectations, and (b) relative error of variances.

Figures 2 and 3 show that the relative error of ABAPC drops significantly with a
higher decay rate in subsequent iterations, faster than that in the case of both VARPE and
IRAPCM. Compared to VARPCE and IRAPCM, ABAPC requires fewer sampling points
to obtain the same accuracy. For example, as shown in Figure 3a, erµ converges (i.e., to
obtain the D-value with variances lower than 1× 10−5 for three successive iterations),
with the sampling points of ABAPC, VARPCE, and IRAPCM being 1600, 2400, and 4000,
respectively. Furthermore, as shown in Figures 2b and 3b, the convergence rates of ABAPC
and VARPCE are significantly higher than that of the IRAPCM because the adaptive basis
growth strategy and sequential adaptive sampling strategy are introduced to decrease
the number of basis terms for PCE and the sampling points for calculating the expansion
coefficients, respectively. As shown in the enlarged parts of Figures 2 and 3, the ABAPC
converges faster than the VARPCE because the dimensional anisotropy is based on the
adaptive basis enrichment strategy. Furthermore, the anisotropic adaptive basis enrichment
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could substantially reduce the computational cost of the response analyses of hybrid
uncertain systems for PCE.
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For a better comparison of the computational efficiencies of ABAPC, VARPCE, and
IRAPCM, the number of sampling points, retained order, number of polynomial bases,
total computing time, and computing time of the ARPCE, IRAPCM, and ABAPC are listed
in Table 4.

Table 4. Comparison of calculation results obtained by ABAPC, VARPCE, and IRAPCM.

Functions Method Total Computational
Time/s

Response
Time/s

Number of Refined
Basis Terms

Expansion
Order

Number of
Samples

Case 1
ABAPC 714.5960 71.5237 146 [1 1 1 4 4 1] 219

VARPCE 1558.7 112.1732 406 [4 4 4 4 4 4] 609
IRAPCM 1828.6 1115.9 / [4 4 4 4 4 4] 15625

Case 2
ABAPC 295.2705 49.0328 97 [2 1 1 4 1 1] 146

VARPCE 765.7473 94.1299 210 [4 4 4 4 4 4] 315
IRAPCM 9989.00 3298.4 / [5 5 5 5 5 5] 46,656

From Table 4, the numbers of sampling points in Case 1 for ABAPC, VARPCE, and
IRAPCM are 219, 609, and 15,625, respectively. The total computational times in Case 1
for ABAPC, VARPCE, and IRAPCM were 714.6, 1558.7, and 1828.6 s, respectively, which
confirms the effectiveness of this algorithm. Therefore, ABAPC has a significantly bet-
ter computational efficiency than VARPCE and IRAPCM. Compared with the VARPCE
method, this method can efficiently handle hybrid probabilistic and interval variables
simultaneously. The main difference between the AAPC, VARPCE, and IRAPCM is that the
anisotropic adaptive basis enrichment algorithm is introduced to remove the nonsignificant
basis terms. These algorithms produce optimal results at a lower computational cost. With
the increase in dimension, ABAPC has more obvious advantages over the VARPCE and
IRAPCM in computing efficiency. Accordingly, the proposed method could be successfully
extended to solve the high-dimensional problem with hybrid uncertain parameters.

The application of the ABAPC significantly decreases the computational cost of
moment-based arbitrary PCE in the analysis of multidimensional uncertainty. Thus, the
ABAPC has a higher accuracy than the VARPCE and IRAPCM and significantly improves
the computational efficiency for interval and random variable analyses.

5.2. Structural-Acoustic Problem

Figure 4 presents a schematic of a shell structural-acoustic system. In this model, a
flexible shell sits on the upper apex of the acoustic cavity, which is made of aluminium
(E = 7.1× 1010 Pa, ν = 0.3, ρs = 2700 kg/m3). The walls of the acoustic cavity are rigid.
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All the edges in the shell are fixed, thickness is set as 2 mm, and it is excited by a unit
normal harmonic point force at the midpoint, which is indicated by Node B in Figure 4.
The acoustic cavity is filled with air (ρ f = 1.2 kg/m3 and c = 340 m/s).
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Figure 4. Schematic of a structural-acoustic model.

A coupled structural-acoustic system is composed of a flexible shell and an acoustic
cavity. Considering the unpredictability of the environment and manufacturing errors in
the materials, the sound speed of air filled in the acoustic cavity, Poisson’s ratio, and elastic
modulus of flexible plates can be considered probabilistic variables. The density of air
in an acoustic cavity can be determined as an interval variable [4]. Table 5 presents the
uncertainty information.

Table 5. Uncertain parameters of uncertain shell structural-acoustic systems.

Uncertain Parameters Uncertainty Information

Elastic modulus (E(GPa) ) 71 + 0.71x1
Poisson’s ratio (ν) 0.3 + 0.015x2

Sound speed (c(m/s) ) 340 + 10.2x3

Density of air
(

ρ f (kg/m3) ) [1.14, 1.26]

Because of measurement and manufacturing errors, the effective values of the thick-
ness and density of the flexible plate (marked as t and ρ) can be considered interval
variables, which can be denoted by t = t′β and ρ = ρ′β, respectively. Here, t′ and ρ′ are the
theoretical thickness and density of the flexible plate, respectively. The variational range of
β, which is an interval variable, can be set as [1− α, 1 + α]. α is the uncertain level of β. The
thickness and density of the flexible plate were determined as the design variables.

The expected maximum value of the sound pressure response in the acoustic cavity
at a selected frequency of 300 Hz was selected as the objective function. The sound
pressure response at Node B for the selected frequency can be denoted by rB(xI , xR).
max{rB(xI , xR)} represents the expected peak value of rB(xI , xR). The total mass of the
structural-acoustic system that does not exceed 2.1987 kg can be considered the constraint
condition. The RBDO problem is defined as follows:

min
ρ,t

max{rB(xI , xR)}

s.t. P(g ≤ 0) ≥ η
g = ρSt− 2.1987
2160 kg/m3 ≤ ρ ≤ 3240 kg/m3

0.0016 m ≤ t ≤ 0.0024 m

(59)

Here, η expresses the system reliability index obtained under the engineering require-
ment. g = ρSt− 2.1987 represents the limit-state function. S denotes the area of the flexible
plates. The component reliability P(g ≤ 0) can be rewritten as P(g ≤ 0). rB(xI , xR) denotes
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the sound pressure response. The objective function max{rB(xI , xR)} can be converted
to max{ψ[rB(xI , xR)]}. ψ[rB(xI , xR)] denotes the maximum value of the expectation of
rB(xI , xR). Therefore, the RBDO problem can be expressed as follows:

min
ρ,t

max{ψ[rB(xI , xR)]}

s.t. P(g ≤ 0) ≥ η
g = ρSt− 2.1987
2160 kg/m3 ≤ ρ ≤ 3240 kg/m3

0.0016 m ≤ t ≤ 0.0024 m

(60)

η was set to 0.95. The thickness and density of the flexible plate after optimisation were
t′ = 0.0018 m and ρ′ = 2253.9 kgm3, respectively. The nondominated sorting genetic algo-
rithm (NSGA-II) is a well-established evolutionary algorithm which considers the influence
and synergy between multiple input parameters at the same time [38]. Consequently,
this algorithm has broad application prospects in the field of multiobjective optimisation.
The NSGA-II formulation was used to solve the RBDO problem in this study, with the
parameters set as follows: Pareto fraction of 0.3, stall GenLimit of 200, population size of
30, fitness function deviation of 1e-10, and maximum number of generations of 20. Figure 5
shows the average and optimal values of the objective generated with the iterations.
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To compare the deterministic optimisation and the proposed RBDO, the expected
maximum values of the sound pressure, design variables, and component reliability of
these optimisations are listed in Table 6.

Table 6. Comparison of optimization results obtained by the proposed RBDO method and determin-
istic optimization.

Type Design Variables max{ψ[rB(xI,xR)]}
(Pa)

P
(

¯
g≤0

)
t’(mm) ρ’(kg/m3)

Initial values 0.002 2700 0.5610 0.72
Deterministic optimization 0.0024 2160 0.3059 0.76

RBDO with hybrid
probabilistic and interval

model
0.0018 2253.9 0.6247 0.97

As listed in Table 6, although the results of the deterministic optimisation are better
than those of the proposed RBDO, its component reliability is 0.76, which strongly violates
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the reliability constraint. In contrast, the optimal design required by the proposed RBDO
method strictly satisfies the constraint condition.

To demonstrate the advantages of the proposed method in terms of computational
efficiency, the calculation results of the RBDO based on ABAPC and RBDO based on
IRAPCM were compared. Table 7 presents the results (total computational time and
calculation time of the surrogate model) of these methods.

Table 7. Comparison of calculation results obtained by the RBDO based on ABAPC and RBDO based
on IRAPCM.

Method Sound Pressure (Pa) Total Computational Time/h Calculation Time of the
Surrogate Model/s

RBDO based on ABAPC 0.624 10.98 75.2131
RBDO based on IRAPCM 0.595 209.27 1337.9

As listed in Table 7, under the same constraint condition, the results obtained by
the two approaches are similar, though the computation times are quite different. The
calculation time for the surrogate model, which is the conventional method, is 17 times that
of the RBDO based on ABAPC. Its total computational time was 19 times that of the RBDO
based on the ABAPC. Thus, the proposed method significantly improves the computational
efficiency of the RBDO with hybrid probabilistic and interval variables.

Replication of results: The details of the proposed methodology and of the specifc
values of the parameters considered have been provided in the paper. Hence, we are
confdent that the results can be reproduced. Readers interested in the source code are
encouraged to contact the authors by e-mail.

6. Conclusions

For the hybrid uncertainty quantification and optimisation of a structural-acoustic
system with hybrid probabilistic and interval variables, an anisotropy-based adaptive
PCE method was constructed in this study. The conclusions drawn from the results are
as follows:

(1) Compared with the IRAPCM, for high-order and multi-dimensional problems, the
overall computational time required by ABAPC significantly reduced when reaching
the same accuracy, demonstrating a higher computational efficiency.

(2) Compared with VARPCE, ABAPC could solve the problem with probability and interval
parameters and improve the overall computational efficiency with the same accuracy.

(3) The nested-loop RBDO problem can be transformed to an approximate single-loop
problem using ABAPC to approximate the objective function and obtain component re-
liability. Therefore, compared with the RBDO based on IRAPCM, the RBDO based on
ABAPC significantly decreased the number of polynomial basis terms and effectively
improved the computational efficiency of RBDO for structural-acoustic systems.

In conclusion, the paper provide an effective approach to construct the simplified
surrogate model with hybrid uncertainty, which can significantly improve the efficiency
for uncertainty quantification and reliability-based optimization of structure-acoustic sys-
tem with hybrid interval and random uncertainties. Note that the proposed ABAPC
can applied to the uncertainty quantification and optimization of other problems with a
suitable extension.
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